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Abstract

Background: Over the last 10 years, there have been over 3300 genome-wide association studies (GWAS). Almost
every GWAS study provides a Manhattan plot either as a main figure or in the supplement. Several software
packages can generate a Manhattan plot, but they are all limited in the extent to which they can annotate gene-
names, allele frequencies, and variants having high impact on gene function or provide any other added
information or flexibility. Furthermore, in a conventional Manhattan plot, there is no way of distinguishing a locus
identified due to a single variant with very significant p-value from a locus with multiple variants which appear to
be in a haplotype block having very similar p-values.

Results: Here we present a software tool written in R, which generates a transposed Manhattan plot along with
additional features like variant consequence and minor allele frequency to annotate the plot and addresses these
limitations. The software also gives flexibility on how and where the user wants to display the annotations. The
software can be downloaded from CRAN repository and also from the GitHub project page.

Conclusions: We present a major step up to the existing conventional Manhattan plot generation tools. We hope
this form of display along with the added annotations will bring more insight to the reader from this new
Manhattan++ plot.
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Background
A Manhattan plot, which plots the association statistical
significance as –log10(p-value) in the y-axis against
chromosomes in the x-axis, is a good way of displaying
millions of genetic variants in one figure. One can easily
spot regions of the genome that cross a particular
significance threshold. Furthermore, it makes it easy to
identify regions that can be taken forward for replication.
Several software packages (QQMAN [1], GWAMA [2],
IGV [3], https://genome.sph.umich.edu/wiki/Code_Sam-
ple:_Generating_Manhattan_Plots_in_R, SNPEVG [4])
come bundled with a plotting feature or a small R script
which can generate a Manhattan plot. These scripts
generate the plot but because of the lack of any further

information in the plot (annotating the plot with gene
names, identifying how significant are low frequency vari-
ants and high impact consequence variants in the GWAS),
the Manhattan plot is losing its importance in more recent
GWAS publications. However, with availability of large
cohorts (eg. UK Biobank) and power to detect more loci
crossing genome wide significant threshold (over 500 in
the recent Blood Pressure GWAS [5]), it is a tedious,
time-consuming process to annotate gene names manu-
ally on a Manhattan plot. Another drawback with the
conventional plot is the inability to identify the number of
variants hiding behind “a” visible dot. In order to
overcome the limitation to annotate ever-increasing loci
discovered, researchers have started transposing [6–11]
the Manhattan plot to give more room to display the gene
names on the plot. Manhattan++ software tool reads the
genome-wide summary statistic on millions of variants
and generates the transposed Manhattan++ plot with user
defined annotations like gene-names, allele frequencies,
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variant consequence and summary statistics of loci of
interest.

Implementation
The software is written in R (version > = 3.4.0) and requires
ggplot2, ggrepel, reshape2 and gridExtra packages (along
with their dependencies). The software needs three files as
input. The first file contains the genome-wide summary
statistics. This file should contain the variant name,
chromosome, position, p-values, minor allele frequency
(MAF) and consequence. The code can cope with different
column header names and accept compressed summary
statistics file. The second file contains the information on
the loci of interest that are to be annotated on the plot. This
file contains lead sentinel variant name, chromosome,

position, effect allele frequency, odds ratio, p-value, novel/
known and gene-name for the loci of interest. The third file
is a configuration file that instructs the software on the col-
ours, bin sizes and annotation features required for display
(Table 1). The display consists of two panels where the left
panel is used for transposed Manhattan plot and the right
panel to display information on the loci of interest. The
script splits the genome (Fig. 1) into user-defined chunks
(default 3 million base pairs (Mbp)) and association p-
values chunks (default –log10 p-value of 0.125) and creates
an empty matrix. The script reads the summary statistics
and increments the counter for the respective bin where
the variant lies in the matrix. Variants which have a p-
value<1e-20 (default) are assigned p-value = 1e-20 and the
bin count is incremented accordingly and limited

Table 1 Relevant columns in the configuration file for the software

idx Min count maf conseq col report Description

1 1 FALSE FALSE black FALSE Cells with one variant are black.

2 1 FALSE TRUE light pink TRUE Cells with one variant with high
conseq are light pink.

3 1 TRUE FALSE green FALSE Cells with one variant with MAF
less than threshold are green.

4 1 TRUE TRUE dark magenta TRUE Cells with one variant with MAF
less than threshold and high
conseq are dark magenta.

5 2 FALSE FALSE blue FALSE Cells with 2 or more variants are blue.

6 2 FALSE TRUE pink TRUE Cells with 2 or more variants with
high conseq in at least one are pink.

7 2 TRUE FALSE red FALSE Cells with 2 or more variants with a
MAF less than threshold in at least
one are red.

8 2 TRUE TRUE cyan TRUE Cells with 2 or more variants with at
least one variant with MAF less than
threshold and at least one variant with
the conseq flag are cyan.

Each display cell shows two annotation features (MAF & consequence (conseq)). Report column instructs the code whether a bubble is drawn on the plot (Fig.
2d). These are features of interest like low MAF or high consequence or both. Reporting of bubbles take place on cells which are above the FDR threshold (Fig.
2a). Rest of the cells are alternating dark and light grey blocks represent the odd and even chromosomes respectively. Min.count contains the minimum number
of variants in each cell. First 4 rows show configuration for cells with one variant. The next 4 rows are for cells that contain 2 or more variants

Fig. 1 Displaying the dimensions of the matrix. The genome is split into chunks of 3 Mbp and the association statistics in chunks of 0.125 –
log10(p). The number of variants in each cell of the matrix is counted and stored in memory. The colour of the cell is assigned according to the
config file settings
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Fig. 2 (See legend on next page.)
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information is lost. The bin count matrix is then used by
ggplot2 to display the heatmap using the colours as defined
in the configuration file. All the parameters can be edited in
the configuration file and when calling the function in R ac-
cording to user preference.

Results
The software is customizable and can generate a Manhat-
tan of about 20 million variants on a 32 bit desktop per-
sonal computer using under 3.4 GB RAM and similar in
Linux (Centos 7). The software has been tested to display
annotation of 130 loci in a tabular format (Fig. 2a) with
odds ratio, effect allele frequency, p-value & gene-name. If
the number of loci to display goes beyond 130, then we
recommend using just the gene (or variant) names and
the software will display the names in a force directed
manner (Fig. 2b). The colours and the number of variants
in each bin are customizable (Table 1, Figs. 2c, 3). This
gives the reader an insight into the locus whether it is
driven by a single variant (Fig. 2a, NOS3 locus), variants
with low MAF (< 5%) or variants having a “high” impact

functional annotation. (Example: Chromosome 6 has a
blue block displayed as “8” which denotes that there are
multiple (2–200) variants with at least one variant having
low MAF and high impact or two variants one having low
MAF and the other having high impact annotation as
shown in Fig. 2d). The user have the option to save the
output as a PDF or a high-resolution TIFF file.

Conclusions
Here we present the Manhattan++ software which is a
major step up from existing tools and addresses the
highlighted limitations. Furthermore, the code is
customizable and being open source increases the poten-
tial for future feature enhancements by the community.
We recognize that there are existing scripts that gener-
ate a Manhattan plot but none can perform the tasks we
have implemented in this software. However, only a
handful of them annotate the plot with minimal level of
detail (Additional file 1: Supplementary Note, Table S1).
Most existing scripts generate a graph in a landscape
orientation, which is not enough with ever-increasing

(See figure on previous page.)
Fig. 2 Screenshots of the output from Manhattan++ software. a) Transposed Manhattan plot on the left and lead variant annotation on the right.
Alternating dark and light grey blocks represent the odd and even chromosomes respectively along the y-axis for those variants have association
p-value greater than user-defined significance (5% False Discovery Rate). Blocks that contain variants with high impact and/or low MAF are
highlighted using a bubble (eg 8). b) Zoomed in screenshot showing peak loci names in bubbles. c) The key showing the index (1–8), variant
count (1, 2–200) in each block, annotation (MAF, impact, both), counter showing number of blocks in the plot for this index (eg. there are 2
blocks having index 8 on chromosomes 6 & 8). d) Zoomed in screenshot of a signal where there is a blue block (index 8) that could contain 2–
200 variants with at least one variant having low MAF and high impact or two variants, one having low MAF and the other having high
impact annotation

Fig. 3 The key. Using the default settings, the Manhattan++ plot generates a key for the plot. For keys #5–8, there are 2–400 variants per cell in
the matrix (using different configuration file from Fig. 2). The software calculates the maximum count based on the overall matrix. For key #5,
there are 6264 cells in the plot. Key #6 tells us that the cell contains 1 or more high impact variant(s) and there are 4 such cells in the plot. Key
#7 gives us information on those cells where there are one or more variant(s) with MAF < 5% and there are 1226 such cells. Key #8 tells us that in
2–400 variants, there is one variant with MAF < 5% and is also high impact. If the cell contains 2 variants, one with MAF < 5% and one that is
high impact, then the cell will also get key #8
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number of discovered GWAS loci. A limitation with our
method is that it takes one full A4 page of the journal to
display but with more researchers reading publications
online, this figure is highly web readable and useful for
poster presentations. This software adds a lot of infor-
mation to the existing Manhattan plot and we hope that
the readers will be able to derive more information by
looking at the Manhattan++ plot.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3201-y.

Additional file 1: Supplementary Note. Table S1.Comparison of the
functionalities between existing Manhattan software tools and Manhattan
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