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Abstract

Background: Studying structural and functional morphology of small organisms such as monogenean, is
difficult due to the lack of visualization in three dimensions. One possible way to resolve this visualization
issue is to create digital 3D models which may aid researchers in studying morphology and function of the
monogenean. However, the development of 3D models is a tedious procedure as one will have to repeat an
entire complicated modelling process for every new target 3D shape using a comprehensive 3D modelling
software. This study was designed to develop an alternative 3D modelling approach to build 3D models of
monogenean anchors, which can be used to understand these morphological structures in three dimensions.
This alternative 3D modelling approach is aimed to avoid repeating the tedious modelling procedure for
every single target 3D model from scratch.

Result: An automated 3D modeling pipeline empowered by an Artificial Neural Network (ANN) was
developed. This automated 3D modelling pipeline enables automated deformation of a generic 3D model of
monogenean anchor into another target 3D anchor. The 3D modelling pipeline empowered by ANN has
managed to automate the generation of the 8 target 3D models (representing 8 species: Dactylogyrus
primaries, Pellucidhaptor merus, Dactylogyrus falcatus, Dactylogyrus vastator, Dactylogyrus pterocleidus,
Dactylogyrus falciunguis, Chauhanellus auriculatum and Chauhanellus caelatus) of monogenean anchor from the
respective 2D illustrations input without repeating the tedious modelling procedure.

Conclusions: Despite some constraints and limitation, the automated 3D modelling pipeline developed in
this study has demonstrated a working idea of application of machine learning approach in a 3D modelling
work. This study has not only developed an automated 3D modelling pipeline but also has demonstrated a
cross-disciplinary research design that integrates machine learning into a specific domain of study such as 3D
modelling of the biological structures.

Keywords: 3D Modelling, Machine learning, Landmark detection, NoSQL database

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sarinder@um.edu.my
2Data Science and Bioinformatics Laboratory, Institute of Biological Sciences,
Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
Full list of author information is available at the end of the article

Teo and Dhillon BMC Bioinformatics 2019, 20(Suppl 19):658
https://doi.org/10.1186/s12859-019-3210-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3210-x&domain=pdf
http://orcid.org/0000-0001-9579-9502
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sarinder@um.edu.my


Background
Studying structural and functional morphology of small
organisms is difficult due to the lack of visualization in
three dimensions. One viable way to resolve this is by cre-
ating digital 3D models using 3D imaging techniques such
as confocal microscopy [1, 2] and scanning electron mi-
croscopy (SEM) [3–6]. As highlighted by Galli et al. [1],
digital 3D models of monogenean hard parts recon-
structed from the confocal microscopy contain morpho-
logical details which are not detectable in the
corresponding 2D illustrations. However, 3D imaging
equipment used for 3D reconstruction are expensive and
demand tedious specimen preparation prior to usage [7].
Hence, Teo et al. [8] demonstrated a polygonal model-

ling method by using 2D illustrations as the templates to
construct 3D models of haptoral parts of monogeneans
via an existing commercial 3D modelling software, Auto-
desk 3ds Max. The resulting models produced from Auto-
desk 3ds Max are shown to be effective in offering 3D

visualization of the spatial relationship of morphological
characters in a monogenean haptor. However, Autodesk
3ds Max requires technical skill to create a decent 3D
shape of a target specimen due to the high complexity of
the software user interface. Another approach would be to
construct a new digital 3D model from an existing 3D
model via a shape deformation technique [9]. This shape
deformation technique obviates the need for repeating a
complicated modelling process to construct a new 3D
model from scratch. One limitation of this technique is
that it demands a modeller to manually choose the verti-
ces of a digital generic 3D model and align them with the
landmark points of an input 2D image. If this can be auto-
mated with minimal human intervention, the entire mod-
elling procedure may become much easier and efficient.
A landmark point detection empowered by a ma-

chine learning algorithm could be a solution to enable
auto-detection of the landmark points on an input
image. Subsequently, the landmark points predicted

Fig. 1 Selected samples of synthetic 2D illustrations. a Shape Category 1, (b) Shape Category 2, (c) Shape Category 3, (d) Shape Category 4, (e)
Shape Category 5, (f) Shape Category 6, (g) Shape Category 7, (h) Shape Category 8
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by the machine learning model can be used to direct
the deformation of a digital generic 3D model by
automatically mapping its vertices with their corre-
sponding landmark points and eventually produce a
target 3D shape.
Landmark point detection has been studied exten-

sively by researchers for tracking human facial feature
points which were applied to human face recognition
[10–12], facial expression analysis [13], facial land-
mark localization [14, 15], age estimation [16], gender
classification [17] and 3D face modelling [18]. These
studies share a common idea that the facial feature
points located at the eye, nose, mouth, and chin of a
2D facial image carry semantic meaning and these
points could automatically be detected via a machine
learning algorithm using annotated 2D sample images
as a training dataset. The idea of the landmark detec-
tion was also applied to several other fields of study
such as geometric morphometric for bioimages [19,
20], anatomical features detection for medical diagno-
sis [21, 22], and human body pose detection [23].
One common machine learning algorithm used in most

of the landmark detection studies is Artificial Neural Net-
work (ANN). The popularity of ANN in recent years is
due to its effectiveness for image analysis tasks [24]. In
some studies, ANN was used along with a clustering algo-
rithm to partition the training sets into several subsets
which share the common properties [25] or with

autoencoder to rectify the outlier points [15], and such
coupling approach was able to enhance the prediction ac-
curacy in the CNN. Autoencoder was also used on its
own to automatically identify human facial expressions
using some geometrical features, and the features data was
trained with an unsupervised method. On the other hand,
Chen et al. [12] used RNN in their landmark detection
study to deal with the non-linear deformations in the hu-
man facial shape. To the best of our knowledge, there is
no reported study on the application of ANN for land-
mark point detection to enable automated construction of
digital 3D models of biological specimens such as mono-
geneans, which is the target specimen of this study.
Monogeneans (Class: Monogenea, Phylum: Platyhel-

minthes) are parasitic flatworms which possess soft
anatomical structures and hard sclerotized copulatory
system of both males and female reproductive parts.
Their anatomical structures, such as haptoral ele-
ments are of diagnostic importance in taxonomic de-
scription and identification of the monogenean
species [26–31]. However, the study of these morpho-
logical structures is not easy because monogeneans
are soft-bodied flatworms with fragile endodermis,
unable to withstand desiccation for long investigation
under a microscope. The use of the digital 3D models
would help taxonomist to understand the morphology
as well as the functions of these morphological
structures.

Fig. 2 MongoDB Compass that shows details of the stored training sets in the noSQL database
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The main aim of this study is to develop an automated
3D modelling pipeline that uses 2D illustrations as input
to generate a variety of digital 3D models of monogenean
anchor without repeating the tedious 3D modelling
process from scratch. The target models of this study are
limited to the haptoral anchors of monogenean from eight
selected species, which are Dactylogyrus primaries Gusev,
1955, Pellucidhaptor merus Zaika, 1961, Dactylogyrus fal-
catus Wedl, 1857, Dactylogyrus vastator Bybelin, 1924,
Dactylogyrus pterocleidus Gusev, 1955, Dactylogyrus fal-
ciunguis Achmerow, 1952, Chauhanellus auriculatum
Lim, 1994 and Chauhanellus caelatus Lim, 1994. This au-
tomated 3D modelling pipeline will be driven by an ANN
that can detect the landmark points’ location on an input
2D illustration and automatically align them with the ver-
tices of a generic 3D model to enable deformation of its
3D shape to produce a target 3D model.

Results
The results obtained from the development of an auto-
mated 3D modelling pipeline are presented in the fol-
lowing sections.

Synthetic 2D illustrations
The output of data preparation includes three sets
which are 1000, 2500 and 5000 synthetic 2D

illustrations generated by the semi-automated aug-
mentation program and the NoSQL database devel-
oped to store the details of the synthetic 2D
illustrations. All three sets of the synthetic illustra-
tions of monogenean anchor were synthesized based
on eight different categories of morphological variant
shapes to cater the need for training the machine
learning model to detect the landmark points on the
input illustrations of all the selected monogenean an-
chors. Some selected samples of the synthetic illustra-
tions for each category of anchor shape are shown in
Fig. 1a-h. The image size of all the synthetic illustra-
tions were standardized in 96 × 96 pixels. The syn-
thetic 2D illustrations as exemplified in Fig. 1a-h are
scaled and rotated in random degrees. This is to en-
sure that a high degree of morphological variant

Table 1 Evaluation of trained ANN model based on three
different number of datasets

Number of dataset Train Accuracy
(%)

Validation Accuracy
(%)

Test Accuracy
(%)

1000 58.39 49.17 47.5

2500 69.93 70.33 70.4

5000 83.25 81.33 80.1

Fig. 3 Example of data stored in noSQL database. a Five key-values pairs, (b) 2D coordinates of point primitive represented as a coordinate array,
(c) Pixel values of synthetic illustration represented as an integer array
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shapes can be obtained to train a more generalized
machine learning model.

NoSQL database
In this study, a NoSQL database using MongoDB was
developed to store the details of all the synthetic illustra-
tion training sets such as the illustration name, pixels

values of illustrations, 2D coordinates of 34 point primi-
tives (Fig. 2). The details of the training sets are pre-
sented as five key-value pairs of data for each record
(Fig. 3a). The “_id” key is auto-generated by MongoDB
whenever a new record is created. The “name” and the
“shape” hold the information of the illustration name
and the shape category as a simple string and a numeric

Fig. 4 Machine detected landmarks on 2D illustrations of eight selected monogenean anchors from Gusev [43] and Lim [44]. a Dactylogyrus
primarius (b) Pellucidhaptor merus (c) Dactylogyrus falcatus. d Dactylogyrus vastator (e) Dactylogyrus pterocleidus (f) Dactylogyrus falciunguis (g)
Chauhanellus auriculatum (h) Chauhanellus caelatus

Fig. 5 Generic 3D model and the input illustrations of anchor along with their corresponding 3D models (coloured). a: Generic 3D anchor model
(b-c): Dactylogyrus primarius. d-e: Pellucidhaptor merus. f-g: Dactylogyrus falcatus. h-i Dactylogyrus vastator. j-k: Dactylogyrus pterocleidus. l-m:
Dactylogyrus falciunguis. n-o Chauhanellus auriculatum. p-q Chauhanellus caelatus
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Fig. 6 Discrepancy of 3D shape found in the extrusion part of (a) Dactylogyrus peterocleidus and (b) Chauhanellus auriculatum

Fig. 7 Comparison of control points and predicted points on 2D illustration of Dactylogyrus primarius. a Positions of control points (small green
markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control point-Y
and predicted point-Y
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number respectively. The 2D coordinates of the 34 point
primitives are stored in “landmark” key and they are rep-
resented as coordinate arrays (Fig. 3b). The pixel values
of each illustration record is held by the “pixels” key and
they are represented as an array of integer elements ran-
ging from 0 to 255 (Fig. 3c).

Evaluation of machine learning model based on three
different datasets
The train, validation and test accuracy of the machine
learning models trained by three different number of the
dataset are presented in Table 1. The table shows that
the model trained by 5000 datasets results in the highest
test accuracy. Hence, the model trained by 5000 datasets
was adopted for landmark detection on the input illus-
trations of eight different monogenean species.

Landmark point detection on the input illustrations of
monogenean anchors using the machine learning model
The machine learning model trained by the 5000 datasets
was tested on the monogenean anchors of eight selected

monogenean species with different shape feature to exam-
ine the versatility of the machine learning model to detect
landmark point on a diverse shape of anchors (Fig. 4). In
general, Fig. 4 shows favorable results of the landmark de-
tection by having most of the landmark points (red dots)
localized along the edge of the input 2D illustrations of the
monogenean anchors.

3D models of monogenean anchors derived from
deformation of the generic 3D model
In this section, the 3D models of monogenean anchors de-
rived from the automated 3D modelling pipeline are pre-
sented. Figure 5 shows a group of 3D models (Fig. 5b-e)
produced by the automated 3D modelling pipeline. In gen-
eral, the overall body shape of the resulting 3D models re-
sembles the 2D shape as presented in their corresponding
2D illustrations. Nevertheless, the automated 3D modelling
pipeline does not work very well on modelling the extrusion
parts of few anchors (Fig. 5k, & o). A closer inspection on
the shape discrepancy presented by those anchors is shown
in Fig. 6. The automated 3D modelling pipeline shows its

Fig. 8 Comparison of control points and predicted points on 2D illustration of Pellucidhaptor merus. a Positions of control points (small green
markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control point-Y
and predicted point-Y
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limitation to derive the fan-like extrusion structure found in
the anchors of D. peterocleidus and C. auriculatum.

Evaluation of the efficiency of the automated 3D
modelling pipeline
The box plots show the patterns of the control points and
the predicted landmark points for each of the target
monogenean anchors (Figs. 7, 8, 9, 10, 11, 12, 13 and 14).
In each of the monogenean anchors, box plots for the dis-
tribution of coordinate-X (Figs. 7, 8, 9, 10, 11, 12, 13 and
14b) and coordinate-Y (Figs. 7, 8, 9, 10, 11, 12, 13 and
14c) were plotted separately. As shown in Figs. 7, 8, 9, 10,
11, 12, 13 and 14, all the box plots show a similar pattern
of distribution between the control points and the pre-
dicted landmark points.

Discussions
In this study, an automated 3D modeling pipeline
empowered by a machine learning algorithm was devel-
oped. The box plots in Figs. 7, 8, 9, 10, 11, 12, 13 and 14
demonstrated the capability of the automated 3D

modelling pipeline empowered by a machine learning al-
gorithm in predicting the landmark points which can
show a similar pattern of distribution with the control
points. The distribution patterns presented in the box
plots indicated that the predicted landmark points could
be used for automating deformation of the generic 3D
model to obtain the favorable 3D shape of anchors of
the 8 selected monogenean species (Fig. 5). The box
plots have verified the visual examination result as
shown in Fig. 5 that the resulting 3D models can gener-
ally fit most parts of the 2D outline presented in the in-
put illustrations of the anchor.
The automated 3D modelling pipeline developed in this

study presents a user friendly way to automate the de-
formation of the generic 3D model into a target 3D an-
chor by using a 2D illustration as an input. This entire
modelling pipeline offers a very straightforward way to
construct a target 3D model with minimal human inter-
vention. The automated 3D modelling approach presented
in this study also improved the 3D modelling work pub-
lished in Teo et al. [8], by obviating the usage of the

Fig. 9 Comparison of control points and predicted points on 2D illustration of Dactylogyrus falcatus. a Positions of control points (small green
markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control point-Y
and predicted point-Y
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comprehensive 3D modelling software, Autodesk 3ds Max
to create a 3D model from scratch. To the best of our
knowledge, this is the first time machine learning has been
applied for landmark point detection for modeling a bio-
logical specimen. Application of machine learning for
landmark point detection for modelling biological speci-
mens is not reported in any published records.
However, the automated 3D modelling pipeline does

not work very well on deriving 3D models of anchors
with some intricate structures such as the extrusions
found in the species of D. pterocleidus and C. auricula-
tum and the hook in C. caelatus (Fig. 6). Such distortion
of shape is because these morphological structures (e.g.
extrusions and hook) possess a relatively smaller surface
area to be controlled by a higher number of point primi-
tives compared with other regions of the anchor. This
means a slight diversion of the predicted coordinates of
those point primitives from the control points will cause
an obvious distortion of shape.
The machine learning model was trained with the syn-

thetic 2D illustrations of the anchor which are laterally

positioned, and all the sizes and colors are standardized
to 96 × 96 pixels and grayscale level. Hence, the model
cannot effectively detect the landmark points on a wild
image for auto-deformation of the generic 3D model to
derive a target 3D shape. One must preprocess the input
2D illustration before it can be fetched into the auto-
mated 3D modelling pipeline to derive a target 3D
model. Besides, it is also not feasible to use more than
5000 synthetic illustrations as training sets for machine
learning in this study due to the limitation of the current
infrastructure. As a result, the test accuracy level of the
trained model is only limited up to approximately 80%.
As part of the future development, the entire project will

be migrated to a cloud computing platform which can be
harnessed to store the escalating number of training sets
in a scalable cloud server while the powerful computing
engine of cloud platform can be utilized to build and de-
ploy the machine learning model for the automated 3D
modelling pipeline [32]. In the long term, migration to the
cloud platform is an essential move to scale up the devel-
opment of the automated 3D modeling pipeline presented

Fig. 10 Comparison of control points and predicted points on 2D illustration of Dactylogyrus vastator. a Positions of control points (small green
markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control point-Y
and predicted point-Y
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in this study. Finally, a generic 3D model will be created
for each of the monogenean hard parts respectively and
the training sets preparation and machine learning process
will be repeated to train a more versatile machine learning
model to detect landmark points on the input 2D illustra-
tions of different monogenean hard parts.

Conclusions
In this study, an automated 3D modelling pipeline was
created using a machine learning technique, which is an
Artificial Neural Network. The aim of this 3D modelling
pipeline is to deform a digital generic 3D model of
monogenean anchor into diverse forms of desired 3D
anchors in an automated way. Despite some constraints
and limitation as discussed above, the automated 3D
modelling pipeline developed in this study has demon-
strated a working idea of application of machine learning
approach in a 3D modelling work. Besides, the develop-
ment of this automated 3D modelling pipeline is also
streamlined with some innovative methods to address

some typical issues encountered in a machine learning
related studies such as shortage of training set and big
data storage management. In short, this study has not
only developed an automated 3D modelling pipeline but
also has demonstrated a cross-disciplinary research de-
sign that integrates machine learning into a specific do-
main of study such as 3D modelling of the biological
structures.

Methods
Prior to developing the entire automated 3D model-
ling pipeline empowered by a machine learning algo-
rithm, a digital generic 3D model of an anchor was
developed using a geometric 3D modelling method
presented in a previous study [33]. This digital
generic 3D model is used as a 3D template to derive
another target 3D shape in the later stage. The devel-
opment of the 3D modelling pipeline is presented in
the following sub-sections.

Fig. 11 Comparison of control points and predicted points on 2D illustration of Dactylogyrus pterocleidus. a Positions of control points (small
green markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control
point-Y and predicted point-Y
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Data preparation for machine learning
In this study, the training data for machine learning
are 2D illustrations of monogenean anchor. A well-
trained machine learning model requires massive
training data which can range from hundreds to mil-
lions to minimize the possibility of learning mislead-
ing or irrelevant patterns found in the training data
[34]. In this study, 2D illustrations of monogenean
anchor that could be extracted from existing publica-
tions were limited. It was also tedious to manually
extract the 2D illustrations from publications to pre-
pare the training set.
Hence, a semi-automated data augmentation approach

was developed to generate a sequence of synthetic 2D il-
lustrations of monogenean anchors. The core of this
semi-automated data augmentation approach is a 2D
shape interpolation algorithm to generate a sequence
of interpolated shapes of the anchor as the synthetic
illustrations from a process of morphing a source

shape to a user-defined target shape. Pseudocode was
drafted based on the 2D shape interpolation algorithm
(See Additional file 1) and was used as a blueprint to
develop a data augmentation program (Fig. 15). The
data augmentation program was designed to generate
24 interpolated 2D shapes from one 2D source shape
each time.
The procedure of using the data augmentation pro-

gram to synthesize 2D illustration is as follows:

1. A 2D illustration of monogenean anchor extracted
from a selected publication was used as the source
shape. It was loaded into the data augmentation
program

2. 2D point primitives on the source shape were
selected individually and moved to a new position
in the 2D Cartesian coordinate space to obtain a
morphological variant shape which will be used as a
target shape (Fig. 16a).

Fig. 12 Comparison of control points and predicted points on 2D illustration of Dactylogyrus falciunguis. a Positions of control points (small green
markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control point-Y
and predicted point-Y
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3. The button “Generate 2D Samples” was activated to
morph the source shape to the target shape
obtained from Step 2. While the process of
morphing was on-going, a total of 24 interpolated
2D shapes were captured and displayed on the grid
cells (Fig. 16b). Another enlarged cropped view of
the 24 interpolated 2D shapes generated from the
source shape is presented in Fig. 17.

4. Next, the button “Convert to SVG” was activated to
export the captured interpolated 2D shapes to SVG
images which will then be converted into JPEG
format (Fig. 16c).

5. Finally, the button “Record to Database” button was
activated to store the pixel values along with the
associated 2D coordinates of the constituent point
primitives of each synthetic 2D illustration into a
database (Fig. 16d).

The data augmentation procedure described above
was repeated to generate three sets of synthetic 2D

illustrations with each of them consists of 1000, 2500
and 5000 datasets, respectively. Each set of synthetic 2D
illustrations were used to train a machine learning
model by following a supervised learning process as de-
scribed below and the accuracy of the trained model is
evaluated. This evaluation is to determine the number of
datasets which is versatile enough to detect the land-
mark points on all types of target monogenean anchors
in this study.

Data storage
A NoSQL database was developed using MongoDB
(https://www.mongodb.com/) to store the training set in
this study. The development of the database was initi-
ated by defining a data model (Fig. 18) which is com-
posed of a collection of documents which are “2D
illustration document”, “Pixels document” and “Land-
marks document”. In the MongoDB context, a collection
is a container for structurally or conceptually similar
documents whereas a document is a basic unit of data in

Fig. 13 Comparison of control points and predicted points on 2D illustration of Chauhanellus auriculatum. a Positions of control points (small
green markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control
point-Y and predicted point-Y
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Fig. 14 Comparison of control points and predicted points on 2D illustration of Chauhanellus caelatus. a Positions of control points (small green
markers) and predicted points (red markers) on 2D illustration. b Boxplot for control point-X and predicted point-X (c) Boxplot for control point-Y
and predicted point-Y

Fig. 15 Data augmentation program to generate 2D illustrations of monogenean anchors
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MongoDB which encapsulates a group of related
properties along with their associated values in a
JSON object. In the data model, the “2D illustration
document” was defined as a parent node to hold all
the relevant 2D illustration information in a JSON
object, which consists of four properties which are
“name”, “shapeID”, “pixels” and “landmarks”. The
“name” property was defined to hold an illustration
identifier with a maximum of 100 characters whereas
the “shapeID” is a numerical type property to hold
the type of 2D shape. The “pixels” and “landmarks”

properties were defined to hold the “Pixels document”
and “Landmarks document” respectively. The “Pixels
document” and “Landmark document” can be consid-
ered as two child nodes associated with the parent
node, “2D illustration document”. In the child node
“Pixels document”, there is only one property defined
to hold an integer array of pixel values whereas there
are two properties defined in “Landmark document”
to hold an array of 2D coordinates, “coordinate_X”
and “coordinate_Y” of each constituent point primi-
tives that form a synthetic illustration.

Fig. 16 Workflow to generate synthetic 2D illustrations using data augmentation program. a Deform a source shape to a target shape, (b) Morph
source shape to target shape, (c) Export 24 interpolated shapes to SVG images which will then undergo batch processing using Adobe
Photoshop to convert them into JPEG format, (d) Store pixel values and associated 2D coordinates of each synthetic 2D illustration into database
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Machine learning model
An Artificial Neural Network (ANN) was trained to enable
landmark detection on an input illustration. The ANN was
based on a multilayer perceptron architecture adapted from
a landmark detection study [35]. The input layer consists of
9216 nodes which hold an array of 96 × 96 pixels values of
every 2D illustration training set. The number of hidden
layers and the number of nodes in each of the hidden layers
were set by a trial and error process started with a single
hidden layer and a multiple of 128 nodes (128, 256, and
512) in each hidden layer. In the end, the network architec-
ture comprising of two hidden layers with 512 nodes and
128 nodes, respectively, was adopted as it generally showed
the decent performance of landmark detection. In the hid-
den layers, the ReLU was used as the activation function to
calculate the weighted sum of the input nodes because it is
one of the popular choices for a regression problem that

aims to predict any positive continuous value [34, 36]. In
the output layer are the 68 positive continuous values
which denote predicted 2D coordinates (x, y) for 34 point
primitives. These predicted point primitives are regarded as
the landmark points in the context of this study. The
trained neural network is aimed to detect these landmark
points on an input 2D illustration.
The ANN was trained via a supervised learning

process by mapping the pixel values of all the synthetic
illustrations retrieved from the MongoDB database to
each of their associated 2D coordinates of constituent
point primitives (Fig. 19). Before training the ANN, all
pixel values samples were divided into a training set
(80% of samples) and a test set (20% of samples). The
test set contains independent samples which are used to
evaluate the accuracy of the trained model in a later
stage. Besides, 30% of the samples were set apart from

Fig. 17 Twenty four interpolated 2D shapes

Fig. 18 noSQL data model for illustration training set
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the training set to be used for model validation during
the training process.
The ANN was trained for 200 epochs in mini-batches

of 20 samples by using Mean Square Error (MSE) as the
loss function and Stochastic Gradient Descent (SGD) as
the optimizer to repeatedly update the weight parame-
ters of the preliminary machine learning models. The

hyperparameters adapted from [35] as follows was used
to configure the optimizer:

a. Learning rate = 0.01
b. Momentum = 0.9
c. Decay rate = 0
d. Nesterov momentum = True

Fig. 19 Supervised learning to map pixel values of illustrations (from four selected samples) to each of their associated 2D coordinates of
constituent point primitives

Fig. 20 3D modelling system design
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Formation of automated 3D modelling pipeline
In this step, a 3D modelling system which is com-
posed of three modules was developed (Fig. 20). The
first module is to read and process the input illustra-
tion by translating it into an array of normalized pixel
values (Fig. 21a). The second module is to detect the
34 landmark points on the input illustration through
the trained model (Fig. 21b). The third module is to
deform the digital generic 3D model by aligning the

constituent point primitives of the generic model with
a corresponding landmark point signified by the pre-
dicted coordinate values obtained from the second
module (Fig. 21c). These three modules along with
the trained machine learning model work synergistic-
ally to form an automated 3D modelling pipeline
which can automatically deform the digital generic
3D model into a target 3D shape by using a 2D illus-
tration as an input.

Fig. 21 Automated 3D modelling pipeline. a Input processing, (b) Landmark localization, (c) Deformation of generic 3D model

Fig. 22 The automatic 3D modelling system
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A pseudocode which features the operating logic of
the automated 3D modelling pipeline was drafted (See
Additional file 2) and this pseudocode was used as a
blueprint to develop the 3D modelling system which
is a full stack web application (Fig. 22). The proce-
dures of using the developed 3D modelling system to
implement the automated 3D modelling pipeline are
as follows:

1. A 2D illustration of a selected monogenean anchor
was uploaded onto the system interface. This was
done by activating the “Choose File” button and
followed with selecting a 2D illustration as the
target shape. (Fig. 23a)

2. Next, the button “Deform Model” was activated
(Fig. 23b) to fetch the input 2D illustration to

the back-end components of this system to
enable it to go through the entire 3D modelling
pipeline (input processing, landmark detection
and deformation of the generic model).

The procedure of using the 3D modelling system as
described above was repeated to generate the eight se-
lected monogenean anchors through the automated 3D
modelling pipeline and the results are presented in the
following section.

3D model evaluation
The evaluation of the resulting 3D model was based
on a quantitative analysis which was done by plotting
box plots to compare the distribution of the control
points and the predicted landmark points for each of

Fig. 23 Implementation of the automated 3D modelling pipeline. a Upload 2D illustration, (b) Generate 3D model through the automated 3D
modelling pipeline
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the target monogenean anchors. The shape of the tar-
get 3D model produced by the automated 3D model-
ling pipeline is dependent on the landmark points
predicted by the machine learning model which em-
powers the 3D modelling system (Fig. 24). Ideally, all
the predicted landmark points should be positioned

along the edge of the 2D illustration so that this can
result in an optimum 3D shape which can match with
the target shape presented in the input 2D
illustration.
Based on this understanding, the steps below are

followed:

Fig. 24 Dependency of the target 3D shape on predicted landmark point position

Fig. 25 Procedures of creating box plots to examine disparity pattern of control points and landmark points. a Manual annotation of control
points on an input 2D illustration. b Extract coordinates of control points from the Properties Window in Adobe Photoshop. c Collect predicted
landmark point from the machine learning model. d Create two box plots using Microsoft Excel
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1. A sequence of control points were manually
annotated on the ideal positions along the edge of
an input 2D illustrations (Fig. 25a).

2. The coordinates of the control points were
extracted from the Properties Window in Adobe
Photoshop and were stored in a CSV file (Fig. 25b).

3. The same input 2D illustration was fetched to the
3D modelling system and the landmark point
coordinates predicted by the machine learning
model were collected and stored in a CSV file
(Fig. 25c).

4. The Coordinate-X and Coordinate-Y of the control
points and the predicted landmark points were
loaded to create two box plots (Fig. 25d). The dis-
parity pattern of the Coordinate-X and Coordinate-
Y between the control points and the predicted
landmark points were examined and analyzed.

5. Steps I-IV were repeated for all the 8 input 2D illus-
trations used for creating the target 3D anchors.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3210-x.

Additional file 1. Pseudocode for 2D shape interpolation algorithm.

Additional file 2. Pseudocode for the development of automatic 3D
modelling system.
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