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Abstract

intra-lab variability.

Background: Variant calling and refinement from whole genome/exome sequencing data is a fundamental task for
genomics studies. Due to the limited accuracy of NGS sequencing and variant callers, IGV-based manual review is
required for further false positive variant filtering, which costs massive labor and time, and results in high inter- and

Results: To overcome the limitation of manual review, we developed a novel approach for Variant Filter by
Automated Scoring based on Tagged-signature (VariFAST), and also provided a pipeline integrating GATK Best
Practices with VariFAST, which can be easily used for high quality variants detection from raw data. Using the bam
and vcf files, VariFAST calculates a v-score by sum of weighted metrics causing false positive variations, and marks
tags in the manner of keeping high consistency with manual review, for each variant. We validated the
performance of VariFAST for germline variant filtering using the benchmark sequencing data from GIAB, and also
for somatic variant filtering using sequencing data of both malignant carcinoma and benign adenomas as well.
VariFAST also includes a predictive model trained by XGBOOST algorithm for germline variants refinement, which
reveals better MCC and AUC than the state-of-the-art VQSR, especially outcompete in INDEL variant filtering.

Conclusion: VariFAST can assist researchers efficiently and conveniently to filter the false positive variants, including
both germline and somatic ones, in NGS data analysis. The VariFAST source code and the pipeline integrating with
GATK Best Practices are available at https.//github.com/bioxsjtu/VariFAST.
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Background

With the rapid development of sequencing technologies
and the decrease of the costs, a tremendous amount of
genome-wide data, including whole exome and genome
sequencing data, expression profile data, single nucleo-
tide polymorphism (SNP) and copy number spectrum,
as well as functional experimental data, are available for
biomedical researches. Different sequencing workflows
and platforms have distinctive advantages, e.g. there are

* Correspondence: zhuowang@sjtu.edu.cn; shiyongyong@gmail.com
"Hang Zhang and Ke Wang contributed equally to this work.

'Bio-X Institutes, Key laboratory for the Genetics of Developmental and
Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200030, China

Full list of author information is available at the end of the article

K BMC

many popular variations calling tools, such as Mutect2
[1], SomaticSniper [2], Strelka [3], VarScan2 [4] and
HaplotyperCaller [5]. However, false positive alterations
still often survive in the final results. In order to acquire
high-quality mutations from raw data, the automated
pipelines were used to identify and wipe out many false
positive calls resulting from sequencing errors, misalign-
ment of reads, and other factors [6, 7]. However, to
avoid being misled by inaccurate detection of variants,
additional manual refinement of alterations is crucial for
minimizing false positives and determining candidate
variations for further disease studies.

As for germline mutations, it typically involves employ-
ing Variant Quality Score Recalibration (VQSR) to pro-
duce callsets ready for downstream genetic analysis via
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using resources of known variation, truthsets and other
metadata to assess and improve the accuracy of the re-
sults. However, VQSR requires a large scale of samples
and tends to work well enough with at least one whole
genome or 30 exomes. Anything smaller than that scale is
likely to run into difficulties. As for somatic mutations, Fil-
terMutectCalls is recommended to filter based on se-
quence context artifacts. However, additional filtering, for
instance, manually reviewing is also necessary for further
studies, which extends from deciphering call record anno-
tations to the nitty-gritty of reviewing read alignments
using a visualizer.

The Integrative Genomics Viewer (IGV), a lightweight
visualization tool that enables intuitive real-time explor-
ation of variants, were developed to handle various types
of data [8, 9]. Moreover, minimizing false positive alter-
ations via IGV also becomes a traditional method to
manually examine sequencing data. Nonetheless, it is
obviously not an effective method and has a personal
preference. It is necessary to develop more efficient
methods and tools for such purposes. In a recent publi-
cation, an SOP has been put forwarded, which includes
the summarized 19 factors accounting for false positive
variants, and provides guideline for variants refinement
[10]. In addition, there are benchmark sequencing data
from GIAB (the Genome in a Bottle Consortium) for the
CEPH/HapMap genome HGO001 (NA12878) have been
widely used to develop, optimize, and demonstrate the
performances of sequencing and bioinformatics methods
[11]. Therefore, high-confidence calls of GIAB datasets
also can be used for evaluating the reliability and accur-
acy of variant refinement methods.

In this study, we developed a novel approach for auto-
mated filtering false positive variations, called VariFAST,
which is based on both weighted score and machine
learning model. By using the bam and vcf files, Vari-
FAST calculates a v-score by sum of weighted metrics
causing false positive variations, and marks tags accord-
ing to the SOP [10], in the manner of keeping high
consistency with existing knowledge, for each variant.
We validated the performance of VariFAST for germline
variant filtering using the benchmark sequencing data
from GIAB, and also for somatic variant filtering using
sequencing data of penile squamous cell carcinoma and
pituitary adenomas by our Lab. This pipeline of variant
refinement is substantially useful for researchers to get a
more comprehensive understanding of the pathogenic
mechanism of diseases.

Materials and methods

Overall strategy of VariFAST approach for automated
variant refinement

Figure 1 illustrates the strategy and procedure of Vari-
FAST approach. VariFAST contains four major modules:
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metric calculating, tag-marking, v-score evaluating, and
model training.

The Basic metrics contains /4, e, r, ri, ao, si, dir, sse,
mv, Im, lcr, vafr. The metrics in brackets are used for
somatic variants filtering. The input and output files
were highlighted in grey.

The first step is metric calculating, in which all reads are
stored in the list according to their original position on
chromosomes. All mismatches around the variant locus
are considered for further metric calculating. For germline
variants, 16 metrics are calculated based on reads list. For
somatic variants, it will be divided into two partition. For
normal track, potential germline variants on the locus are
found by v-score and two additional metrics are computed.
Then, reads list together with potential germline variants
are used to calculate metrics on cancer track. Finally, all
16 metrics for germline variants and 18 metrics for som-
atic variants are used for tag-marking, v-score evaluating
and model training, each step will be explained in more
details (see 2.4, 2.5, 2.6).

We implemented the VariFAST approach with python
and developed an easy-to-use tool for users to filter vari-
ants. We also provide a pipeline integrating GATK Best
Practices Pipeline with VariFAST, which can be conveni-
ent for users to get high quality variants from raw se-
quencing data more efficiently.

The detailed flowchart is shown in Additional file 1:
Figure S1, and this pipeline can also be downloaded
from Github.

Definition and calculation of metrics for variant filtering
We proposed 16 quantitative metrics for germline vari-
ant filtering and 18 for somatic variant filtering generally
based on SOP of IGV manual review [10], as follows:

1. Low coverage Risk

min(thr, d)
thr

(1)

ler =1-

Where d is the total read counts covering the specific
locus. According to different sequencing data, thr repre-
sents the users’ requirement for minimal read counts.
Lcr ranges from O to 1, while 0 means the variant passes
the quality control of low coverage.

2. Variant allele frequency risk

vafr = 1- 6{7”1 (2)

Where d,, is the depth of the variant.
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Fig. 1 The overall design of VariFAST

3. Near Head Rate

dy

h

n i
dy, is the number of supported reads whose distance
between read’s head and variant locus is under
threshold (default 5).

4. Near End Rate

(4)

d, is the number of supported reads whose distance
between read’s end and variant locus is under
threshold (default 5).
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5. Near Insertion Rate

dinsert
ni=—— 5
i )
dsere 18 the number of events where the neighbor
of the variant is an insertion.

6. Near deletion Rate

A
nd = a4 (6)

d e is the number of events where the neighbor of the
variant is a deletion.

7. Same Start/End Read Rate

maxd

- )

sse =

dy is the number of supported reads who have the
same start and end.
8. Directional Read Rate

maxd

dir = (8)

m
d, is the number of supported reads who have the
same direction.
9. Low Mapping Read Rate:

_ 4

Im 4, )

d; is the number of variants supported reads whose
mapping quality is under threshold (default 10).
10. Multiple Mismatched Rate

(> ieTv;) x 100
n

mm = (10)
Where T is the set of mismatches whose
frequency are under threshold (default 0.05), v;
represents the depth of mismatch i and » means
the number of nucleotides within 10 bp upstream
and 10 bp downstream.

11. Multiple Variants Rate

di
my = . (11)

Where d,,,, is the number of alleles at the same
position.

Notably, for somatic variants, the program will
identify potential germline variants first via using
normal track according to v-score (see 2.3) and
then count the d,,, according to the tumor track,
excluding germline variant with same position
detected before.
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12. High Discrepancy Region
Z HR;, HR,,,, > threshold
hdr = 7 (12)
HR,0, HR 0 < threshold

HR (HR = dmzﬁ ) is calculated for all mismatches
located on same reads with candidate variant,
where d; the depth of mismatch and /% is the
counts of mismatch and candidate variant occurring
on same read. HR,,,,, is the maximum of all HR.
Particularly, the value of #dr might be greater than 1
as more than one mismatch appeared high
concordant with candidate variant (default HR > 0.9).

13. Short Inserts Rate

(13)

Tag Short Inserts (SI) is frequently in data
derived from archival material (FFPE) or other
source material with small DNA fragment [12],
where almost all variants appeared in the
overlapping region of the two read fragments.
Metric si is set to catch this tag, where d; is the
number of variants appeared in the overlapping
region of both read fragments and d,, is the
counts of the paired supported reads.

14. Repeat r: when candidate variant is near repeat
region, r will be 1.

15. Repeat Insert ri: when insertion is near repeat
region, and insert nucleotides are the same as the
minimum repeat unit, 7i will be 1.

16. Large Insert /i: when the length of insert
fragment reach threshold (default 20) and
nucleotides of the fragments are the same as the
near nucleotides of reference, /i will be 1.

As for somatic variant, there are two additional
metrics.

17. Normal Variant allele frequency for somatic

variation
d
nvaf = —" (14)
d normal

Where d,, is the depth of variants in normal
track, and d,,y,,4; is total read counts covering
the locus in normal track.

18. Low normal coverage risk for somatic variation

mil’l(ﬂ’l}"n , dnormal)
thr,

Incr = 1- (15)

Where thr, represents the users’ requirement for
minimal read counts in normal track.
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All metrics mentioned above ranged from 0 to 1 ex-
cept mv, hdr and mm.

Quantification of the variant score by sum of weighted
metrics

We proposed an indicatrix named variant score (v-score)
to comprehensively consider the effects of all metrics.
The specific formula for calculating v-score is as follow,
where w means the weight of each metric, and x is the
value of metric calculated above.

V= E WiX;

On the basis of prior knowledge [10], the 18 metrics
are partitioned into three importance levels with differ-
ent weights. The most important metrics including lcr,
vafr, Im, ni and nd, are regarded as level3, and the
weights are assigned as 3. The level2 including /ncr, mv
and hdr are also crucial for false variant filtering, whose
weight values are 2. The remaining metrics are regarded
as levell, which may not be dominant metrics for refine-
ment. In addition, each metric’s weight is not fixed and
can be changed to fulfill different kinds of applications.

(16)

Assignment of tags according to metrics

Barnell et al. summarized 19 factors worth being con-
cerned when visualizing the variant through IGV: Adja-
cent Indel (AI), Ambiguous Other (AO), Directional
(DIR), Dinucleotide Repeat (DN), Mononucleotide
(MN), Ends (EN), Tandem Repeat (TR), High Discrep-
ancy Region (HDR), Low Count Normal (LCN), Low
Count Tumor (LCT), Low Mapping (LM), Low Variant
Frequency (LVF), Multiple Mismatches (MM), Multiple
Variants (MV), No Coverage in Normal (NCN), Short
Inserts Only (SIO), Short Inserts (SI), Same Start/End
(SSE), Tumor in Normal (TN) [10]. Whereas in this
study, we combined the DN, TR, MN together as a new
tag Repeat Region (RR), SIO and SI are combined as tag
SL. Al is divided into two new tags Neat Insertion (NI)
and Near Deletion (ND). Two new tags HE (Head) and
RI (Repeat Insert) were added, where HE represents
nearly all variants are near to head of reads and RI
means insertion happening on repeat region and
inserted nucleotides are same as the minimum repeat
units. To summarize, we proposed a more reasonable
and quantitative standard including 19 tags for variant
filtering. These tags are automatically marked according
to the corresponding metrics defined above, and the
standard is shown in Table 1.

Evaluation of variant refinement by v-score
(1+8%)xPxR
(B*xP)+R
the most appropriate v-score. The value of 5 influence

The Fg score was calculated as Fg = to select
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the balance between precision (P) and recall (R), > 1
demonstrates that recalls plays more important role,
while if < 1, the precision becomes a major effect.

Machine learning model for advanced variant filtering
Supervised machine learning method usually behaves
well in a situation with big data, which requires little
prior knowledge. XGBoost is an effective and widely
used machine learning method, which is based on Gradi-
ent Boosting framework [13]. Here, we used XGBOOST
to construct a model for false positive variant filtering.

All metrics calculated above were used to train the
model with binary-logistic as objective function. The de-
fault values were selected for almost all hyperparameters
other than learning rate (eta), minimum loss reduction
for a further partition (gamma) and the maximum depth
of the tree (max_depth). The large gamma makes the
model conservative and results in underfitting, oppos-
itely, increasing max_depth may more likely lead to
overfitting. Grid search with ten-fold cross-validation
was performed for hyperparameters selection while eta
was chosen from (0.01; 0.05; 0.1), gamma from (0.1; 1;
10), max_depth from (3; 6; 9).

Sequencing data with high-confidence germline variant
annotation

Six datasets sequenced for four samples (HGOOL,
HGO002, HGO003, HGO004) which contain high-
confidence benchmark compiled by GIAB were used
in this study [11, 14, 15]. The benchmark set was
generated by integrating multi-datasets from 5 differ-
ent sequencing platforms and could be retrieved from
(ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/). Our
lab also sequenced the HGOO1 sample using Illumina
Xten platform, and generated two exome sequencing
datasets HGOO1_b and HGO001_c. Samples HGO002,
HGO003 and HGO04 are Ashkenazim Trio from GIAB.
The specific information of datasets is shown in
Table 2. All sequencing data are mapped using BWA
MEM [17, 18] and called variants by GATK
HaplotypeCaller.

Sequencing data for somatic variant refinement
Sequencing data of two different cancers conducted by
our research team were used to show the application of
VariFAST for somatic variant refinement. The first one
is three paired whole exome datasets sequencing for
penile squamous cell carcinoma cases, which were col-
lected in the Affiliated Hospital of Qingdao University.
The other one is whole exome datasets for 136 Pituitary
adenomas (PAs) published in our previous study [19].
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Table 1 Description of tags used to annotate variants and the standards of corresponding metrics

Tag Standard of metric Description

LC ler>0 Low coverage in track

LVF vafrz1—thr;, Low variant allele frequency

LM (Im=02)A(d22) Low mapping quality

MM mm =1 Too many mismatches around variant

HDR hdr=1 The variant is supported by reads that have
other recurrent mismatches

HE nh=09 Near head

EN ne =09 Near end

NI niz09 Near insertion

ND nd =09 Near deletion

D dir=09 Almost supported reads with the same direction

SSE sse=09 Almost supported reads with the same start and end

mv (mv=02)A(dn, 2 2) Variant locus has read support for different alleles

RR r=1 Near repeat region

RI ri=1 Insertion and near repeat region and insert nucleotides
are the same as minimum repeat units of reference

AO li=1 Big insertion and insert nucleotide are the same as
the reference

Sl si=209 Supported reads are short insert

(NCN) Incr=1 No coverage in normal track

(LCN) 1>Incr>0 Low coverage in normal track

(VN) (nvafz 0.1 X thr) A (dpormar = 2) Variant occur in normal track

thr,qr is the requirement for minimal variant allele frequency set by users. The tags in brackets are used for somatic variants

Results

Variant refinement performance on germline variants
Summary of variants called from different standard
sequencing samples

In order to assess whether VariFAST method is able to
improve the accuracy of variant refinement, we aligned
the sequence data of samples HG001, HG002, HG003,
and HG004 by different Illumina sequencers to the ref-
erence genome (hgl9) using BWA MEM, and used

Table 2 Description of sequencing datasets for germline variant

refinement

D Sample  Platform Coverage  Source
HGO01_a  HGOO01 lllumina Hiseq 2000 88 1000 genomes
HGO01_b  HGOO1 lllumina Xten 87 Our lab
HGO01_c  HGO0O01 lllumina Xten 85 Our lab

HG002 HG002  lllumina Hiseq 2500 226 GIAB

HG003 HGO003  lllumina Hiseq 2500 193 GIAB

HG004 HG004  lllumina Hiseq 2500 214 GIAB

data set of HGOO1_a is available on the ftp site of 1000 genomes [16] (ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/). data sets of HG001_b and HGOO01_c are
sequenced by our lab. Data sets of Ashkenazim Trio including HG002, HG003
and HGO04 are available on the ftp site of

GIAB (ftp:/ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/)

GATK HaplotypeCaller to call the candidate variants.
The candidate variants consistent with high confidence
variants annotated in GIAB are positive, while others are
regarded as negative (Table 3).

Performance of variant filtering by tags

For all of the 279,573 germline variants, we used Vari-
FAST to calculate 16 metrics, and then get the v-score
and mark the tags. The distributions of tags showed
slightly different patterns among the six standard se-
quencing datasets (Fig. 2a). While HG0O1 from 1000
genome has a higher ratio in tags LC and D than other

Table 3 The number of variants with true positive and true
negative confidence in different standard sequencing samples

Sample ID Positive variants Negative variants Total variants
HGO01_a 28,680 5269 33,949
HG001_b 46,068 10,538 56,606
HG001_c 46,031 10453 56,484
HG002 36,383 7769 44,152
HG003 35,879 8175 44,054
HG004 36,277 8051 44,328

All 229318 50,255 279,573



ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

Zhang et al. BVIC Bioinformatics 2019, 20(Suppl 22):713

Page 7 of 13

Fig. 2 The influence of different tags on differentiation of negative variants. a The proportion of tags in six datasets of standard sequencing
samples. The Y coordinate represents the tag proportion, which is counted as the number of variants having each specific tag divided by the

determining negative variants. 1 represents the variant is true positive, and 0 represents the variant is negative without high confidence in the
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datasets, the samples of HG002, HG003, and HG004
have a higher ratio in tag MM. The variants marked by
only one tag (RI only with RR are also considered be-
cause RR is the prerequisite of RI) are selected to valid-
ate the effectiveness of tags, including 2671 variants with
LM; 3596 variants with D; 687 variants with MV; 305
variants with MM; 925 variants with LVF; 5164 variants
with RR; 4542 variants with HDR; 11,852 variants with
LC; 50 variants with NI; 28 variants with ND; 8 variants
with SI; 55 variants with AO; 1164 variants with RI; 3
variants with H and 2 variants with E, totally 31,038 var-
iants (Fig. 2b). None of the variants is marked by only
SSE. The tags LM (96%), LVF (88%), NI (86%) and
ND (96%) are most effective, since almost all of vari-
ants marked by them are negative variants without
confidence in benchmark. Above half of the variants
with tags HDR (55%) and MV (69%) are also false
positives out of the benchmark. LC (Low Coverage)
may be an impediment to distinguish sequencing arti-
facts and considerably decline the confidence of a
variant, thus, it also should be taken into key consid-
eration, even though the proportion of negative vari-
ants marked by tag LC (21%) is not as high as other
tags mentioned above. In order to recall these vari-
ants, a deeper depth sequencing data should be re-
quired. The other tags including RI (29%), RR (25%),
ST (25%), AO (33%), MM (26%) and extremely DIR
(13%) might not be effective for filtering variant, but
they could reduce the confidence of the variant to
some extent, which also requires comprehensive
assessment.

Performance of variant filtering by v-score

We demonstrated the Recall-Precision diagram using
the different v-score threshold with interval 0.1, as shown
in Fig. 3a, and found that all samples exhibit similar
trends. Making an overall consideration between preci-
sion ratio and recall ratio, Fz score (see Materials and
Methods) was calculated for each dataset with S as 0.3.
Figure 3b shows the relationship between Fz score and
v-score. Interestingly, the Fy score of all datasets from
the Illumina platform reaches the maximum when v-
score is nearly 3.5 (Table 4). We also validated the per-
formance of v-score for different 5 ranging from 0.1 to
0.5, and found that all Fz scores reach the maximum
with the v-score from 3 to 4 (Additional file 2: Figure
S2). It suggested that v-score is robust across different sam-
ples and choosing a threshold for v-score from 3 to 4 is
reasonable. Notably, some complex variants might get high
v-score due to the inaccuracy of alignment algorithm and
sequencing error, which are still difficult to be detected.

Sanger sequencing validation for refined variants
inconsistent with high confidence in benchmark

We selected 15 variants without high confidence in bench-
mark and with low v-score, including 7 SNVs, 4 insertions
and 4 deletions to perform Sanger sequencing validation
(Table 5). Almost all variants (14/15) were confirmed as
true, which demonstrated that our v-score could efficiently
recall a number of variants, although they are out of bench-
mark. There is only one variant failed in verification, as
shown in the IGV visualization in Additional file 3: Figure
S3. Three insert nucleotides were detected in locus 8,374,
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781 on chromosome 12. However, the result of Sanger se-
quencing discovered two SNVs (8,374,778: T >C; 8,374,
786: G > T), which were extremely difficult to detected by
both manual review and VariFAST.

We also chose other 12 variants with high v-score but
within benchmark, which would be filtered by manual
review obviously, to perform Sanger sequencing valid-
ation. All 12 variants even some with extremely low al-
lele frequency were validated true. There are 5 variants
marked by HDR were validated as Multiple Nucleotide
Polymorphisms (MNPs). The visualization of MNPs
were similar to HDR, whose variants were supported by
reads that have other recurrent mismatches across the
track (Additional file 4: Figure S4). Thus, v-score is diffi-
cult to distinguish these exceptional variants.

In conclusion, variants with low v-score can be
regarded as true positive with considerable certainty.
Oppositely, a few variants with higher v-score, which
were usually also excluded by manual review, would be

Table 4 The performance of VariFAST for false positive variants
filtering at the maximum Fg score for six standard sequencing
datasets

D HG001_a HGO01_b HGO01_c HGO002 HGO03 HGO04
v-score 37 3.7 36 35 33 34
Fgscore  89.7% 89.4% 89.5% 86.5% 86.0%  86.3%
Precision  90.4% 90.2% 90.4% 86.8% 866%  86.8%
Recall 82.5% 81.6% 80.1% 833% 800% 81.6%
Accuracy  77.8% 77.8% 76.8% 758%  736%  748%
MCC 03 038 037 022 023 023

possibly misjudged. This is also the challenge for most
of variant refinement methods.

Performance of variant filtering by machine learning model
in VariFAST
All variants (132534) called from three whole exome se-
quencing datasets (HG002, HG003, and HG004) were
used to train the XGBOOST model. The hyperpara-
meters were set as eta:0.1; gamma: 1; max_depth: 6 by
ten fold cross validation for optimized grid search. Both
v-score and XGBOOST were tested on three independ-
ent datasets sequenced by the Illumina platform
(HG001_a, HGO01_b, and HGO01_c). The variants pre-
dicted as positive or negative consisted with annotation
in benchmark are considered as true positive (TP) or
true negative (TN). The variants predicted as positive
but without high confidence in benchmark are consid-
ered as false positive (FP). Correspondingly, the variants
predicted as negative but having high confidence of posi-
tive variants are considered as false negative (FN). The
ROC curve [20] demonstrated that the XGBOOST
model significantly performs better than v-score in all
three datasets, as shown in Fig. 4. The AUC values are
shown as follow: HG001 _a: 0.790 vs 0.712; HGO001_b:
0.832 vs 0.766; HGOO01_c: 0.828 vs 0.766. By using the
var.roc function in R with bootstrap method, we got the
variance of AUC are 1.66e-5, 7.52e-6, and 7.0le-6 re-
spectively for datasets HG001_a, HG001_b, and HG001_
¢, which revealed the robustness of XGBOOST model.
In addition, we also used the datasets HGO01_a,
HGO001_b, and HGO001_c as training set and the datasets
HGO002, HG003, and HGO04 as test set, the performance
of XGBOOST is also similar.
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Table 5 List of the information and result of Sanger sequencing validation

Chromosome Start Ref Alt v-score Tag Validation
Without high confidence Chr14 60,574,539 A G 1.03 G
Chr19 20,808,374 A G 0.92 G
Chr 207,890,866 T C 1.09 C
Chr11 237,087 A G 1.74 G
Chr5 96,232,142 T A 091 A
Chr17 28,511,978 G A 0.89 A
Chr1 34,329,897 T C 0.88 C
Chr3 64,640,207 A - 238 -
Chr21 34,948,697 A - 324 -
Chr14 19,807,081 A - 1.76 -
Chr22 18,910,451 A - 137 -
Chr13 60,385,060 - TTAC 1.21 TTAC
Chr22 23,962,744 - TTC 1.65 TT1C
Chr18 61,326,628 - T 3.02 T
Chr12 8,374,781 - ACG 29 -
With high confidence Chr10 25,273,311 - A 1.7 LVF, D, MV, RR, RI
Chr2 157,425,502 - T 1.8 LVF, D, MV, RR, RI T
Chr8 101,725,036 - AA 10.2 LVF, MV, RR, RI AA
Chr12 122,762,763 - AA 100 LVF, D, MV, RR, RI AA
Chre 82,930,437 - A 7.0 LVF, D, MV, RR, RI A
Chr22 44,074,076 - A 6.6 D, MV, RR, RI A
Chr17 7,012,073 G T 6.5 HDR T
Chri15 81,624,768 @ T 53 LVF, LC T
Chr4 6,114,420 G T 70 HDR T
Chr3 151,545,323 T G 8.1 HDR, ND, D G
Chr1 89,652,094 G A 7.0 LVF, HDR, H A
Chr11 55595114 G T 6.7 HDR T
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0.8

o
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True Positive Rate
o
n
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NEREN
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0.8 1.0

Fig. 4 ROC curves plotting true-positive rate versus false-positive
rate for three independent datasets predicted by XGBOOST model
and v-score respectively

Validation on somatic variant filtering

Variant filtering using VariFAST for penile squamous cell
carcinoma sequencing data

Three paired samples from penile squamous cell carcinoma
were sequenced to validate the consistency between our
tool and manual review. Sequencing data were aligned to
the reference genome (hgl9) and 520 somatic variants lo-
cated in functional regions were identified by GATK. We
manually reviewed all variants using IGV according to the
SOP proposed by [10] and marked tags for each variant, in
which 158 variants were identified as high-quality somatic
variants. Subsequently, we used VariFAST to calculate v-
score and marked the tags for each variant. The results of
VariFAST (Fig. 5) are highly consistent with the manual re-
view, with 555 out of 603 tags are same. Specifically, 97%
(289/291) LVF, 100% (10/10) LC, 94% (16/17) LCN, 93%
(55/59) SI, 100% (13/13) RR, 86.6% (71/82) VN, 83% (78/
94) HDR, 80% (4/5) MM, 78.6% (22/28) LM, 100% (4/4)
MV marked by VariFAST are also identified by manual
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Fig. 5 Comparison of the variants marked by VariFAST with manual review for penile squamous cell carcinoma sequencing data. Y coordinate
represents number of variants marked with the corresponding tags listed on X coordinate. The legend ‘Same’ means the variant is marked by
both manual review and VariFAST, ‘Manual” and VariFAST means the variant is marked by only manual review or VariFAST
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IGV review, while our pipeline saved massive time and
labor. Importantly, the v-score of positive and negative vari-
ants groups are significantly different (p-value =2.2e-16)
under rank sum test (Additional file 5: Figure S5).

Variant filtering using VariFAST for pituitary adenomas
sequencing data

A large-scale whole exome sequencing data including 136
pituitary adenomas (PAs) cases published in our previous
study was used for further evaluation of VariFAST for
somatic variant refinement. Aggregately, 108,400 variants
are called by GATK and 202 variants have been validated
via Sanger sequencing. Figure 6 showed the distribution of
v-score for both Sanger validated variants and total vari-
ants. The v-scores of almost all (174/202) validated vari-
ants are below 4, and the overall distribution of v-score
for total variants showed significant difference with the

0.6-
0.4-
2 group
3 [ Jan
3 | Jpositive
0.2-
0.0
0.0 25 5.0 7.5 10.0
v-score
Fig. 6 The v-score distribution of Sanger validated variants and total
variants in pituitary adenomas samples. Legend ‘total’ (red)
represents group of total variants, and ‘positive’ (green) represents
group of Sanger validated variants

validated subset (t-test, p < 10-16), which demonstrates
the scoring by VariFAST is effective to distinguish positive
and negative variations. Among the 202 validated true
somatic variants, 169 variants are not marked with any tag
contributing for false positive determination by VariFAST.
The other 33 variants are marked by one unique tag, spe-
cifically 23 variants marked by LVF, 6 variants marked by
DIR, 3 variants marked by LC, and 1 variant marked by
LM. The parameters used for assigning tags for somatic
variant filtering are: thr, . =0.15, thr =15, thr,, =5.

Computation complexity of VariFAST
For each variant, VariFAST uses binary search to find reads
covering the variant position across all tracks. The computation
complexity is MlogIN, where M is the number of tracks and N
is the number of reads for one track. Then, VariFAST com-
pared read with reference to find all other mismatches, the cor-
responding complexity is LMIogN, where L is the number of
nucleotides for one read. Finally, for all variants, the complexity
is shown as follows, where n is the number of variants.
O(n,N,M,L) = nMLlogN (17)
We provided an easy-to-use Python package for Vari-
FAST implementation, which saves massive time and
labor of manual review. The package uses ray [21], a dis-
tributed execution engine, to deal with task-parallel
computations. It costs approximate 3h for dataset
HGO001_a containing 30,000 germline variants with an
average depth of 80, and 3 h for total 108,400 somatic
variants from 136 PA cases with average depth of 90,
using 64 cores on high performance computer. It can
also be adapted to variant filtering of whole genome se-
quencing data with acceptable time. Our global pipeline
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integrating GATK Best Practices with VariFAST enables
users to get high quality variants from raw sequencing
data in more efficient way.

Comparison of VariFAST with variant quality score
recalibration (VQSR)

Variant quality score recalibration is the state-of-the-art
variant filtering tool involved in GATK, it evaluates the
probability that a SNP is a true genetic variant versus a
sequencing or data processing artifact based on Gaussian
mixture model. Several inevitable factors causing false
positives including near insertion rate, multiple variants
rate, have not been considered by VQSR. We compared
the performance of v-score and XGBOOST model from
VariFAST for true variant prediction with VQSR on
public standard dataset HGOO1_a. VQSR was run with
threshold 99% and the annotations including QD, SOR,
FS, MQRankSum and ReadPosRankSum. Matthews cor-
relation coefficient (MCC) and AUC were both calcu-
lated to evaluate the results of VQSR, XGBOOST model
and v-score. XGBOOST model achieved the best AUC of
0.790, as compared to AUC of 0.712 for v-score and
0.756 for VQSR. XGBOOST model also obtained the
best MCC of 0.522, compared to MCC of 0.295 for v-
score and 0.488 for VQSR. In short, the machine
learning model in VariFAST pipeline has better per-
formance than VQSR, especially for INDEL variant
filtering (Additional file 6: Figure S6). It because
VQSR is expecting at least thousands of variant sites
in order to achieve decent modeling with the Gauss-
ian mixture model, while VariFAST is stable in the
cases of variant filtering for small samples sequencing.
The key characteristic of VariFAST is based on the
comprehensive SOP summarized from experience of
manual review, which is not affected by the sample
size. The other important advantage of VariFAST is
that the automated filtering by v-score can be used ef-
ficiently for both germline and somatic variants with
better interpretability, while VQSR can not be used
for somatic variants refinement. V-score is the sum of
weighted metrics contributing for false positive vari-
ants, and the marked tags have been verified of bio-
logical significance accounting for the false positive.

Discussion

Identification of high-quality variants is crucial to explore
the in-depth view of genetic causes and find clinical treat-
ment of disease. Although some variant discovery tools
have been developed to call variants, such as GATK, there
are still many false positive variants remain in final results.
In order to reduce false positives, IGV-based manual re-
view is required to filter variants, but it is very time-
consuming and usually has personal preference. Here, we
developed an automated approach VariFAST, and
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provided an easy-to-use tool, to help researchers solve the
problem. We also provided a pipeline integrating GATK
Best Practices with VariFAST, which can be easily used
for high quality variants detection from raw data. Vari-
FAST runs dramatically faster than manual review, nearly
3 h for 30,000 germline variants with average coverage of
80 using 64 cores computation, which can free researchers
from heavy manual work. VariFAST tool possesses high
flexibility, which enables researchers to set different pa-
rameters for application in particular studies.

Scoring by quantitative metrics and tags determine the
good performance of VariFAST

We proposed 18 quantitative metrics based on the SOP
for IGV manual review [10], and assigned different
weights on metrics from level 1 to 3 according to their
importance. Then VariFAST calculates v-score as the
sum of weighted metrics, which is robustly from 3 to 4
under the maximum Fy score indicating both good pre-
cision and recall (Additional file 2: Figure S2). Next,
VariFAST marks tags for each variant according to the
standard in Table 1, we identified the top effective tags
for determining false positive variants, including LM,
LVF, NI and ND, LC (Low coverage) should also be
taken into key consideration. Correspondingly, the vari-
ants having no tag are possibly true positives. In addition,
almost all of the positive variants determined by low v-
score but without high confidence in benchmark have
been validated as true positive by Sanger sequencing valid-
ation (Table 5), which indicated that the automated scor-
ing based on quantitative metrics and tags can recall a
number of variants that were easily filtered out.

VariFAST is effective for both germline and somatic
variants filtering

VariFAST has been validated useful for both germline and
somatic variants refinement. We performed VariFAST on
279,573 germline variants called from six sequencing data-
sets of standard samples (NA12878) and discovered that all
datasets from Illumina platform have similar optimal v-score
thresholds (Fig. 3b) determined by Fj, which means v-score
is robust in application for different sequencing datasets. The
Sanger sequencing validation of HG001 demonstrated high
accuracy of VariFAST for positive recall. In addition, two in-
dependent cancer datasets were used to validate the per-
formance of VariFAST to refine somatic variants. For penile
squamous cell carcinoma sequencing data, we found the re-
sult of VariFAST are highly consistent with the manual re-
view (Fig. 5). For sequencing data of 136 pituitary adenomas
samples, we showed the v-score distribution of Sanger vali-
dated variants is significantly lower than that of the total vari-
ants, which means the scoring by VariFAST is effective to
distinguish positive and negative variations.



Zhang et al. BVIC Bioinformatics 2019, 20(Suppl 22):713

XGBOOST model in VariFAST outperforms state-of-the-art
VQSR

VariFAST also provides a XGBOOST model trained using
the datasets of Ashkenazim Trio from Illumina platforms for
germline variant filtering. XGBOOST model generated an
average AUC of 0.82 using three HGO001 datasets as test set,
which performed better than v-score (Fig. 4). However,
XGBOOST model could not be used widely across different
types of sequencing platforms due to the bias of training
data. Furthermore, compared with v-score, XGBOOST
model may have worse interpretability, because no specific
tags will be marked to explain why the variant is positive
or negative. Therefore, we suggest that the combination of
XGBOOST model and v-score should be all taken into
consideration for germline variants filtering.

By comparison with state-of-the-art variant filtering
method VQSR in GATK, XGBOOST model reveals better
MCC and AUC, especially more superior for INDEL variants
filtering, because it is based on the comprehensive SOP sum-
marized from experience of manual review. Moreover it has
no prerequisite of large scale samples and variant sites op-
posed to VQSR. Although both VQSR and XGBOOST
model have limitations in somatic filtering, the v-score of
VariFAST has potential to be the dominant tool for discover-
ing true positive somatic mutation for disease study.

Further work

There are still some limitations for VariFAST. Firstly and
most importantly, complex variant such as Multiple Nucleo-
tide Polymorphisms, which is similar to HDR, is difficult to
detect, so more complex metric may be required to be pro-
posed. Secondly, the weights of metrics are difficult to deter-
mine for different tasks due to the absence of gold standard
datasets, assigning reasonable weights on each metric by
auto-learning will be considered in our further work.

Conclusions

We developed a novel approach VariFAST for high quality
variants detection from raw data, which includes the v-
score part by sum of weighted metrics causing false posi-
tive variations and the predictive model part trained by
XGBOOST algorithm for germline variants refinement.
VariFAST is an automated and efficient approach for both
germline and somatic variant filtering, which is promising
to substitute for the laborious IGV manual review.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3226-2.

Additional file 1: Figure S1. Flowchart of the whole pipeline
integrating GATK Best Practices with VariFAST. The part of the dotted
frame is our tool VariFAST.
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Additional file 2: Figure S2. Diagram plotting Fg Score versus v-score
with different 3. The  of upper diagram is 0.1 and the below one is 0.5.
Additional file 3: Figure S3 The visualization of variant at location
8,374,781 on chromosome 12 in dataset HGOO01_a.

Additional file 4: Figure S4. The visualization of variant at location
55,595,114 on chromosome 11 in dataset HG0O1_a.

Additional file 5: Figure S5. The violin plot of positive and negative
groups. The F means negative groups and S means positive groups.

Additional file 6: Figure S6. The ROC curve for v-score, XGBOOST
model and VQSR in INDEL variant filtering on dataset HGOO1_a.
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