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Abstract

Background: Differences in cell-type composition across subjects and conditions often carry biological
significance. Recent advancements in single cell sequencing technologies enable cell-types to be identified at the
single cell level, and as a result, cell-type composition of tissues can now be studied in exquisite detail. However, a
number of challenges remain with cell-type composition analysis – none of the existing methods can identify
cell-type perfectly and variability related to cell sampling exists in any single cell experiment. This necessitates the
development of method for estimating uncertainty in cell-type composition.

Results: We developed a novel single cell differential composition (scDC) analysis method that performs differential
cell-type composition analysis via bootstrap resampling. scDC captures the uncertainty associated with cell-type
proportions of each subject via bias-corrected and accelerated bootstrap confidence intervals. We assessed the
performance of our method using a number of simulated datasets and synthetic datasets curated from publicly
available single cell datasets. In simulated datasets, scDC correctly recovered the true cell-type proportions. In
synthetic datasets, the cell-type compositions returned by scDC were highly concordant with reference cell-type
compositions from the original data. Since the majority of datasets tested in this study have only 2 to 5 subjects per
condition, the addition of confidence intervals enabled better comparisons of compositional differences between
subjects and across conditions.

Conclusions: scDC is a novel statistical method for performing differential cell-type composition analysis for
scRNA-seq data. It uses bootstrap resampling to estimate the standard errors associated with cell-type proportion
estimates and performs significance testing through GLM and GLMM models. We have made this method available to
the scientific community as part of the scdney package (Single Cell Data Integrative Analysis) R package, available
from https://github.com/SydneyBioX/scdney.

Keywords: Single cell, RNA-seq, scRNA-seq, Composition analysis

Background
Tissues are composed of many heterogeneous cell-types
and differences in cell-type proportions often carry
biological significance. For example, cell-type composi-
tional differences can shed light on disease mechanisms
[1], immune response in cancer [2] and developmental
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processes [3]. In recent years, single cell RNA sequencing
(scRNA-seq) has become an increasingly popular technol-
ogy as it allows the cell-type identity of each individual
cell sequenced to be inferred. This has enabled generation
of insights through comparison of cell-type composition
between samples.

There are many challenges associated with estimat-
ing cell-type composition. First, there could be techni-
cal biases for each cell-type. Certain cell-types may be
more prone to damage under existing scRNA-seq proto-
cols [4], leading to bias and perhaps a larger variance in
cell-type proportions. Second, there are many proposed
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methods for cell-type identification and none of them
guarantees perfect identification accuracy. A systematic
evaluation of 14 common clustering algorithms revealed
differences in performance and clustering result [5, 6].
A further evaluation on similarity metrics in clustering
algorithms illustrates further inconsistency in results due
to the different metrics used for measuring differences
in cell transcriptomes [7]. In addition, as the compo-
sitions sum to one, this transforms the data from the
Euclidean space into a simplex space. Canonical statis-
tical tests such as t-test may not be reliable, as these
are not designed for relative proportion data [8]. These
issues all highlight the difficulty and uncertainty asso-
ciated with cell-type identification. However, there is
a current lack of methodological research on cell-type
compositional analysis for single cell data. Whilst some
research papers draw observations on compositional dif-
ferences of cell-types between conditions [1, 3, 9], such
observations are not accompanied by a measure of uncer-
tainty associated with the estimates. In contrast to the
lack of such studies in the field of single cell analysis,
compositional analysis has been an active and ongoing
area in microbiome research, due to the compositional
nature of microbiome data. Dirichlet – multinomial mod-
els have been used extensively for microbiome research,
in which Dirichlet Monte Carlo procedures are used
to obtain posterior distributions of sample proportions
[10–13]. However, due to the small sample size of scRNA-
seq data, fitting a Dirichlet multinomial is not currently
feasible.

In this paper, we present single cell Differential
Composition (scDC), a method for estimating uncer-
tainty in cell-type proportions via bootstrapping. Our
method provides a bias-corrected estimate of cell-type
proportions confidence intervals, and by performing
clustering within each bootstrap iteration it also cap-
tures the uncertainty associated with cell-type identi-
fication. In scRNA-seq experiments with small sample
sizes, such estimates of cell-type proportion uncertain-
ties would be useful in determining the significance of
cell-type compositional differences between conditions.
In the future where multi-sample comparative scRNA-
seq experiments are likely to become common place,
our method offers a statistically robust way to propa-
gate uncertainty in downstream analysis. We demonstrate
this using two synthetic datasets derived from published
experimental data. Finally, we implemented scDC as part
of the scdney R package which is freely available from
https://github.com/SydneyBioX/scdney.

Results
Overview of single cell differential composition analysis (scDC)
We developed scDC (workflow shown in Fig. 1), a novel
approach based on bootstrap resampling, to perform

differential cell-type composition analysis. Let Yij be a
matrix of cell counts from i = 1, . . . , C cell-types and j =
1, . . . , R subjects. The first step of scDC involves stratified
bootstrap resampling where we sampled with replace-
ment Nj cells from the cell count matrix Yij for subject j.
Stratification by subject is important because it ensures
unbiased bootstrap estimates and captures subject to sub-
ject variability. Let Y ∗

bj be the bth bootstrap sample for
the jth subject. Subsequently, for each bootstrap iteration,
we combined resampled cell counts Y ∗

b1, . . . , Y ∗
bR for all R

subjects.
The next step involved cell-type identification of each

bootstrap sample using clustering. Here, we performed
PCA dimension reduction followed by k-means cluster-
ing (using Pearson correlation as distance metric [7]).
For each bootstrap sample, this generated cell-type pro-
portions p∗

b1, . . . p∗
bC which we later used to calculate

bootstrap standard errors (SE) for each of the cell-type
proportions p1, . . . , pC . In parallel, for experiments with
two conditions A and B, to assess changes in cell-type
compositions between conditions, we modelled the data
using a log-linear model accounting for cell-types, condi-
tions, subjects and interaction effects between cell-types
and conditions. A log-linear model was fitted to each
bootstrap sample Y ∗

b and the results were pooled using
Rubin’s pooled estimate (see “Methods” section) [14]. This
log-linear model can also be fitted as a mixed effect model
by giving each subject a random effect and both options
are available in our scDC framework.

Stratified bootstrap procedure provides good estimation
of sampling error for cell-type proportions
First, we examined the validity of our stratified boot-
strap procedure using simulation data (Table 1). In Fig.2a
each point represents the sampling standard error and
the bootstrap standard error associated with a particu-
lar subject. The figure clearly shows a high concordance
between bootstrap standard error and sampling stan-
dard error. Therefore, bootstrap resampling should pro-
vide a reasonable estimate of uncertainty for cell-type
proportion.

Bias-corrected and accelerated (BCa) bootstrap confidence
interval for single subject cell-type proportions
We examined the effectiveness of various approaches to
estimate confidence intervals (CI) associated with cell-
type proportions at the single subject level. Cell-type
proportions from a single cell experiment can be mod-
eled using a multinomial distribution with C propor-
tion parameters p1, . . . , pC . The simple standard error
(SE) measure, commonly used to illustrate error bars,
assumes symmetric CIs and therefore is not an appro-
priate representation of the CI of cell-type proportions.

https://github.com/SydneyBioX/scdney


Cao et al. BMC Bioinformatics 2019, 20(Suppl 19):721 Page 3 of 12

Fig. 1 Overview of scDC workflow. This illustrates the main components of the scDC procedure. The key functions have been included on top of
each sub-figure, where relevant. a Single cell data is collected and analysed. Publicly available experimental data is obtained. Simulated data is
generated using R package PowSimR. b This corresponds to step 1 and 2 of the 4-step procedure. Resampled data is generated using stratified
bootstrap and then clustered using clustering algorithm. Each cluster is matched to cell-type using reference cell labels in the original dataset. This
step is repeated n times. c In step 3 and 4, cell count output from each bootstrap is fitted using GLM. The coefficient estimates from each individual
GLM model are pooled using Rubin’s rules and tested for significance. d User can extract the overall estimates of statistics. e Each bootstrap
re-sampling gives an estimated distribution of cell-types composition for each patient. f the result can be visualised graphically

The SE estimate is especially problematic for rare
cell-types, as it can generate CI estimates with endpoints
that extend outside [ 0, 1]. Existing approaches to estimate
CIs for multinomial proportions require large expected
cell counts [15]. For rare cell-types, cell counts may not
be adequate to ensure the appropriate overall coverage
probability.

To address this issue, we considered three methods to
estimate CI of cell-type proportions: (1) the model-based
approach of May and Johnson (2000) [16, 17], which con-
structs simultaneous CIs for multinomial proportions; (2)
the bootstrap percentile method, and (3) the bootstrap
BCa method [18]. Figure 2b shows CI estimates using

Table 1 Simulation cases with one condition

Datasets C Number of replicates (R) p1 p2 p3 p4

Sim1 500 10 0.1 0.2 0.3 0.4

Sim2 100 50 0.1 0.2 0.3 0.4

Sim3 50 100 0.1 0.2 0.3 0.4

Sim4 100 50 0.05 0.25 0.3 0.4

Four simulation datasets were made, each dataset containing 5000 cells. C
represents the number of cells from one replicate. p1, p2, p3, p4 corresponds to the
proportion of the four cell-types Cell1, Cell2, Cell3 and Cell4 respectively
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Fig. 2 Stratified bootstrap provides good estimate of standard error. a Using four simulated datasets, stratified bootstrap was performed to estimate
cell-type proportions in each bootstrap. Each dot on the figure represents a pair of value containing the mean standard error of bootstrap (x-axis)
and standard error from sampling (y-axis). b Each horizontal bar shows confidence interval associated with proportion estimate

these three methods on four sets of simulated data. Com-
paring simulation data Sim1 with 500 cells per replicate ,
Sim2 with 100 cells per replicate and Sim3 with 50 cells
per replicate, it is clear that the width of all three types
of confidence intervals increases with decreasing number
of cells. The width of BCa CI is similar to multinomial
and percentile in all cases, but is significantly shorter
when there was presence of rare cell-types and small num-
ber of cells per replicate, as shown by the cell-type n4.
This suggests that BCa provides better estimates for rare
cell-types.

scDC correctly estimates the cell-type proportions and
corresponding standard error in simulation data
Using a series of simulation data, we evaluated whether
scDC can accurately recover true cell-type proportions
and the corresponding standard errors within each con-
dition and subject. For simulated data SimP1 and SimP2,
we simulated the situation where biological replicates
are available; for simulated data SimP3 and SimP4,
we also modelled the subject to subject variability as
random effects. The detailed simulation settings are
listed in Table 2 and described in detail in “Methods”
section. Figure 3a shows that in all four simulations, scDC

correctly recovers the true cell-type proportions; Fig. 3b
shows the corresponding bootstrap confidence intervals
calculated using the BCa method. Visually, the confidence
intervals overlap between conditions where cell-type pro-
portions differ by 10%. When we used GLMs to test for
significance, we found that there is significant interac-
tion effect for cell-type 2 in simulation data SimP1 (p =
0.01; Table 3) but not for cell-types 3 and 4. This shows
concordance with the true underlying model.

We also examined scDC’s performance on estimating
cell-types proportions in datasets where there are highly

Table 2 Simulation cases with two conditions

Condition 1 Condition 2

Datasets p11 p21 p31 p41 p12 p22 p32 p42

SimP1 0.4 0.4 0.2 0.2 0.3 0.5 0.2 0.2

SimP2 0.7 0.1 0.1 0.1 0.6 0.2 0.1 0.1

SimP3 0.4 0.4 0.2 0.2 0.3 0.5 0.2 0.2

SimP4 0.7 0.1 0.1 0.1 0.6 0.2 0.1 0.1

Four simulation datasets are made, each contains 6000 cells. pij corresponds to the
proportion of cell-type in cell-type i and condition j
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Fig. 3 scDC on simulated dataset. scDC has been applied to four simulated datasets. a Each dot represents a pair of values containing the mean
proportion estimate calculated from scDC (x-axis) and the true proportion from the simulation data (y-axis). Across all four datasets, all dots lie on
the diagonal line, even when the proportion of a cell-type is as low as 5%. This demonstrates that scDC is highly accurate in estimating cell-type
composition. b Each simulated dataset contains two conditions, represented suing colours red and blue. The bar chart shows proportion estimates
of each cell-type n1 to n4 for each subject in the dataset. The horizontal black line represents the BCa confidence interval associated with the
proportion estimate

correlated cell-types and rare cell-types, as these situa-
tions are often observed in real experimental datasets.
Using eight simulated datasets SimS1 to SimS8, we
demonstrated that scDC is highly accurate in recovering
rare cell-types proportion as low as 1% and is only slightly
affected when there is high degree of correlation between
two cell-types (Additional file 1: Figure S1). The detailed
simulation settings are listed in Additional file 1: Table S2)

Lastly, we simulated a dataset composed of 4000 cells
and 10 cell-types with 3 rare cell-types, replicating the
size and the complexity of real experimental dataset. scDC
result shown in Additional file 1: Figure S2 clearly revealed

that scDC accurately recovered true cell-types propor-
tion. In addition, we observed that BCa produced the
tightest CI interval around the density distribution of pro-
portion estimates for the three rare cell-types, n1, n2 and
n3. In contrast, both percentile and multinomial CI pro-
duced much wider CI in some cases. For the other seven
cell-types, the three CI estimates were similar. This is
consistent with our findings in the previous subsection.

Impact of specifying incorrect number of cell-types
In practice, the true number of cell-types are often
unknown. To investigate the impact on scDC result when
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Table 3 Summary of pooled estimates from fitting GLMM to
bootstrap samples from simulation data SimP1

Mixed effect model - Simulation data SimP1

Estimate std.error Statistic df p.value

(Intercept) 4.32 1.24 3.49 6.11 0.01

Cell2 -0.17 0.14 -1.22 5.86 0.26

Cell3 -1.50 0.23 -6.64 5.52 0.00

Cell4 -1.35 0.19 -7.04 6.79 0.00

Condition2 -0.02 1.81 -0.01 5.59 0.99

Cell2:Condition2 0.68 0.19 3.53 6.20 0.01

Cell3:Condition2 0.41 0.32 1.29 5.55 0.23

Cell4:Condition2 0.25 0.26 0.95 7.97 0.37

the number of cell-types is incorrectly determined, we
simulated a dataset containing 500 cells and 4 cell-types
and evaluated scDC with the number of cell-types spec-
ified as 2, 3, 4 and 5. Figure 4 clearly shows that in
all cases when the input number of cell-types is incor-
rect, the resulting confidence intervals are very wide.
Some of the confidence intervals appeared to be out
of place compared to the density distribution. Only
when scDC was ran with number of cell-types being

4 did the confidence intervals form reasonably CI esti-
mate as seen from close bands surrounding the density
distributions.

Application of scDC reveals differential cell-type
proportions in two synthetic datasets
To demonstrate the applicability of our method on data
containing realistic variability from single cell experi-
ments, we examined two synthetic datasets constructed
from two sets of real experimental data — Pancreas [1]
and Neuronal [3] (see “Methods” section).

In the Pancreas dataset that examines subjects with type
two diabetes (T2D) and healthy subjects, we observed
subject to subject variation. Despite the overall proportion
of beta cells being lower with subjects with T2D compared
with healthy controls, our analysis confirms the original
finding that 1 of the 4 subjects has a higher beta cell
value. The boxplot for this patient has a small interquar-
tile range, suggesting that there is high confidence that
the high value observed with this subject is not due to
an error or random chance, for example, in the clustering
procedure. The overall boxplot (Fig. 5d-f ) summarising
the average cell proportion across subjects further shows
that the interquartile range of the beta cell proportion of

Fig. 4 Impact of incorrectly specified numbers of cell-types. We simulated a dataset containing 4 cell-types and ran scDC with number of cell-types
specified to be 2, 3, 4 and 5. a shows the width of the three types of confidence intervals. b shows the density distribution of proportion estimates
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Fig. 5 scDC on synthetic dataset. scDC has been applied on two different synthetic datasets, a-c shows result on neuronal dataset and d-f shows
result on pancreas dataset. a Subjects are samples taken at different developmental time point. Each time point has two or three samples, as
indicated by the labels on the x-axis. Boxplot represents 100 cell proportion values obtained from performing scDC. The diamond symbol in each
boxplot represents the reference cell proportion value calculated from the original dataset. b Each boxplot is drawn by taking the mean of subjects
at each time point. Thus wider boxplot indicates greater subject to subject variability. c This plots the mean cell composition of each subject from
the 100 cell proportion values obtained from scDC and compares across the developmental time point. A trend in proportional change of the four
cell-types is visible. d Subjects are samples taken from normal subjects and type 2 diabetes subjects. e Averaging across subjects for each cell-type
reveals a clear difference in beta cell proportions between normal and type two diabetes subjects. f Compared to mouse data (c) , human data
exhibit much greater between subject variability
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normal subjects is not overlapping with the interquartile
range of the beta cell proportion of T2D subjects. This
confirms that, despite one of the T2D subjects being an
outlier, the overall beta cell proportion of T2D subjects is
lower than for normal subjects. Inspecting output from
random effect and fixed effect model revealed a difference
in subject variability and the pooled fixed effect model
also suggests the beta cell-type and subject interaction
effect is significant (p = 0.02). This again highlights that
in the beta cell, there is a lower proportion in T2D com-
pared to healthy and such difference in proportion isn’t in
the alpha cell-type. The details of the GLM and GLMM
results are presented in Table 4.

The Neuronal dataset contains samples from inbred
mice at different developmental time points. With the
neuronal dataset, we examined the mesoderm, neural
crest, neural crest neurons, and progenitor cell-types.
Here, the subject to subject variability are substantially
smaller (Fig. 5a-c). Application of scDC reveals a clear
trend in the relative proportion of these four cell-types. In

Table 4 Summary of pooled estimates from fitting GLM and
GLMM to bootstrap samples from Pancreas dataset

Fixed effect model - Pancreas

Estimate std.error Statistic df p.value

(Intercept) 4.68 0.09 52.09 9.84 0.00

Beta -0.94 0.16 -5.87 4.10 0.00

Ductal -1.14 0.14 -7.91 5.87 0.00

T2D 0.06 0.12 0.51 10.22 0.62

patientHP1504101_T2D -0.28 0.14 -2.05 7.41 0.06

patientHP1504901 -0.27 0.11 -2.38 12.35 0.03

patientHP1506401 -0.39 0.12 -3.34 12.35 0.01

patientHP1507101 -0.03 0.11 -0.32 12.35 0.76

patientHP1508501_T2D 0.01 0.10 0.10 12.35 0.92

patientHP1509101 -0.87 0.14 -6.42 12.35 0.00

patientHP1525301_T2D 0.07 0.10 0.77 12.35 0.45

beta:T2D -0.52 0.22 -2.40 5.41 0.03

ductal:T2D 0.59 0.19 3.12 5.54 0.01

Mixed effect model - Pancreas

Estimate std.error Statistic df p.value

(Intercept) 4.37 0.12 36.20 16.21 0.00

Beta -0.94 0.16 -5.87 5.99 0.00

Ductal -1.14 0.14 -7.91 8.59 0.00

T2D 0.31 0.17 1.80 16.90 0.09

beta:T2D -0.52 0.22 -2.40 7.92 0.03

ductal:T2D 0.59 0.19 3.12 8.14 0.01

Beta, ductal are the cell-type effect. T2D is abbreviation of type two diabetes effect.
Subject ID followed by underscore of T2D represents type two diabetes subject.
Subject ID without underscore of T2D represents normal subject

particular, there is a clear increase in the relative propor-
tion of progenitor, neural crest and neural crest neurons,
and a decrease in the relative proportion of mesoderm.
The GLM and GLMM analysis show a significant interac-
tion effect between cell-types and time points (p < 0.001).
The details of the GLM and GLMM results are presented
in Additional file 1: Table S1. The original paper examined
the change in progenitor compared to neurons and stated
that the percentage of progenitor increased as the percent-
age of neurons decreased. Our findings suggest that, by
excluding neurons from analysis, there is a visible increase
in the percentage of progenitor cells over time. This find-
ing is worth further investigation, as progenitor cells is a
key player in neurogenesis which gives rise to neuronal
cells.

Discussion
We present a novel statistical framework, scDC, to assess
cell-type composition differences between conditions of
interest. This involves developing approaches to esti-
mate standard error of cell-type proportions estimates in
scRNA-seq data via bootstrapping and adapting a missing
values framework to facilitate Wald testing from bootstrap
log-linear model and generalized linear mixed model anal-
yses. By applying scDC to simulated data, we demonstrate
that our method can accurately recover the correct con-
fidence interval of cell-type proportions in an unbiased
manner. Furthermore, we show in two synthetic datasets
that cell-type composition differences can be accurately
determined following the scDC procedure.

All confidence interval estimation procedures discussed
in this paper can be extended to directly calculate the con-
fidence interval associated with the difference in ith cell-
type proportions. This provides an alternative approach
to the CI constructed based on SEpooled that will be sym-
metric by default. These various CI estimation procedures
generate different CIs with different coverage probabilities
and interval lengths. The ability to calculate the correct
coverage probability with the smallest interval length is an
important component of power calculations as it leads to
a reduction of sample size needed to achieve detection of
differences between two cell-types.

Comparisons between the two datasets confirm the
widely accepted phenomena that human data contain
much higher subject to subject variability than mouse
data. The lower mouse to mouse variability could be
due to two factors. First, cell-types in mouse are easier
to distinguish, resulting in greater stability in clustering
process. Second, inbred mice might exhibit much less
variability than humans. Our scDC method provides and
encourages the visualization of SE associated with cell-
type proportions estimates at different level. For example,
in the Pancreas dataset, despite there being only one T2D
subject with a higher beta cell proportion, there is still a
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significant interaction effect between T2D and beta cell
proportions when taking account of all subject. This opens
up a potential problem of hierarchical compositional anal-
ysis where one identifies the proportion of population
within T2D that demonstrates a higher beta-cell propor-
tion versus the proportion of population within T2D that
has a lower beta-cell proportion, and what sample size of
subject is required to achieve this.

As with all bootstrap approximations, we are limited
by the initial sampling procedure. This is more compli-
cated in data with samples from different human sub-
jects, where the cell-type proportions in each sample
vary greatly. In addition, comparing Sim1 and Sim3 from
Fig.2b, it is clear that the width of the confidence inter-
val increases greatly as the number of cells in dataset
decrease. Similar situation is likely to be observed in
experimental datasets, where the number of cells obtained
from each sample may differ, particularly after quality
control. scDC utilizes stratified bootstrap sampling, strat-
ifying based on each subject. Without stratified bootstrap
sampling, we will over-estimate the SE - this is a natu-
ral consequence of large subject to subject variability. It
is not appropriate to assume that all subjects share the
same cell-type proportions and be from the same multi-
nomial distribution. In the stratified bootstrap, we assume
that each subject has a different cell-type proportion and
draws from a different multinomial distribution.

Finally, we implemented scDC as part of the package
scdney for use by the scientific community. This pack-
age performs stratified bootstrap, builds GLM models and
provides visualizations of the bootstrap results.

Conclusions
In this paper, we present scDC, a novel statistical frame-
work for performing differential composition analysis in
scRNA-seq experiments. scDC utilizes bootstrap resam-
pling to estimate the standard errors in cell-type pro-
portions, and enables significance testing from bootstrap
GLM and GLMM analysis. We applied scDC to both sim-
ulation and synthetic data sets and showed that it can
accurately recover true cell-type proportions and estimate
the variance in cell-type proportions. By pooling estimates
from GLM analyses in each bootstrap resample, we also
showed that we can perform significance testing of com-
position differences across subjects and conditions. scDC
is implemented as an R package and can be freely down-
loaded from our GitHub repository. Our implementation
supports direct input from sc-RNA expression matrix.

Methods
Simulated data generation
The R package powsimR was used to simulate the single-
cell RNA-seq data [19]. We selected 10% of genes to be
differentially expressed between two cell-types, with fold

changes sampled from a multivariate normal distribution.
Gene specific distributional parameters are estimated by a
dataset from mouse embryonic stem cells [20].

Simulation with one condition
To validate the bootstrapping estimation, we simulated a
population of 5000 cells consisting of 4 cells types. Four
different simulations were set up, with three simulations
consisting of 4 cell-types with proportion of 10%, 20% ,
30% and 40% (Simulated data Sim1, Sim2, Sim3), and one
simulation with proportion 5%, 25%, 30% and 40% (Sim-
ulated data Sim4). Simulated data Sim1 has 10 replicates,
with 500 cells in each replicates. Four replicates were ran-
domly chosen and bootstrapped. Simulated data Sim2 has
50 replicates in total, with 100 cells in each replicate. Five
replicates were randomly chosen and bootstrapped. Sim-
ulated data Sim3 has 100 replicates in total, with 50 cells
in each replicate. 20 replicates were chosen and boot-
strapped. Simulated data Sim4 has 50 replicates in total,
with 100 cells in each replicate. We chose 20 replicates to
be bootstrapped (Table 1).

Simulation with two condition
To validate our scDC procedure in-silico, we simulated a
population of 6000 cells of four cell-types, with two condi-
tions with different cell-type proportions. Each condition
is divided into three subsets, which can be considered as
the subpopulation of three subjects. Then we randomly
sampled 200 cells from each subpopulation to create a
simulated dataset with 1200 cells. Simulated data SimP1
and SimP2 represents the situation when the biological
replicates are available. Here we sample from the same
multinomial distribution with true cell-type proportions
given in Table 2. Simulated data SimP3 and SimP4 repre-
sents the situation where the variability between subjects
follows a N(0, σ 2) distribution, where σ = 0.02. The
detailed cell-type composition settings of each simulation
are listed in Table 2.

Simulation with rare cell-types and correlated cell-types
We simulated four datasets that have different degree of
correlation between cell-types and four datasets that have
rare cell-types of different proportions. For each dataset,
we first simulated a population of 2400 cells, then we ran-
domly sampled 1200 cells to create the final dataset. Each
dataset is made up of two conditions with different cell-
type proportions and three replicates in each condition.
Variability between subjects are introduced by modelling
a N(0, σ 2) distribution, where σ = 0.02. The detailed cell-
type composition settings of each simulation are listed in
Additional file 1: Table S1.

Simulation of complex dataset
To test scDC on a dataset with complexity similar to the
characteristics of experimental dataset, we simulated one
dataset with 8000 cells and 10 cell-types and randomly
selected 4000 cells to create the final dataset. The 10 cell-
types contains 3 rare cell-types with proportion as low
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as 1%. This dataset is composed of 2 conditions and 4
replicate subjects in each condition. Variability between
subjects are introduced by modelling a N(0, σ 2) distri-
bution, where σ = 0.02. Detailed cell-type composition
settings for this simulation are listed in Additional file 1:
Table S2.

Synthetic data
We generated two synthetic datasets from two publicly
available datasets [1, 3]. All data were first normalized by
TPM (transcripts per million) and log-transformed. Any
samples with a total of less than 50 cells of interest or
with less than 10 cells of any cell-types of interest were
excluded.

Synthetic Pancreas Dataset
The Pancreas dataset contains 2,209 single cells taken
from the pancreas of six healthy and four type 2 dia-
betic human cadaveric donors (E-MTAB-5061) [1]. Alpha,
beta and ductal cells were selected to create the syn-
thetic dataset. Cell labels were provided for all cells by the
authors.

Synthetic Neuronal Dataset
The Neuronal dataset contains 21,465 single cells taken
from neural tubes of mouse embryo at five developmen-
tal time points from e9.5 to e13.5 [3]. Raw data is made
available by the author on their GitHub repository https://
github.com/juliendelile/MouseSpinalCordAtlas. The cell-
types mesoderm, neural crest, neural crest neurons and
progenitor were selected to create the synthetic dataset.
Cell-type labels were provided by the original authors
through assessing the expression of a list of curated
genes.

Bootstrap confidence intervals
Let nij be the number of cells of cell-type i and subject j,
i = 1, . . . , C, j = 1, . . . , R; Nj be the number of cells within
the subject j; and N be the total number of cells in the
dataset. For a typical subject j, the ith cell-type proportion
is defined as pij and calculated by

pij = nij
∑

i nij
= nij

Nj
.

The percentile method
This is an intuitive method for estimating the bootstrap
confidence interval by first estimating the empirical dis-
tribution of pij. Let p̂∗

ij(α) represent the 100α-th percentile
of B bootstrap replications, p̂∗

ij(1), p̂∗
ij(2), . . . , p̂∗

ij(B), with

p̂∗
ij(1) ≤ p̂∗

ij(2) ≤ p̂∗
ij(3) ≤ ... ≤ p̂∗

ij(B),

where B = 10000 by default. Then the percentile interval
of 100(1 − α)% for pij is estimated by

[
p̂∗

ij(Bα/2), p̂∗
ij(B(1−α/2))

]
.

The BCa method
To account for skewness in the confidence interval, we
used the Bias-corrected and accelerated (BCa) confidence
intervals proposed by Efron (1987) [21]. The BCa method
uses percentiles of bootstrap distribution described above,
but depends on an acceleration parameter â and a bias-
correction factor ẑ0. The 100(1 − α)% BCa interval of p̂∗

ij
can be calculated by

[
p̂∗

ij(α1), p̂∗
ij(α2)

]
,

where

α1 = �

(

ẑ0 + ẑ0 + z(α)

1 − â(ẑ0 + z(α))

)

;

α2 = �

(

ẑ0 + ẑ0 + z(1−α)

1 − â(ẑ0 + z(1−α))

)

.

Here �(·) is the cumulative distribution function
of standard normal distribution, and z(α) indicates
the 100α-th percentile point of a standard normal
distribution.

This method estimates two adjustment factors. First, the
bias-correction factor which estimates the proportion of
the bootstrap replication less than the original estimate.
This is calculated by

ẑ0 = �−1(#{p̂∗
ij(b) < p̂ij}/B),

where �−1 is the inverse cumulative distribution function
of standard normal and p̂ij is the original estimate of pro-
portion, derived from Step 2 of clustering in the scDC
procedure.

The second is the acceleration factor which quantifies
the rate of change of the standard error of p̂ij with respect
to the original estimate pij. This is calculated using a
jackknife approach as follows,

â =
∑N

n=1(p̂ij(·) − p̂ij(n))
3

6
{∑N

n=1(p̂ij(·) − p̂ij(n))2
}3/2 ,

where p̂ij(n) is the estimate of pij holding out cell n in the
data, and p̂ij(·) = 1

N
∑N

n=1 p̂ij(n). We modifies the imple-
mentation of function bcanon in bootstrap package to
estimate BCa intervals for cell-type proportions of each
subject [22].

Note that, for data with only one subject, we can still
estimate the CIs with j = 1.

Single cell differential composition analysis (scDC)
scDC is a 4-step procedure that tests for differences in
cell-type composition between conditions.

Step 1: Stratified bootstrap
This is used to generate B bootstrap samples by sampling
with replacement and stratified by subjects. We denote
each bootstrap sample data of subject j as Y ∗

bj. All genes

https://github.com/juliendelile/MouseSpinalCordAtlas
https://github.com/juliendelile/MouseSpinalCordAtlas
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with zero variance in each of the B bootstrap sample
Y ∗

bj are removed as they are not informative for cell-type
determination.

Step 2: Cell-type identification
We estimate the cell-type identity of each cell by clustering
each bootstrap resample Y ∗

bj and estimate the bootstrap
cell-type proportions p̂∗

b1, p̂∗
b2, . . . , p̂∗

bC for all C cell-types
via clustering The clustering first performed dimension
reduction using PCA (R package stats [23]) to the first
10 principal component, follow by k-means clustering
with Pearson correlation as the similarity measure using
function scClust in R package scdney [7]. The number of
clusters, K, was initially set to be the number of cell-types
C in the data. Cluster identity was assigned based on the
majority cell-types in a cluster.

In cases where the clustering result do not recover all
the cell-types, clustering was re-run with the number of
clusters K increased by one. We repeated the clustering
procedure until each cell-type has been assigned to at least
one cluster. We then recorded the number of cells in each
cell-type labelled cluster that belongs to each subject or
replicate j.

Step 3: Pooled estimates from B complete linear model
analyses.
For each bootstrap resample Y ∗

bj, a Generalized Linear
Model was fitted to assess the significance associated with
each predictor variable. The R package lme4 was used to
fit the model [24]. Two types of models were considered —
the fixed effect model (GLM) and the mixed effect model
(GLMM) by treating the subject as a random effect. For
the fixed effect model (GLM) the following R code
glm(cell_count ~ cell_type + condition

+ subject +

cell_type:condition, data, family

= poisson(link=log))

was used.
For the mixed effect model (GLMM), the following R

code
glmer(cell_count ~ cell_type + condition

+ cell_type:condition +

(1 | subject), data, family

= poisson(link=log))

was used.
This generated B bootstrap coefficient estimates

β̂
∗
1, β̂

∗
2, . . . β̂

∗
B from the GLM or GLMM model. B =

100 by default if user does not require any confidence
interval to be estimated, otherwise B = 10000 by
default. The pooled model estimate based on Rubin’s rules
[14] is

β̄
∗ = 1

B

B∑

b=1
β̂

∗
b,

where β̂
∗
b is the coefficients estimates from the GLM

model fitted with the bth bootstrap resample. The corre-
sponding estimated pooled standard error is

SEpooled =
√

Vwithin + Vbetween + Vbetween
B

,

with Vwithin and Vbetween denotes the within and between
imputation variance respectively. These are calculated by

Vwithin = 1
B

B∑

b=1
SE∗2

b ,

with SE∗2
b represents the sum of the squared Standard

Error (SE), estimated in each bootstrap dataset b. and

Vbetween =
√

∑B
b=1(β̂

∗
b − β̄

∗
)2

B − 1
.

We used the pool function in the R package MICE [25].
Step 4: Significance testing

For significance testing of any of the pooled parameters of
interest such as the interaction effect between cell-types
and conditions, the univariate Wald test [14, 25] is used
and the test statistics is defined as:

Wpooled = β̄∗2
i

SEpooled
,

where β̄∗
i is the ith element of the pooled coefficient vector

β̄
∗.
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