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Abstract

Background: Maximum parsimony reconciliation in the duplication-transfer-loss model is widely used in studying
the evolutionary histories of genes and species and in studying coevolution of parasites and their hosts and pairs of
symbionts. While efficient algorithms are known for finding maximum parsimony reconciliations, the number of
reconciliations can grow exponentially in the size of the trees. An understanding of the space of maximum parsimony
reconciliations is necessary to determine whether a single reconciliation can adequately represent the space or
whether multiple representative reconciliations are needed.

Results: We show that for any instance of the reconciliation problem, the distribution of pairwise distances can be
computed exactly by an efficient polynomial-time algorithm with respect to several different distance metrics. We
describe the algorithm, analyze its asymptotic worst-case running time, and demonstrate its utility and viability on a
large biological dataset.

Conclusions: This result provides new insights into the structure of the space of maximum parsimony reconciliations.
These insights are likely to be useful in the wide range of applications that employ reconciliation methods.
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Background
Phylogenetic tree reconciliation is an important method
for studying the evolutionary histories of pairs of taxa
such as genes and species, parasites and their hosts, and
pairs of symbiont species. Given two phylogenetic trees
and the association of their extant taxa, the objective is
to find an association of the two trees that best explains
their incongruity using a biological model of evolution-
ary events. In the widely-used Duplication-Transfer-Loss
(DTL) model, the events considered are contemporaneous
speciation, duplication, host/horizontal gene transfer, and
loss/extinction.

*Correspondence: hadas@cs.hmc.edu
Department of Computer Science, Harvey Mudd College, Claremont, CA, US

Reconciliation is typically performed in a maximum
parsimony framework in which each type of event is
assigned a non-negative cost and the objective is to find
a mapping of one tree (e.g., the gene tree or parasite tree)
onto the other tree (e.g., the species tree or host tree)
that minimizes the total sum of the costs of the con-
stituent events. A reconciliation of minimum cost is called
a maximum parsimony reconciliation (MPR). Although
reconciliation is also possible in probabilistic frameworks,
the underlying algorithms are generally prohibitively slow
and are particularly sensitive to the choice of their many
parameters.

While a single maximum parsimony reconciliation can
be found in polynomial time [1–3], the number of MPRs
can grow exponentially with the size of the trees [1, 4].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3203-9&domain=pdf
mailto: hadas@cs.hmc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Santichaivekin et al. BMC Bioinformatics 2019, 20(Suppl 20):636 Page 2 of 11

For example, in a benchmark Tree of Life dataset with
100 primarily prokaryotic species [5], over 10% of gene
families had more than 105 MPRs and some gene fami-
lies induced over 10100 MPRs [1]. Moreover, the choice of
event costs can have a significant impact on the space of
MPRs [6]. Consequently, making inferences from a single
MPR may lead to conclusions that are not supported, or
even contradicted, by other MPRs.

It is important, therefore, to understand the structure
and diversity of MPR space. For example, if MPRs are
largely similar to one another, then a single MPR may
suffice to make robustly supported conclusions. In other
cases, MPR space may be so diverse that conclusions
drawn from a single MPR, or even a sample of MPRs, may
not be reliable.

A number of prior studies have explored the size and
structure of MPR space. The number of MPRs can be
computed in polynomial time as a byproduct of com-
puting a maximum parsimony reconciliation [1–3]. Using
a compact representation of MPR space called the rec-
onciliation graph [7], Nguyen et al. [8] showed how a
single “median” MPR can be computed in polynomial
time. Ozdemir et al. [9] showed that this result can be
generalized to find a set of k medoids or k centers that rep-
resent MPR space. Ma et al. [10] gave a polynomial-time
2-approximation algorithm for covering MPR space with
a set of MPRs that, collectively, contain all of the events
that arise in MPR space. Haack et al. [11] showed how the
diameter of MPR space can be computed in polynomial
time and demonstrated that, in many cases, MPR space is
very diverse.

Recently, Huber et al. [12] proposed computing the
distribution of pairwise distances between MPRs, with
respect to a given distance metric, as a tool for obtaining a
deeper understanding of MPR space than was previously
possible. If, for example, the pairwise distances between
MPRs tend to be small, then choosing a single MPR to
represent that space may be justifiable. However, if the
pairwise distances are large or the distribution of the dis-
tances is multimodal, then the conclusions drawn from a
single MPR are likely to be less robust.

Since MPR space is large, the approach proposed by
Huber et al. selects a sample of MPRs and iteratively
computes their pairwise distances. Because the number
of pairs grows quadratically with the sample size, this
approach is only viable for small sample sizes, providing
a potentially coarse approximation of the true distribu-
tion. The problem of whether the exact distribution of
pairwise distances across the entire space of MPRs can be
computed efficiently was left open [12].

We solve this problem by showing how the pairwise
distances between all pairs of MPRs can be computed
exactly, without sampling, in time polynomial in the size
of the trees. For concreteness, our presentation uses the

symmetric distance metric [8] which measures the dis-
tance between two reconciliations as the number of events
that are found in one reconciliation or the other, but not
both. We show that our results are easily extendible to
other distance metrics as well. Importantly, the asymp-
totic running time is not a function of the number of
MPRs. In practice, our algorithm computes this distribu-
tion in seconds, even for problem instances inducing over
10100 MPRs.

Using a Tree of Life dataset [5], we show that the distri-
butions of pairwise distances can vary dramatically across
problem instances and are also sensitive to the event
costs. We believe that the PairTree software that accom-
panies this paper will provide an important tool when
performing analyses using DTL maximum parsimony
reconciliation.

In summary, the contributions of this paper are:

1 An efficient polynomial-time algorithm for
computing the pairwise distances between all MPRs
for any instance of the DTL reconciliation problem;

2 Experimental results that demonstrate both the
speed of the algorithm on real datasets and its utility
in obtaining new insights into the space of MPRs; and

3 A Python implementation of our algorithm in the
PairTree package (www.cs.hmc.edu/~hadas/
pairtree).

Maximum parsimony reconciliations
A DTL-MPR instance is a 6-tuple (S, G, φ, d, t, �) where
S = (VS, ES) and G = (VG, EG) are binary trees, φ is a
mapping from the leaves of G to the leaves of S (the map-
ping need not be one-to-one nor onto), and d, t, and � are
non-negative costs corresponding to duplication, transfer,
and loss events, respectively, which are explained below.
We assume that the trees are undated, but all results in
this paper can be easily adapted to dated trees as well.

A reconciliation mapping for a given instance is a map-
ping � from the vertices of G to the vertices of S such that
�(g) = φ(g) for each leaf g of G and, if g is an internal ver-
tex of G with children g′ and g′′, then (1) �(g) cannot be a
descendant of either �(g′) or �(g′′) and (2) at least one of
�(g′) or �(g′′) is equal to or a descendant of �(g).

A reconciliation mapping induces four types of events:
Each internal vertex g ∈ VG induces exactly one specia-
tion, duplication, or transfer event and zero or more loss
events. For an internal gene tree vertex g, with children g′
and g′′, the events induced by � are as follows:

Speciation event: Vertex g induces a speciation event if
one of �(g′) and �(g′′) is in the left subtree and the
other is in the right subtree of �(g).

Duplication event: Vertex g induces a duplication event
if each of �(g′) and �(g′′) is either equal to or a
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descendant of �(g) but does not satisfy the require-
ments for a speciation event.

Transfer event: Vertex g induces a transfer event if
exactly one of �(g′) and �(g′′) is either equal to or
a descendant of �(g) and the other is neither an
ancestor nor a descendant of �(g).

Loss events: Each non-root vertex g (including leaf ver-
tices) may induce zero or more loss events as follows:
Let p(g) denote the parent of g in tree G. If �(p(g))

is ancestral to �(g), then each species vertex s on
the path from �(p(g)) to �(g) induces a loss event,
except for �(g) and also not �(p(g)) if p(g) induces
a speciation event. For each loss induced by a ver-
tex s on the path from �(p(g)) to �(g), we say that g
passes through s.

The cost of a reconciliation mapping is the sum of the
number of events of each type, weighted by their event
costs. Speciations are generally considered null events
and thus have cost zero. A reconciliation mapping of
minimum cost is called a maximum parsimony reconcili-
ation (MPR). Figure 1a shows an example of a DTL-MPR
instance and Fig. 1b, c shows two different MPRs for that
instance using duplication, transfer, and loss costs of 1, 4,
and 1, respectively.

An MPR can be found in time O(|G||S|) [1, 13], although
the problem becomes NP-complete if the reconciliation is
required to be temporally feasible in the sense that there
exists a total ordering of the events such that an event
involving a gene vertex g comes earlier in the ordering
than any event involving a descendant of g. Fortunately,
temporal infeasiblity can be detected when it occurs
[13, 14] and experimental results suggest that it is not
common [14, 15].

Reconciliation graphs and traversals
The space of all MPRs can be compactly represented using
a reconciliation graph (Fig. 1d). This representation was
originally developed by Scornavacca et al. [7] for dated
trees and later modified and adapted for undated trees
[10]. For completeness, this representation is summarized
below.

Consider a DTL-MPR instance (S, G, φ, d, t, �). Let �

denote the set of all MPRs for this instance. For a gene
vertex g, let the children of g be denoted by g′ and
g′′. Then, events(g, s) is the set of the following tuples
induced by each MPR � ∈ �:

• (S(g,s), {(g′, s′), (g′′, s′′)}) for each speciation in which
g is mapped to s, g′ is mapped to s′ or one of its

Fig. 1 DTL reconciliation. a An instance of the DTL reconciliation problem comprising a species tree (black), a gene tree (gray), and a leaf mapping.
Duplication, transfer and loss costs are 1, 4, and 1, respectively. b and c Two different MPRs, each with total cost 4. d The associated reconciliation
graph. Mapping nodes are indicated with double line borders. Event nodes are designated with S (speciation event), D (duplication event), T
(transfer event), or L (loss event). The reconciliation traversal indicated by solid edges corresponds to the MPR in (b) and the reconciliation traversal
indicated by dashed edges corresponds to the MPR in (c); bold edges indicate shared elements of the two MPRs. Figure adapted from Haack et. al
[11] with permission
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descendants, and g′′ is mapped to s′′ or one of its
descendants, where s′ and s′′ denote the children of s;

• (D(g,s), {(g′, s), (g′′, s)}) for each duplication in which
g is mapped to s.

• (T(g,s), {(g′, s), (g′′, ŝ)}) for each transfer in which g is
mapped to s and one child, wlog g′′, is mapped to a
vertex ŝ that is not ancestrally related to s;

• (L(g,s), {(g, s′)}) for each loss in which g passes
through s, and s′ is the vertex that follows s on the
path from �(p(g)) to �(g); and

• (C(g,s),∅) for a contemporaneous leaf association
where g and s are leaves and φ(g) = s.

We make several observations about this tuple represen-
tation of events. First, if g is mapped to s as a speciation
event, the children of g, denoted g′ and g′′, are mapped to
descendents of s. However, the speciation event is repre-
sented by associating g′ with one child of s (denoted s′)
and associating g′′ with the other child of s (denoted s′′).
Loss events are introduced for each loss incurred as g′ (or
g′′) passes through species vertices on the path from s′ (or
s′′) to �(g′) (or �(g′′)). Similarly, for a duplication event in
which g is mapped to s, the children of g may be mapped
to s or descendants of s. However, the duplication event is
represented by associating both g′ and g′′ with s and then
loss events are introduced for each loss on the path from
s to �(g′) and on the path from s to �(g′′). Finally, if g is
mapped to s as a transfer event, then one child of g, wlog
g′, is mapped to g or one of its descendants while the other
child, g′′ is mapped to a vertex ŝ that is not ancestrally
related to s. The transfer event is represented by associ-
ating g′ with s (and associating g′′ with ŝ); loss events are
introduced for each loss on the path from s to �(g′).

For each such tuple e, let type(e) denote its first ele-
ment, namely the event type and the ordered pair (g, s),
and let associations(e) denote its second element, namely
a set of zero or more ordered pairs. Note that if e cor-
responds to a speciation, duplication, or transfer event,
then associations(e) is a set containing two ordered pairs,
each representing an association between a gene tree ver-
tex and a species tree vertex. If e is a loss event, then
associations(e) is a set containing one such ordered pair
indicating where the loss is incurred.

Reconciliation graph
The reconciliation graph contains a mapping node for
each (g, s) pair where g is mapped to s in some MPR and,
if not already included, a node (g, s) is also introduced
if g passes through s due to a loss event. The reconcil-
iation graph also contains an event node corresponding
to each tuple in events(g, s). There is a directed edge
from each mapping node (g, s) to each event node in
events(g, s) and a directed edge from each event node e
to a mapping node corresponding to an ordered pair in

associations(e).(Throughout this paper, we use the term
vertex for an element of the gene or species tree and the
term node for an element of the reconciliation graph.)

The representation is compact by merit of the fact that,
while a mapping (g, s) and its events may arise in many
different MPRs, they are shared in this graph represen-
tation. Therefore, the size of the reconciliation graph is
easily seen to be polynomial in the size of the two trees.

Ma et al. give a formal description of the algorithm for
constructing undated reconciliation graphs, a derivation
of its O(|G||S|2) running, and show that undated rec-
onciliation graphs are acyclic [10]. Figure 1d shows the
reconciliation graph for the DTL-MPR instance in Fig. 1a
when duplication and loss have cost one and transfer has
cost four.

Reconciliation traversal
Next, we define reconciliation traversals, which corre-
spond to MPRs. Let sources(R) denote the set of source
nodes of reconcilation graph R which, by definition, are
mapping nodes of the form (rg, ·) where rg represents the
root of tree G.

For a reconciliation graph R, a reconciliation traversal
(abbreviated as traversal) is a subgraph of R whose root
is a mapping node in sources(R). Each non-leaf mapping
node added to the traversal has exactly one of its event
node children added to the traversal. Each event node
added to the traversal has all of its mapping node chil-
dren added to the traversal. Figure 1d shows two traversals
corresponding to the two MPRs in Fig. 1b, c.

There is a straightforward bijection between the set of
MPRs and the set of traversals in the reconciliation graph
[10]. A traversal, in turn, can be represented as the set of
event nodes that it comprises. Thus, we may represent an
MPR as the set of event nodes in the corresponding traver-
sal. For an MPR R, let E(R) denote the set of event nodes
in that reconciliation.

The PDV Algorithm described in the next section com-
putes the pairwise distances using a dynamic program-
ming formulation that operates on increasingly larger
subgraphs of the reconciliation graph. For any mapping
node (g, s) in the reconciliation graph, the subgraph of
all nodes reachable from (g, s) is called the reconciliation
subgraph rooted at (g, s).

The definition of a traversal is also generalized to begin
at any mapping node (g, s) in the reconciliation graph.
This is called a reconciliation subtraversal rooted at (g, s).
Therefore, a traversal is a subtraversal whose root is in
sources(R).

Distance
Let X ⊕ Y denote the symmetric set difference of sets X
and Y, namely the set of elements that are found in X or
Y but not both. Given two reconciliations R1 and R2, the
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symmetric set distance between them, denoted d(R1, R2)
is defined to be |E(R1) ⊕ E(R2)|. It is easily verified that
the symmetric set distance satisfies the requirements of a
distance metric.

This distance metric has been used to measure the dis-
tance between reconciliations in prior work [7–9, 11, 16]
and has been shown to have a number of desirable prop-
erties [8, 16]. Other distance metrics are also possible
[12, 16, 17] and in a later section we show how our
algorithm can be applied to several of those metrics.
Henceforth, unless specified otherwise, we use the term
“distance” to mean symmetric set distance.

Vector operations
Throughout this work, vectors are understood to be over
the non-negative integers. For a vector v, let v[ i] denote
the element at index i. We use several standard operations
on vectors. Given two vectors u and v, the sum of u and v,
denoted u + v is defined by (u + v)[ i] = u[ i] +v[ i]. The
convolution of u and v, denoted u ∗ v is defined by:

(u ∗ v)[ i] =
i∑

j=0
u[ j] v[ i − j]

Given a vector v, σ j, the j-place shift of v is defined by:

σ j(v)[ i] =
{

v[ i − j] : i ≥ j
0 : i < j

Henceforth, we use the shorthand σ for σ 1. Note also that
σ 0(v) = v. Finally, for a vector v and positive integer c, the
scale of v by c is defined by (cv)[ i] = c × v[ i].

Computing pairwise distances
For a given DTL-MPR instance I = (S, G, φ, d, t, �), let
S(I) denote the set of all MPRs. The pairwise distance vec-
tor is the vector v such that v[ i] denotes the number of
pairs of MPRs in S(I) whose distance is exactly i. Note
that v[ 0] is exactly the number of MPRs in S(I) since two
MPRs R1 and R2 are at distance 0 if and only if R1 = R2.
Moreover, the maximum value of i such that v[ i] > 0 is the
maximum distance between any two MPRs, namely the
diameter of the space. For convenience in describing the
algorithm, we treat these vectors as having infinite dimen-
sion. We later establish a bound on the diameter of the
space which allows the implementation to use vectors of
finite dimension.

The Algorithm
To compute the pairwise distance vector, we first com-
pute the reconciliation graph as described in the pre-
vious section. Consider a DTL-MPR instance I =
(S, G, φ, d, t, �) and its reconciliation graph R. Let
PDVg(s1, s2) denote the vector v such that v[ i] counts the
number of pairs of subtraversals, one rooted at (g, s1) and

the other rooted at (g, s2), that differ in exactly i event
nodes. Note that s1 and s2 need not be distinct. Since some
(g, s) pairs may not be present as mapping nodes in R, we
define PDVg(s1, s2) to be the zero vector if either (g, s1) or
(g, s2) �∈ R.

Recall that rg denotes the root of G and each element
of sources(R) is a mapping node of the form (rg, ·). Since
every traversal, and thus every MPR, must begin at an ele-
ment of sources(R), the pairwise distance vector for the
entire MPR space is:

v =
∑

(rg,s1),(rg,s2)∈sources(R)

PDVrg(s1, s2)

where the summation represents the vector sum.
We describe a recursive formulation for PDVg(s1, s2)

which allows us to compute these values efficiently via
dynamic programming (DP). In fact, our approach uses
mutual recursion which results in multiple DP tables. In
addition to the PDV table, the two “helper” tables are
called bothSDT and topSDT. We begin by describing the
bothSDT table.

The bothSDT table
A speciation, duplication, or transfer event is called an
SDT event to distinguish it from a loss event. We define
bothSDTg(s1, s2) as the vector of pairwise distances for
the subtraversals rooted at mapping nodes (g, s1) and
(g, s2) assuming that the first event nodes in both sub-
traversals are not loss events.

For the base case, if g is a leaf of the gene tree, and s1 =
s2, then let s = s1 = s2. If φ(g) = s, then:

bothSDTg(s, s)[ 0] = 1
bothSDTg(s, s)[ i] = 0 : i ≥ 1

This represents the fact that there is a single subtraversal
rooted at (g, s), namely the subtraversal that maps g to s
and its distance to itself is 0. If φ(g) �= s or s1 �= s2 then
bothSDTg(s1, s2) is the zero vector since there are no valid
pairs of subtraversals rooted at (g, s1) and (g, s2) in those
cases.

If g is not a leaf, then let the children of g be denoted
g′, g′′ and let SDTevents(g, s) denote the set of speciation,
duplication, or transfer (not loss) event node children of
the mapping node (g, s). If e ∈ SDTevents(g, s), the chil-
dren of e will be mapping nodes of the form (g′, κ) and
(g′′, τ). Let specg′(e) = κ and specg′′(e) = τ .

Our objective is to count the number of pairs of sub-
traversals rooted at (g, s1) and (g, s2) that begin with SDT
events. (Recall that s1 and s2 may be equal.) Let e1 and e2
denote such a pair of SDT events. Note that if e1 �= e2,
then these events contribute two to the distance between
the subtraversals. If e1 = e2 (which can only occur if s1 =
s2), then these events do not contribute to the pairwise
distance.
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Consider a given pair of subtraversals (A′, A′′) rooted
at (g′, specg′(e1)) and (g′′, specg′′(e1)), respectively, and
another pair (B′, B′′) rooted at (g′, specg′(e2)) and
(g′′, specg′′(e2)), respectively. In the treatment below, we
begin by assuming that A′ �= B′ and A′′ �= B′′ and later
correct for the cases when one or both pairs may be equal.

To construct a pair of subtraversals rooted at (g, s1)
and (g, s2) that result from the events e1 and e2 and the
subtraversals A′, A′′, B′, B′′, we first choose a subtraversal
for each of event e1’s two children. Note that A′ and A′′
can always be chosen, but if, for example, specg′(e1) =
specg′(e2), then we can also choose e1 with B′ and A′′.
In any case, the second subtraversal, which involves e2, is
uniquely induced by the first subtraversal. If e1 with A′ and
A′′ are chosen for the first subtraversal then e2 with B′ and
B′′ comprise the second subtraversal and if e1 with B′
and A′′ are chosen for the first subtraversal then e2 with A′
and B′′ comprise the second subtraversal.

Since the relationships of e1 and e2 and their children
dictate what choices of subtraversals are possible, we now
enumerate the possible cases. In each case, we define the
value of a function choices(e1, e2) which is used later.

Case 1: e1 �= e2 and their four mapping node chil-
dren are all distinct. In this case, exactly one pair of
subtraversals is induced: e1, A′, A′′ with e2, B′, B′′. Thus,
choices(e1, e2) = 1.

Case 2: e1 �= e2 and exactly one mapping node
child is shared. In this case, two pairs of subtraver-
sals are induced. Without loss of generality, assume that
specg′(e1) = specg′(e2). Then, the two pairs of sub-
traversals are e1, A′, A′′ with e2, B′, B′′ and e1, B′, A′′ with
e2, A′, B′′. Thus, choices(e1, e2) = 2.

Case 3: e1 �= e2 and both pairs of mapping node
children are shared. In this case, four pairs of sub-
traversals are induced: e1, A′, A′′ with e2, B′, B′′, e1, A′, B′′
with e2, B′, A′′, e1, B′, A′′ with e2, A′, B′′, and e1, B′, B′′ with
e2, A′, A′′. Thus, choices(e1, e2) = 4.

Case 4: e1 = e2. In this case, two pairs of subtraversals
are induced. Letting e = e1 = e2, they are e, A′, A′′ with
e, B′, B′′ and e, A′, B′′ with e, B′, A′′. Thus, choices(e1, e2) =
2.

Recall that the ith element of vector bothSDTg(s1, s2)
denotes the number of pairs of subtraversals, one
rooted at (g, s1) and the other rooted at (g, s2),
that begin with SDT events and whose distance is
exactly i. Let u = PDVg′(specg′(e1), specg′(e2)) and
v = PDVg′′(specg′′(e1), specg′′(e2)). Observe that
∑j

k=0 choices(e1, e2) × u[ k] ×v[ j − k] counts the
number of pairs of subtraversals rooted at (g, s1)

and (g, s2), using e1 and e2, that differ in exactly j
events, without the distance contribution of e1, e2 if
e1 �= e2.

The above case analysis, and thus the value of
choices(e1, e2), assumes that A′ �= B′ and A′′ �= B′′. If
one of A′ = B′ or A′′ = B′′ then we have overcounted
by a factor of two and must adjust accordingly. If both
A′ = B′ and A′′ = B′′, we must divide the count by a
factor of four. Note that A′ = B′ and A′′ = B′′ corre-
spond to a pair of subtraversals counted in u[ 0] and v[ 0],
respectively.

These observations allow us to compute bothSDTg
(s1, s2) using vector convolution, addition, and scaling.
First, for a given vector u, define u0 to be the vec-
tor that is identical to u at index 0 and is zero at all
other indices. Let u−0 denote the vector that is zero at
index 0 and is identical to u at all other indices. Letting
c = choices(e1, e2), define the scaled convolution operator
∗c as:

u∗cv = c(u−0∗v−0)+
⌈ c

2

⌉
(u0∗v−0+u−0∗v0)+

⌈ c
4

⌉
(u0∗v0)

(1)

Note that the term c(u−0 ∗ v−0) accounts for the case
that A′ �= B′ and A′′ �= B′′, the next term accounts for
the case that exactly one of A′ = B′ or A′′ = B′′, and the
last term accounts for the case that A′ = A′′ and B′ = B′′.
The ceilings

⌈ c
2
⌉

and
⌈ c

4
⌉

are used so that the corre-
sponding distance vectors are not omitted when c is either
1 or 2.

For two events e1, e2 we define δ(e1, e2) = 1 if e1 �= e2
and 0 otherwise, we can now compute bothSDTg(s1, s2)
by summing Eq. 1 over all event pairs e1, e2, and
shifting the distance vector by 2 if e1 �= e2 to account for
the difference in those two events:

bothSDTg(s1, s2) =
∑

e1∈SDTevents(g,s1)
e2∈SDTevents(g,s2)

k=δ(e1,e2)

σ 2k(

PDVg′(specg′(e1), specg′(e2))

∗choices(e1,e2)

PDVg′′(specg′′(e1), specg′′(e2)))

The PDV Table
For a given gene vertex g and pair of species vertices s1, s2,
the computation of PDVg(s1, s2) depends on the relation-
ship between s1 and s2. There are three possible cases: (1)
s1 and s2 are not ancestrally related, (2) s1 = s2, and (3)
s1 is ancestral to s2 (or vice versa). If s1 and s2 are not
ancestrally related, then
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PDVg(s1, s2) = bothSDTg(s1, s2) +
∑

t1∈losses(s1)

σ (PDVg(t1, s2)) +
∑

t2∈losses(s2)

σ (PDVg(s1, t2)) −
∑

t1∈losses(s1)
t2∈losses(s2)

σ 2(PDVg(t1, t2))

where losses(g, s) denotes the set of children s′ of s such
that there exists a mapping node (g, s′) reachable from
(g, s) through a single loss event. The first term is the
pairwise distance vector for the case that both subtraver-
sals begin with an SDT event. Otherwise, at least one
subtraversal begins with a loss. The second term is the
pairwise distance vector for the case that the subtraver-
sal rooted at (g, s1) begins with a loss and the third is for
the case that the subtraversal rooted at (g, s2) begins with
a loss. Those vectors are shifted by one since one sub-
traversal incurs a loss that the other does not. The last
term accounts for the overcounting that occurs when both
(g, s1) and (g, s2) begin with losses.

If s1 = s2 or s1 and s2 are ancestrally related (in which
case we assume WLOG that s1 is ancestral to s2), a spe-
cial case arises that requires a third DP table in order
to avoid overcounting. This table, called topSDTg(s1, s2),
computes the distance vector for the case that mapping
node (g, s1) begins with an SDT event but (g, s2) begins
with either an SDT or a loss event:

topSDTg(s1, s2) = bothSDTg(s1, s2) +
∑

t∈losses(s2)

σ (topSDT(s1, t))

The first term accounts for pairs of subtraversals that both
begin with SDT events, and the second term accounts for
pairs where the subtraversal rooted at (g, s2) incurs a loss
but the subtraversal rooted at (g, s1) begins with an SDT
event. The shift in that term accounts for a contribution
of one to the distance due to that loss event.

Now, if s1 = s2, then let s = s1 = s2. In this case:

PDVg(s, s) = bothSDTg(s, s) +
∑

t∈losses(s)
σ (topSDT(s, t)) +

∑

t1∈losses(s)
t2∈losses(s)
k=δ(t1,t2))

σ 2k(PDVg(t1, t2))

The first term is the pairwise distance vector when both
subtraversals begin with an SDT event. Otherwise, either
one or both subtraversals begin with a loss. The second
term accounts for pairs where one incurs a loss and the
other begins with an SDT event. The third term is for pairs

where both begin with a loss. If those losses are identi-
cal, they do not contribute to the distance and no shift is
required. If those losses are distinct, they contribute two
to the distance which results in shifting the distance vector
by two.

Next, we consider the remaining case that s1 is ancestral
to s2. This case is divided into two subcases. If s2 is not a
child of s1 then:

PDVg(s1, s2) = topSDTg(s1, s2) +
∑

t∈losses(s1)

σ (PDVg(t, s2))

The first term accounts for the case that the subtraver-
sal rooted at (g, s1) begins with an SDT event while the
second term accounts for the case that (g, s1) begins
with a loss; the shift in the summation accounts for
a contribution of one to the distance due to that loss
event.

The other subcase is that s2 is a child of s1. In this case,
the subtraversal rooted at (g, s1) either begins with an
SDT event, a loss event to mapping node (g, s2), or a loss
event to a mapping node (g, t) where t �= s2. If it begins
with a loss event e to mapping node (g, s2), the vector
PDVg(s2, s2) undercounts the number of resulting pairs
of subtraversals because a pair of subtraversals A, B that
are both rooted at (g, s2) induce two pairs of subtraver-
sals rooted at (g, s1) and (g, s2) respectively when A �= B:
One pair is e, A with B and the other is e, B with A. Each
pair A, B such that A �= B corresponds to an entry in
PDVg(s2, s2) at index greater than 0. Therefore, we must
increase those counts by a factor of two by introducing a
vector operator ρ(v) = 2v − v0. Now we have:

PDVg(s1, s2) = topSDTg(s1, s2) +
σ(ρ(PDVg(s2, s2))) +

∑

t∈losses(s1)
t �=s2

σ(PDVg(t, s2))

Finally, the recursively defined tables PDV, topSDT,
and bothSDT are computed via dynamic programming
by traversing the reconciliation graph in postorder (i.e.,
bottom up) so that when computing each table entry, the
entries that are required for that computation have already
been computed and saved.

Asymptotic runtime analysis
Given a DTL-MPR instance (S = (VS, ES), G =
(VG, EG), φ, d, t, �), let n = |VS| and let m = |VG|. The
reconciliation graph can be constructed in time O(mn2)
[10]. In order to analyze the running time of comput-
ing the dynamic programming tables PDV, topSDT, and
bothSDT used by the PDV Algorithm, we first show that
the number of events in an MPR is bounded by O(m).
From this result, it follows that the diameter is bounded
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by O(m) since, in the worst case, two MPRs could differ
on every event.

Lemma 1 The number of events in an MPR is bounded
by O(m).

Proof First, note that a valid (although not necessarily
minimum cost) reconciliation can be constructed by map-
ping rg to any leaf of S then, using only transfer events,
the remainder of G can be embedded on the leaves of S,
resulting in a reconciliation that incurs a cost of t for each
of the internal vertices of G. Since t is some fixed positive
constant, the total cost of the reconciliation is bounded
by mt. This establishes a cost bound of O(m) on an MPR.
Each internal vertex of G induces exactly one speciation,
duplication, or transfer event and thus the total number
of such events is O(m). Since an upper bound on the
cost of an MPR is tm, and the loss cost � is strictly posi-
tive, it follows that the total cost incurred by losses in an
MPR is bounded by mt

�
. Since m and � are positive con-

stants, the total number of losses is therefore bounded by
O(m). Therefore, the total number of events in an MPR is
bounded by O(m).

It follows that the diameter of MPR space for the sym-
metric set distance metric is bounded by O(m) and thus
all of the vectors maintained by the PDV Algorithm
can be treated as having dimension O(m). Therefore,
all vector addition, shift, and scale operations can be
performed in O(m) time while convolution can be per-
formed in time O(m log m) using the Discrete Fast Fourier
Transform [18].

Lemma 2 For any pair (g, s), |SDTevents(g, s)| ∈ O(n).

Proof There can be at most two speciation event nodes
for (g, s) since g′ and g′′ can be associated with s′ and s′′
in two ways and there can be only one duplication event
node. There can be O(n) transfer event nodes since one of
g′ or g′′ must remain on s and the other can be transferred
to at most one of n vertices of tree S. Thus, the mapping
node (g, s) has a number of event node children bounded
by O(n).

Lemma 3 The PDV algorithm has worst-case running
time bounded by O(n4m2 log m).

Proof Computing bothSDTg(s1.s2) requires consider-
ing all pairs of SDT events in SDTevents(g, s1) and
SDTevents(g, s2) and, for each combination, the dom-
inant cost is due to the convolution. By Lemma 2,
the number of pairs is bounded by O(n2) and, as a
corollary of Lemma 1, the vector convolutions can be
computed in time O(m log m). Thus, the total cost of

computing bothSDTg(s1, s2) is bounded by O(n2m log m).
Since there are O(n2m) entries in the bothSDT table, the
total cost is bounded by O(n4m2 log m). It is easily verified
that all of the other table entries require asymptotically
less time, and thus the total running time of the algorithm
is bounded by O(n4m2 log m).

Application to other distance metrics
The PDV algorithm was described for the symmetric
distance metric but can be applied to other distance met-
rics as well. For example, in the path distance metric
[12, 16, 17], the distance between two reconciliations �1
and �2 is defined to be

∑
g∈G dS(�1(g), �2(g)) where

dS(s1, s2) is the distance between vertices s1 and s2 in the
species tree, S. The modification to the PDV algorithm for
this metric simply replaces the 2k shift in the bothSDT
computation by a shift equal to dS(s1, s2) to account for
the distance incurred by mapping g to s1 in one MPR
and mapping g to s2 in another. The maximum diameter
under this distance metric is O(mn) and thus the vec-
tor operations now take time O(mn log mn). Therefore,
the asymptotic running time for the PDV algorithm for
this distance metric is O(n5m2 log mn). Similarly, the PDV
algorithm can be easily adapted for other distance metrics
such as the binary discrete distance metric [12].

Experimental results
We implemented the PDV Algorithm in Python and
validated the implementation by comparing the results
to those found by a brute-force solver for all pairs of
phylogenetic trees and leaf associations with up to six
leaves and with a large sample of trees with up to 10
leaves. Our implementation, called PairTree, is available at
www.cs.hmc.edu/∼hadas/pairtree.

We tested our code on a widely-used Tree of Life dataset
comprising 100 primarily prokaryotic species and 4849
gene trees [5] using duplication, transfer, and loss costs
of (2, 3, 1), (1, 2, 1), and (1, 1, 1) since these costs are fre-
quently used in the literature [5, 19]. Although event costs
(1, 1, 1) are perhaps the least likely to be biologically realis-
tic, they induce very large reconciliation graphs which was
useful for performance evaluation. Since the motivation
for computing pairwise distance vectors is to understand
large MPR spaces, we only considered gene families that
induced at least 104 MPRs.

Runtime
We used a commodity server (AMD Opteron 6276 2.3
GHz, 503 GB RAM) for all of our experiments and
running times are summarized in Table 1. Event costs
(1, 1, 1) induce relatively large reconciliation graphs since
all events have equal cost. In particular, an n2 factor in
the O(n4m2 log m) worst-case analysis derived previously
is due to an upper-bound of O(n) on the number of events

https://www.cs.hmc.edu/~hadas/pairtree
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Table 1 Running time and average normalized distance with and without loss events

Running time (seconds) Normalized distance (w/ loss) Normalized distance (no loss)

DTL
Costs

# Gene families w/ at least
104 MPRs

Average Standard
deviation

Maximum Average Standard
Deviation

Average Standard
Deviation

(2, 3, 1) 771 0.21 0.65 12.51 0.36 0.02 0.30 0.02

(1, 2, 1) 913 0.38 1.3 19.02 0.42 0.02 0.39 0.02

(1, 1, 1) 1492 3.53 14.25 295.90 0.42 0.03 0.41 0.03

For event costs (1, 1, 1), 3 of the 1492 gene families caused the algorithm to time out after five minutes and are not included in the statistics

associated with a given mapping node. In practice, most
reconciliation graphs have relatively few events associated
with each mapping node. However, there are cases where
the number of event nodes can approach this bound for
event costs (1, 1, 1) where all events have the same cost.

Distance statistics
We computed statistics on all pairwise distances across
all gene trees that induced over 104 MPRs. The normal-
ized distance between a pair of MPRs is defined to be their
distance divided by twice the number of internal vertices

Fig. 2 Pairwise distances (with losses) for three phylogenetic trees for three gene families in the Tree of Life dataset. COG0466 has 87 leaves,
COG0651 has 84 leaves, and COG0703 has 85 leaves. All are reconciled to a species tree with 100 leaves. Each of the three rows corresponds to one
gene family and the three columns correspond to the DTL cost parameters (2, 3, 1), (1, 2, 1), and (1, 1, 1), respectively. The entry at index 0 of each
vector is omitted. These examples demonstrate that the pairwise distance distributions are sensitive to event costs and may be multimodal,
indicating the presence of two or more clusters in MPR space
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in the gene tree [11]. In the absence of loss events, the
normalized distance is 0 if the two MPRs agree on all spe-
ciation, duplication, and transfer events and is 1.0 if the
two MPRs disagree on all such events. Due to loss events,
the normalized distance can exceed 1.0 in theory. There-
fore, we also computed the normalized distances without
losses so that the scale is from 0 to 1.0 and a distance
of 1.0 implies disagreement on all speciation, duplication,
and transfer events. Table 1 summarizes these results and
demonstrates that, on average, MPRs disagree on a signif-
icant fraction of their constituent events, whether or not
losses are considered.

Pairwise distance distributions
An important application of PairTree is in exploring the
structure of the MPR space for a specific dataset of interest
in order to determine the diversity of solutions and, ulti-
mately, whether a single MPR is likely to be an adequate
representative of the space. As an example, Fig. 2 shows
the results from three gene trees that exhibit different dis-
tance distributions. These examples demonstrate that the
pairwise distance distributions are dependent both on the
trees themselves and on the event costs.

While many of the pairwise distance distributions are
unimodal, there are also multimodal distributions which
suggest the presence of distinct clusters of MPRs. The
number of clusters cannot be directly ascertained from
the number of modes in the distribution; MPR space
is high-dimensional so a large number of clusters may
induce only two modes.

Some distributions are comb-like with many pairs of
MPRs at even distances and a smaller number of (or zero)
pairs of MPRs at odd distance, or vice versa. This phe-
nomenon is due to some MPRs having few or no losses.
In the absence of loss events, the pairwise distance must
be even by the definition of the symmetric set distance.
Since losses result in shifting the distribution, comb-like
distributions with odd distances are also possible.

Conclusions
We have given an efficient polynomial-time algorithm for
computing the pairwise distances between all maximum
parsimony reconciliations in the DTL model that applies
to several distance metrics. Further work is required to
determine how these distributions should be interpreted
with respect to the number of MPRs required to ade-
quately represent the space. However, the mean and stan-
dard deviation alone, both reported by PairTree, provide
important insights into the variation of solutions. More-
over, multimodal distributions are indicative of clusters of
MPRs, which suggest that multiple MPRs are needed to
adequately represent the space.

If there is evidence of clusters in MPR space, it is
desirable to find a small set of representative MPRs,

with at least one for each cluster. Ozdemir et al.
[9] showed how Park’s k-medoid heuristic [20] and
González’s k-centers 2-approximation algorithm can be
adapted to find k medoids or centers, respectively. How-
ever, these algorithms have running times of the form
O(nk+3 log n) rendering them viable only for small val-
ues of k. Thus, developing efficient clustering algo-
rithms and methods for determining the appropriate
number of clusters are important problems for future
research.
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