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Abstract

Background: Portal vein system thrombosis (PVST) is potentially fatal for patients if the diagnosis is not timely or
the treatment is not proper. There hasn’t been any available technique to detect clinic risk factors to predict PVST
after splenectomy in cirrhotic patients. The aim of this study is to detect the clinic risk factors of PVST for
splenectomy and cardia devascularization patients for liver cirrhosis and portal hypertension, and build an efficient
predictive model to PVST via the detected risk factors, by introducing the machine learning method. We collected
92 clinic indexes of splenectomy plus cardia devascularization patients for cirrhosis and portal hypertension, and
proposed a novel algorithm named as RFA-PVST (Risk Factor Analysis for PVST) to detect clinic risk indexes of PVST,
then built a SVM (support vector machine) predictive model via the detected risk factors. The accuracy, sensitivity,
specificity, precision, F-measure, FPR (false positive rate), FNR (false negative rate), FDR (false discovery rate), AUC
(area under ROC curve) and MCC (Matthews correlation coefficient) were adopted to value the predictive power of
the detected risk factors. The proposed RFA-PVST algorithm was compared to mRMR, SVM-RFE, Relief, S-weight and
LLEScore. The statistic test was done to verify the significance of our RFA-PVST.
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Results: Anticoagulant therapy and antiplatelet aggregation therapy are the top-2 risk clinic factors to PVST,
followed by D-D (D dimer), CHOL (Cholesterol) and Ca (calcium). The SVM (support vector machine) model built on
the clinic indexes including anticoagulant therapy, antiplatelet aggregation therapy, RBC (Red blood cell), D-D,
CHOL, Ca, TT (thrombin time) and Weight factors has got pretty good predictive capability to PVST. It has got the
highest PVST predictive accuracy of 0.89, and the best sensitivity, specificity, precision, F-measure, FNR, FPR, FDR and
MCC of 1, 0.75, 0.85, 0.92, 0, 0.25, 0.15 and 0.8 respectively, and the comparable good AUC value of 0.84. The
statistic test results demonstrate that there is a strong significant difference between our RFA-PVST and the
compared algorithms, including mRMR, SVM-RFE, Relief, S-weight and LLEScore, that is to say, the risk indicators
detected by our RFA-PVST are statistically significant.

Conclusions: The proposed novel RFA-PVST algorithm can detect the clinic risk factors of PVST effectively and
easily. Its most contribution is that it can display all the clinic factors in a 2-dimensional space with independence
and discernibility as y-axis and x-axis, respectively. Those clinic indexes in top-right corner of the 2-dimensional
space are detected automatically as risk indicators. The predictive SVM model is powerful with the detected clinic
risk factors of PVST. Our study can help medical doctors to make proper treatments or early diagnoses to PVST
patients. This study brings the new idea to the study of clinic treatment for other diseases as well.

Keywords: Liver cirrhosis, Portal vein system thrombosis (PVST), Portal hypertension, Splenectomy, Cardia
devascularization, Feature selection, SVM, Discernibility, Independence, Risk degree

Background
Portal vein system thrombosis (PVST) refers to the block-
age or narrowing of the portal vein, splenic and superior
mesenteric veins, or intrahepatic portal vein branches, by
a thrombus [1]. It is relatively rare and its clinical manifes-
tations range from asymptomatic to severe complications
including fever, abdominal pain, nausea, vomiting, and
ileus [2]. The formation of PVST could increase the risk
of upper gastrointestinal bleeding, hepatic coma or even
fatal intestinal necrosis [3]. Moreover, PVST imposes diffi-
culty on further liver transplantation [4, 5]. With the de-
velopment of imageological examination, more and more
studies have shown that the incidence of PVST after
splenectomy is significantly higher than previously re-
ported. The reported incidence of PVST after splenectomy
is different greatly, ranging from 0.36% [6] to even 80%
[7]. Why are there so much inconsistence in the incidence
of post-splenectomy PVST? It comes from the difference
in examination methods, types of study, time and
frequency of postoperative examinations, and the under-
lying diseases, etc. [8]. Up to now, the specific mechanisms
leading to the formation of PVST after splenectomy are
not known. It is generally agreed that hemodynamic
changes of the portal venous system [9–11], blood hyper-
coagulability [3], cecum induced by splenic vein ligation
[12], local inflammatory reaction [13], and irrational use
of coagulants [14] are all important factors affecting the
occurrence of PVST. Some studies also demonstrated that
the formation of PVST was related to the volume of
spleen, diameter of portal vein, prothrombin time (PT),
plasma D-dimer level, and the function and quality of
platelet rather than the count of platelet [15–18]. So far, it

has been controversial in the role of early prophylactic
anticoagulation in preventing PVST. This is because of
concerning the risk of inducing bleeding, especially in the
cirrhotic patients [19–21]. However, in the last decade
some studies demonstrated that both pro- and anticoagu-
lation elements were concomitantly reduced in liver cir-
rhosis patients [22, 23], and the occurrence of bleeding for
these patients was mainly due to the severity of portal
pressure, endothelial dysfunction and bacterial infections,
but not the disturbed hemostasis [24]. These studies pro-
vide the fundamental science for the prophylactic applica-
tion of anticoagulation in these patients. Although the
study to PVST has attracted many researchers [25–30]
and some of them have found that prophylactic anticoagu-
lation therapy can effectively prevent PVST after splenec-
tomy even to cirrhotic patients [31], there are not any
standard regimen for PSVT prophylaxis having been de-
veloped, and furthermore there are not any researchers fo-
cusing on detecting risk factors of PVST after
splenectomy in cirrhotic patients by introducing machine
learning to this field. Therefore we devote ourselves to this
field.
We first propose a novel feature selection algorithm

named RFA-PVST (Risk Factor Analysis for PVST) to
detect the clinic risk factors of PVST, then we introduce
the typical learning machine SVM to build the predictive
model to PVST. We collect the clinic data of 92 splenec-
tomy and cardia devascularization patients for cirrhosis
and portal hypertension from the highest level hospital
in PR China.
In our RFA-PVST, we propose the definition of dis-

cernibility and independence for each index to imply the
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capability of it in telling a PVST patient from non-PVST
patients, and the differences of an index to other indices,
respectively. The detected clinic indexes are with much
higher discernibility and independence. The SVM model
built on the detected risk factors can effectively tell
PVST patients from non-PVST patients, and help medi-
cine doctors to make proper cure decisions or early
diagnoses to potential PVST patients. 5-fold cross valid-
ation experimental results on the aforementioned 92
clinic patients, and the statistic test between RFA-PVST
and available famous feature selection algorithms dem-
onstrate that the clinic risk factors detected by our RFA-
PVST are statistically significant on which a very power-
ful predictive model is built.

Results
This section will display the clinic risk factors of PVST de-
tected by our proposed RFA-PVST, and the power of these
risk factors in recognizing PVST patients by the perform-
ance of the SVM model based on them in terms of its ac-
curacy shorted as Acc in the following of this paper,
sensitivity, specificity, precision, F-measure, FPR (false posi-
tive rate), FNR (false negative rate), FDR (false discovery
rate), AUC (area under ROC curve) and MCC (Matthews
correlation coefficient). The performance comparison are
shown between our RFA-PVST and the available feature
selection algorithms including mRMR [32], SVM-RFE [33],
Relief [34], S-weight [35] and LLEScore [36]. The statistic
test results between our RFA-PVST and the aforemen-
tioned feature selection algorithms are also presented.

Clinic risk factors of PVST
Figure 1 displays the collection of all clinic indexes in
circles in the 2-dimension space with discernibility as x-
axis and independence as y-axis. The red circle indicates
clinic risk factors, meaning the area of the rectangle
enclosed by coordinate lines and axes is much bigger
than the rest ones. Table 1 lists clinic indexes in de-
scending order by their risk degrees in 5-fold cross valid-
ation experiments. The underlined bold font means the
detected risk factors, corresponding to the red circle
depicting clinic indexes in Fig. 1. Table 2 displays the
performance of 5 different SVM models of 5-fold cross
validation experiments on the test subsets in terms of
Acc, AUC, sensitivity, specificity, precision, F-measure,
FNR, FPR, FDR, and MCC. Table 3 displays the average
results of 5-fold cross validation experiments in terms of
same metrics as that in Table 2 under same conditions.
The underlined bold fonts in Tables 2 and 3 mean the
best results.

Statistic test results of RFA-PVST
Friedman’s test with α = 0.05 of our proposed RFA-
PVST and mRMR, SVM-RFE, Relief, S-weight and

LLEScore are displayed in Table 4 in terms of Acc,
AUC, sensitivity, specificity, and precision of the SVM
predictive models of PVST with the same number of risk
indexes detected by each algorithm, respectively.
The multiple comparison test between each pair of al-

gorithms at the confidence level of 0.95 is displayed in
Table 5 in terms of Acc, AUC, sensitivity, specificity,
and precision. The upper triangle of each test shows the
mean rank difference between algorithms, and the lower
triangle the statistical significance between each pair of
algorithms, where * is the tag of strong significance be-
tween corresponding algorithms in the corresponding
metrics.

Discussion
This section will discuss all of the experimental results
displayed in the section of results.

Clinic risk factor discussion
The results in Fig. 1 disclose that our proposed metric
RD is useful in detecting the clinic indexes with higher
risk degree. The red circle clinic indexes in Fig. 1 com-
prise risk clinic indicators of PVST, and can be detected
by our RFA-PVST automatically. The results in Fig. 1 re-
veal that the risk clinic factors for each fold experiment
are variant for the variance of exemplars in each training
subset of 5-fold cross validation experiments. However
the number of risk factors of 5-fold cross validation ex-
periments is from 2 to 8 with average 5. The common
clinic indexes are anticoagulant therapy (with ID 32) and
antiplatelet aggregation therapy (with ID 33) among 5
risk clinic indicator subsets detected by our proposed
RFA-PVST. The clinic indexes of CHOL with ID 7, Ca
with ID 17 and D-D with ID 31 appear 3 times among 5
subsets. This fact implies that anticoagulant therapy and
antiplatelet aggregation therapy are the first two import-
ant risk indicators to predict PVST patients followed by
the comparable important clinic indicators of CHOL, Ca
and D-D.
The results in Table 1 disclose that antiplatelet aggre-

gation therapy (with ID of 33) is the riskiest clinic index
to PVST, followed by anticoagulant therapy (with ID of
32). The WBC (with ID of 20) and INR (with ID of 27)
are the clinic indexes with the least risk degree causing
PVST. In addition, the results in Table 1 tell us that al-
though the training samples are variant, the first two
clinic risk factors are same in each fold of 5-fold cross
validation experiment, which further indicate that our
proposed RFA-PVST algorithm is powerful in finding
the risk clinic factor of PVST.
The results in Table 2 tell us that the performance of

different PVST predictive models on test exemplars are
variant in terms of Acc, AUC, sensitivity, specificity, pre-
cision, F-measure, FNR, FPR, FDR and MCC. The
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Fig. 1 Scatter plots of clinic indexes of 5-fold cross validation experiments
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predictive model has got the highest AUC value of 0.91
with only one clinic index of whether antiplatelet aggre-
gation therapy is treated or not, and the best specificity
of 0.75 and the best FPR of 0.25 as well. The predictive
model built on the 8 clinic indexes including anticoagu-
lant therapy, antiplatelet aggregation therapy, RBC, D-D,
CHOL, Ca, TT and weight, has got the highest PVST
predictive accuracy of 0.89, and the best sensitivity, spe-
cificity, precision, F-measure, FNR, FPR, FDR and MCC
of 1, 0.75, 0.85, 0.92, 0, 0.25, 0.15 and 0.8 respectively.
Although its AUC is not the best one among 5-fold
cross validation experiments, it has got the comparable
good AUC value of 0.84. Therefore we can conclude that
these 8 clinic indexes are important clinic indicators on
which the sound prediction model can be built to pre-
dict whether PVST will take place or not for splenec-
tomy with cardia devascularization patients for liver
cirrhosis and portal hypertension.
The results in Table 3 tell us that our RFA-PVST can

detect risk clinic indicators with which a SVM classifier
can be built with best mean predictive accuracy, AUC,
specificity, precision, FPR and FDR. Although this pre-
dictive model can only recognize 70% PVST patients in
terms of sensitivity, not as good as that by SVM-RFE

and Relief which can detect all PVST patients, our pre-
dictive model can detect 45% non-PVST patients while
SVM-RFE and Relief cannot detect any one. This fact
means that the predictive models by SVM-RFE and Re-
lief exist the fatal error of recognizing all non-PVST pa-
tients as PVST ones, while the SVM classifier based on
the risk indicators detected by our proposed RFA-PVST
can make excellent tradeoff between sensitivity and
specificity.

Statistic test result discussion
It can be seen from the results in Table 4 that p < 0.05
holds for all metrics used to do statistic test, including
Acc, AUC, Sensitivity, Specificity, and Precision. So we
can conclude that the strong significant difference exist
between our RFA-PVST and the compared algorithms,
including mRMR, SVM-RFE, Relief, S-weight and LLE-
Score, that is the risk indicators detected by our RFA-
PVST are statistically significant.
The multiple comparison test results in Table 5 in

terms of accuracy (Acc), AUC, sensitivity, specificity,
and precision of predictive models of PVST based on
the risk indicators detected by the related algorithms re-
veal that our RFA-PVST can detect the risk clinic factors

Table 1 the clinic indexes ranked in descending order in their risk degrees of 5-flod cross validation experiments

Folds Clinic index IDs

1 33,32,7,25,17,2,4,31,18,23,14,9,1,16,15,6,12,11,24,26,29,21,3,30,13,28,19,10,8,20,5,22,27

2 32,33,18,31,7,17,29,3,14,6,22,4,25,1,16,12,9,11,30,15,13,2,27,28,19,23,24,10,8,21,5,26,20

3 33,32,31,18,17,7,6,4,3,30,23,9,10,12,16,21,25,1,14,26,29,19,15,13,2,28,24,11,22,5,8,20,27

4 32,33,2,7,31,23,18,17,1,6,30,4,12,14,10,16,29,25,15,26,9,19,21,3,28,24,11,13,5,20,22,8,27

5 33,32,31,17,6,7,2,4,18,9,14,1,26,12,25,16,23,22,29,15,30,28,11,13,19,3,24,5,8,10,27,21,20

The underlined bold fonts mean the detected risk factors

Table 2 Performance of PVST predictive models on different sets of risk indicators of 5-fold cross validation experiments

Fold (C, γ) Acc AUC Sensitivity Specificity Precision F-measure FNR FPR FDR MCC # selected features

1 (2,0.0625) 0.68 0.91 0.64 0.75 0.78 0.70 0.36 0.25 0.22 0.38 1

0.74 0.89 0.91 0.50 0.71 0.80 0.09 0.50 0.29 0.46 2

2 (0.25,0.25) 0.74 0.84 1 0.38 0.69 0.81 0 0.62 0.31 0.51 2

0.89 0.84 1 0.75 0.85 0.92 0 0.25 0.15 0.80 8

3 (0.125,16) 0.61 0.85 0.70 0.50 0.64 0.67 0.30 0.50 0.36 0.20 2

0.72 0.59 0.90 0.50 0.69 0.78 0.10 0.50 0.31 0.44 4

0.61 0.76 0.80 0.38 0.62 0.70 0.20 0.62 0.38 0.19 6

4 (0.25,0.0625) 0.33 0.55 0.40 0.25 0.40 0.40 0.60 0.75 0.60 −0.35 1

0.33 0.44 0.40 0.25 0.40 0.40 0.60 0.75 0.60 −0.35 2

0.33 0.23 0.50 0.13 0.42 0.45 0.50 0.87 0.58 − 0.40 4

5 (0.5,0.125) 0.56 0.80 0.60 0.50 0.60 0.60 0.40 0.50 0.40 0.10 1

0.56 0.70 0.50 0.63 0.63 0.56 0.50 0.37 0.37 0.13 3

0.61 0.65 0.80 0.38 0.62 0.70 0.20 0.62 0.38 0.19 5

Average 0.59 0.70 0.70 0.45 0.62 0.65 0.30 0.55 0.38 0.18 –

The underlined bold fonts mean the best results
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with much better predictive power to PVST for splenec-
tomy plus cardia devascularization patients for liver cir-
rhosis and portal hypertension, compared to mRMR,
SVM-RFE, Relief, S-weight and LLEScore. The results
disclose the fact that our RFA-PVST is powerful in de-
tecting the clinic risk indexes to predict whether PVST
will happen or not on splenectomy plus cardia devascu-
larization patients for liver cirrhosis and portal
hypertension.

Conclusions
A novel algorithm named RFA-PVST is proposed to de-
tect the clinic risk indicators of PVST for splenectomy
and cardia devascularization patients for liver cirrhosis
and portal hypertension. The discernibility and independ-
ence are defined for each clinic index. All of the clinic in-
dexes are scatted in a 2-dimensional space with
independence and discernibility as y-axis and x-axis, re-
spectively. Those clinic indexes in top-right corner of the
2-dimensional space are detected automatically as risk in-
dicators. The SVM classifier is built on the detected risk
indicators to predict whether the PVST will happen or not
on a splenectomy plus cardiac devascularization patient
for liver cirrhosis and portal hypertension.
5-flod cross validation experiments on the clinic data

of 92 patients disclose that antiplatelet aggregation ther-
apy is the riskiest clinic index, followed by anticoagulant
therapy. Taking the two therapies may lead to PVST for
splenectomy plus cardiac devascularization patients for
liver cirrhosis and portal hypertension. CHOL, Ca, and
D-D are also important risk factors. Anticoagulant ther-
apy, antiplatelet aggregation therapy, RBC, D-D, CHOL,
Ca, TT, and weight comprise the clinic risk indicators to
PVST. The predictive model based on these 8 risk indi-
cators is very powerful.

Furthermore, the comparison between our proposed
RFA-PVST and available typical feature selection algo-
rithms including mRMR, SVM-RFE, Relief, S-weight and
LLEScore demonstrate that our RFA-PVST is very
powerful to detect the risk clinic indicators to recognize
PVST from non-PVST patients. The significant test be-
tween the aforementioned algorithms reveal that there is
strong significant difference between our RFA-PVST
and the famous available feature selection algorithms. In
addition, it is fantastic that our study results are coinci-
dent with that from references [17, 37] about D-D is a
clinic risk indicator of PVST.
We can conclude that our study is significant in the

field of detecting risk factors causing PVST for splenec-
tomy and cardia devascularization patients for liver cir-
rhosis and portal hypertension. It can help medical
doctors to make proper treatments or early diagnoses to
PVST patients. This study also provides a new idea to
the clinic treatment of other diseases.

Methods
This section will first introduce the data used in this
paper, then the preprocessing method will be introduced
for the data. It should be noted that we are authorized
to use the data under the condition of deleting the priv-
acy information of patients. Then the SVM learning ma-
chine will be briefly introduced. After that we will
introduce the idea of our proposed novel algorithm
RFA-PVST in detail, and the methods building a SVM
classifier in the clinic risk factors detected by our RFA-
PVST. Finally the statistical test method will be intro-
duced to value the significant difference between our
RFA-PVST and other classic methods.

Data used in this paper
This subsection will cover the data information and the
data preprocessing methods used in this paper.

Raw data
We collected clinic data of 92 patients of splenectomy
with cardia devascularization for liver cirrhosis and por-
tal hypertension from one of the first level hospital in
PR China. The patients are partitioned into two groups,

Table 3 Experimental results of algorithms of 5-fold cross validation experiments

Algorithms Acc AUC Sensitivity Specificity Precision F-measure FNR FPR FDR MCC

RFA-PVST 0.59 0.70 0.70 0.45 0.62 0.65 0.30 0.55 0.38 0.18

mRMR 0.53 0.53 0.78 0.20 0.55 0.64 0.22 0.80 0.45 NaN

SVM-RFE 0.56 0.44 1.00 0 0.56 0.72 0 1.00 0.44 NaN

Relief 0.56 0.56 1.00 0 0.56 0.72 0 1.00 0.44 NaN

S-weight 0.54 0.52 0.95 0.02 0.55 0.69 0.05 0.98 0.45 NaN

LLEScore 0.53 0.53 0.66 0.37 0.57 0.60 0.34 0.63 0.43 NaN

The underlined bold fonts mean the best results

Table 4 The Friedman’s test results with α = 0.05 of our RFA-
PVST and mRMR, SVM-RFE, Relief, S-weight and LLEScore

Acc AUC Sensitivity Specificity Precision

χ2 11.7790 12.5166 37.4303 46.7109 17.0809

df 5 5 5 5 5

p 0.0379 0.0284 4.9e-07 6.507e-09 0.0043
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one is composed of 52 patients with PVST, and the
other is of 40 patients without PVST. The PVST group
comprises 30 male and 22 female patients, and the ages
of these patients are from 20 to 71 with average age and
standard deviation of 47 ± 10. The non-PVST group is

composed of 22 male and 18 female patients with ages
from 27 to 77, and the average age with standard devi-
ation is 47.9 ± 10.8. The descriptions of the data can be
found in Table 6.
The causes of the cirrhosis and portal hypertension

and the distributions for these 92 patients are here.

� 59 patients from HBV (Hepatitis B virus) cirrhosis,
with 64.13% ratio.

� 8 patients of HCV (Hepatitis C Virus) cirrhosis,
about 8.70% ratio.

� 7 patients for autoimmune cirrhosis with 7.61%
ratio.

� 4 idiopathic cirrhosis patients with the ratio of
4.35%.

� 2 alcohol type cirrhosis patients with 2.17% ratio.
� 2 patients from idiopathic hypersplenism cirrhosis

with the ratio of 2.17%.
� 1 splenic infarction cirrhosis patient with the ratio

of 1.09%.
� 1 budd-chiari syndrome patient with the ratio of

1.09%.
� 1 gaucher disease patient with the ratio of 1.09%.
� 1 patient for both HBV +HCV with the ratio of

1.09%.
� 1 virus untyped cirrhosis patient with the ratio of

1.09%.
� 1 hypoferric anemia cirrhosis patient with the ratio

of 1.09%.
� 1 patients for idiopathic thrombocytopenic purpura,

and with 1.09%.
� 1 patient for primary hypersplenism with the ratio

of 1.09%.
� 1 patient from portal cavernous transformation with

1.09% ratio.
� 1 patient for liver cirrhosis with 1.09%.

The clinic indexes of these 92 patients are listed in
Table 7. There are 33 clinic indexes, including 6 countable
clinic indicators such as age, gender, weight, bleeding vol-
ume, anticoagulant therapy, antiplatelet aggregation ther-
apy, and the other 27 measurable indexes. The measuring
clinic indexes are recorded daily or every other day after
operations and the date was also recorded at the same
time. There are two therapy for patients were adopted to
prevent PVST after operations including anticoagulant
therapy and antiplatelet aggregation therapy. The anti-
coagulant therapy comprises giving patients low molecular

Table 6 Data information

Male Female Age range (μ ± σ)

PVST 30 22 20~71 (47 ± 10)

non-PVST 22 18 27~77 (47.9 ± 10.8)

Table 5 Paired rank comparison of algorithms in Acc, AUC,
sensitivity, specificity, and precision of predictive model built on
clinic risk indicators to PVST detected by algorithms

Acc RFA-
PVST

mRMR SVM-
RFE

Relief S-
weight

LLEScore

RFA-PVST 1.7308 1.1923 1.1923 1.5769 1.0000

mRMR * −0.5385 −0.5385 − 0.1538 − 0.7308

SVM-RFE 0 0.3846 −0.1923

Relief 0.3846 −0.1923

S-weight −0.5769

LLEScore

AUC RFA-
PVST

mRMR SVM-
RFE

Relief S-
weight

LLEScore

RFA-PVST 1.7308 2.4231 1.7308 1.8077 1.7692

mRMR 0.6923 0 0.0769 0.0385

SVM-RFE * −0.6923 −0.6154 − 0.6538

Relief 0.0769 0.0385

S-weight −0.0385

LLEScore

Sensitivity RFA-
PVST

mRMR SVM-
RFE

Relief S-
weight

LLEScore

RFA-PVST −0.5769 −2.2692 −2.2692 −1.8077 0.4615

mRMR −1.6923 −1.6923 −1.2308 1.0385

SVM-RFE * 0 0.4615 2.7308

Relief * 0.4615 2.7308

S-weight * 2.2692

LLEScore * * *

Specificity RFA-
PVST

mRMR SVM-
RFE

Relief S-
weight

LLEScore

RFA-PVST 1.3077 2.9615 2.9615 2.6923 0.2308

mRMR 1.6538 1.6538 1.3846 −1.0769

SVM-RFE * 0 −0.2692 −2.7308

Relief * −0.2692 −2.7308

S-weight * −2.4615

LLEScore * * *

Precision RFA-
PVST

mRMR SVM-
RFE

Relief S-
weight

LLEScore

RFA-PVST 1.8462 1.8846 1.8846 2.3077 1.0769

mRMR * 0.0385 0.0385 0.4615 −0.7692

SVM-RFE * 0 0.4231 −0.8077

Relief * 0.4231 −0.8077

S-weight * −1.2308

LLEScore
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heparin calcium by hypodermic injection in 4100 IU/qd
or 5000 IU/qd only, or combined with warfarin orally to-
gether. The antiplatelet aggregation therapy includes tak-
ing aspirins orally in 0.1~0.3 g/qd only, or together with
dipyridamole in 25 mg/tid or 50 mg/tid.

Data preprocessing
The age and the bleeding volume indexes use the ori-
ginal record value. Gender, anticoagulant therapy, and
antiplatelet aggregation therapy are treated as Boolean
variables, where male is 0 and female is 1, and without
anticoagulant therapy is expressed as 0 and 1 otherwise,
and without antiplatelet aggregation therapy is 0 and 1
otherwise. The median of measurable values is taken as
the value for that measurable clinic indexes. If PVST oc-
curred then the label for the patient is 1, which belongs
to positive class, otherwise the label is − 1, belonging to
negative class.
To avoid the influence on experimental results from

variant measurement metrics for different clinic in-
dexes, we successively normalize and discretize data
in (1) and (2).

xi; j ¼
xi; j− min x j

� �
max x j

� �
− min x j

� � ð1Þ

where xi, j is the specific value of the jth index for the ith

patient, and max(xj), andmin (xj) are the maximum and
minimum value of the jth index, respectively.

di; j ¼ f
−1 xi; j < μ j−σ j

1 xi; j > μ j þ σ j

0 else
ð2Þ

where μi is the mean value of index j (1 ≤ j ≤ 33), and its
standard deviation is σi, then the discretized value for
the index is di, j in (2).

Support vector machines
SVM is a typical learning machine coined by Vapnik in
1920s [38]. It is based on the VC (Vapnik-Chervonenkis)
dimension and the structure risk minimization with
sound theoretic basics and concise mathematic model. It
is a learning machine for small exemplars, and has got
best generalization by making the optimal trade-off be-
tween the model complexity and the learning ability.
SVM has been widely used in biomedical filed, and has
greatly influenced the diagnosis and predictions of dis-
eases [39–42]. The characteristic of SVM is that it maps
the samples in low dimensional input space into high-
dimensional feature space via kernel functions, so that
the inseparable exemplars in low dimensional input
space has become separable in high-dimensional feature
space by an optimal hyperplane.
The popular used kernel functions are here.

linear kernel functions: K(x, x') = x ⋅ x'.
polynomial kernel function: K(x, x') = (x ⋅ x ' + 1)d, d is
positive integers.
radial basis kernel function: K(x, x') = exp(−‖x − x'‖2/
σ2), σ is positive real.

RFA-PVST algorithm
Feature selection is to detect several features from
original ones to construct the feature subset making a
specific criterion optimized [43]. The nature of fea-
ture selection is to display samples in a low dimen-
sional space by those selected several features while
preserving the pattern of samples as that in its ori-
ginal high dimensional space as much as possible
[43]. It is usually implemented by erasing redundant
and less important features while preserving the im-
portant ones. The selected features not only can pre-
serve the classification power of original system, but

Table 7 Clinic indexes of splenectomy with cardia devascularization for cirrhotic and portal hypertension patients

ID Index name ID Index name ID Index name

1 Age 12 BUN (blood urea nitrogen) 23 NE1 (neutrophil count of 1st test)

2 Gender 13 CRE (creatinine) 24 NE2 (neutrophil count of 2nd test)

3 Weight 14 GLU (glucose) 25 PLT (Platelets)

4 BV (bleeding volume) 15 Na (Natrium) 26 PT (prothrombin time)

5 AST (aspartate aminotransferase) 16 K (Kalium) 27 INR (International normalized ratio)

6 ALT (alanine transaminase) 17 Ca (calcium) 28 APTT (activated partial thromboplastin
time)

7 CHOL (cholesterol) 18 RBC (Red blood cell) 29 TT (thrombin time)

8 TBIL (total bilirubin) 19 HGB (hemoglobin) 30 FIB (fibrinogen)

9 DBIL (direct bilirubin) 20 WBC (White blood cell) 31 D-D (D dimer)

10 TP (total protein) 21 LY1 (lymphocyte count of 1st test) 32 Anticoagulant therapy,

11 ALB (albumin) 22 LY2 (lymphocyte count of 2nd test) 33 Antiplatelet aggregation therapy
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also can reduce the complexity of classification model
while improving its generalization [43–45]. The se-
lected features preserve their physical properties with
good interpretability, such that feature selection study
has been paid much more attention by experts from
statistics and machine learning fields, and has been
widely applied to disease diagnoses [39–42]. The se-
lected features do help medicine doctors to make
proper decisions and take proper diagnoses to related
patients.
We propose RFA-PVST algorithm to detect clinic risk

factors of PVST for splenectomy and cardia devasculari-
zation patients for cirrhosis and portal hypertension, so
as to build the predictive model for PVST via the de-
tected risk factors. The 92 post-splenectomy and cardia
devascularization patients comprise exemplars for liver
cirrhosis and portal hypertension, and their clinic in-
dexes as features. The detecting clinic risk indexes is in
fact a feature selection procedure.
We define the discernibility and independence for

each clinic index, and plot the curve of independence
with discernibility for all clinic indexes in a 2-
dimensional space with discernibility and independence
as x-axis and y-axis, respectively. All clinic indexes in
top-right corner of the 2-dimensional space comprise
risk factors for they are with both comparatively high
discernibility and high independence, while the less risk
ones lie in bottom-left corner. To quantify how much
contributions of a clinic index to telling a PVST patient
form non-PVST patients, we define the risk degree for
each clinic index as the product of its discernibility and
its independence, that is, the area of the rectangle
enclosed by coordinate lines and axes in the 2-
dimensional space. Consequently the clinic indexes with
much higher risk degree than the rest ones are detected
out and the SVM classifier is built based on the risk fac-
tors to predict whether the splenectomy and cardia
devascularization patients for liver cirrhosis and portal
hypertension are PVST patients or not.
Let training dataset D = {x1, x2,⋯, xn} ∈R

m × n, where
m is the number of patients and n the number of clinic
indexes. We define disj, indj, and RDj to express the dis-
cernibility, independence, and risk degree for the clinic
index j(1 ≤ j ≤ n), respectively in (3)–(7).

Definition 1 Discernibility: Let N0 and N1 be the num-
ber of patients with and without PVST, respectively, and
S(j) be the statistics of Wilcoxon signed rank test for
clinic index j, xi, j is the value of sample i in its clinic
index j, then the discernibility disj of clinic index j is de-
fined in (3), and S(j) is calculated in (4).

dis j ¼ max N0�N1−S jð Þ; S jð Þf g ð3Þ

S jð Þ ¼
XN0

k¼1

XN1

i¼1

χ xi; j−xk; j
� �

≤0
� � ð4Þ

where χð�Þ ¼
(
1; ðxi; j−xk; jÞ≤0
0; otherwise

.

From the Definition 1, we can see that disj of clinic
index j can express its discernibility between patients
with PVST and without PVST very well, so it can be
used to value whether the clinic index j is a risk factor
or not of causing PVST for splenectomy and cardia
devascularization patients for liver cirrhosis and portal
hypertension.

Definition 2 Independence: The independence indj of
clinic index j is defined in (5), where xj and xk are vec-
tors of clinic index j and k. It is a negative exponential
function of the correlation coefficient pr between clinic
index j and its most correlated clinic index k with higher
discernibility. For the clinic index j with the highest dis-
cernibility to PVST, its independence is defined as the
negative exponential function of the correlation coeffi-
cient pr between j and its least correlated clinic index k.
This correlation coefficient pr can be any kind of param-
eters to express the correlation between two variables.
We adopt Pearson coefficient in our study. In order to
unify the positive or negative correlation between clinic
indexes, we adopt the absolute of Pearson coefficient
expressed in (6), where X,Y are vectors of any two clinic
indexes, and X is the mean vector of X, Y the mean vec-
tor of Y.

ind j ¼
(

maxk exp −pr x j; xk
� �� �� �

; dis j ¼ max disiji ¼ 1;⋯; nf g
min

k:disk≻dis j
exp −pr x j; xk

� �� �� �
; otherwise

ð5Þ

pr X;Yð Þ¼ j X−X
� �T

Y−Y
� � jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X−X
�� ��2 Y−Y

�� ��2q ð6Þ

The above independence definition disclose that the
less correlation of a clinic index with other indexes, the
stronger is its independence, and vice versa. This defin-
ition is coincident with the principles in nature. In
addition, the definition in (5) guarantees that the clinic
index with the highest discernibility for PVST definitely
has got the independence as high as possible, which fur-
ther guarantees that it will be definitely selected as risk
factors of PVST.

Definition 3 Risk Degree (RD): The risk degree of clinic
index j is defined as the product of its discernibility and
independence in (7), which is the area of the rectangle
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enclosed by its coordinate lines and axes, where the dis-
cernibility is the x-coordinate and independence the y-
coordinate.

RDj ¼ dis j � ind j ð7Þ

The main steps of the proposed RFA-PVST are de-
scribed as follows.
Input: Training dataset D ∈ Rm × n, m is the number of

patients, n is the number of clinic indexes, Y is the label
vector indicating PVST patients or not.
Output: Set S of risk factors. BEGIN let S =∅,

F = {all clinic factors}; FOR j = 1 to n DO BEGIN cal-
culate disj for clinic index j in eq. (3); calculate indj for
clinic index j in eq. (5); calculate RDj for clinic index j
in equation in (8); END //of FOR Plot all clinic indexes
in the 2-dimensional space with discernibility as x-axis
and independence as y-axis; Select clinic indexes in top-
right corner to comprise set S of risk factors; END

Constructing predictive models
5-cross validation experiments are conducted, and SVM
learning machines with RBF (Radial Basis Function) ker-
nel functions are adopted. The proposed RFA-PVST is
used to detect risk factors of PVST. The SVM classifier
is constructed based on the detected risk factors. The
performance of this SVM classifier is compared to that
based on the indices by available feature selection algo-
rithms to evaluate the power of RFA-PVST in detecting
factors to recognize PVST patients.

Selecting parameters for SVM
The kernel function and its parameters are very import-
ant for a SVM learning machine [46]. We take RBF ker-
nel function and grid search technique to find the
optimal penalty parameter C and kernel function param-
eter γ for SVM. The grid search technique is to first set
the specific range for C and γ, respectively, then test
each pair of (C, γ) on training subset by cross validation
experiments to find the best pair of (C, γ). Finally, the
pair (C, γ) with the highest cross validation accuracy is
the best pair parameters to be selected.

Building SVM model for predicting PVST
5-fold cross validation experiments are done on our col-
lected clinic data of splenectomy plus cardia devasculari-
zation for liver cirrhosis and portal hypertension. The
patients with PVST and without PVST are partitioned
into 5 balanced parts respectively, so as to get 5 subsets
of exemplars for 5-fold cross validation experiments.
The RFA-PVST algorithm is conducted on training sub-
set to get risk factors to construct set S. Then we con-
struct the new training subset TSnew whose exemplars

only embodying risk factors from set S. The best pair of
parameters (C, γ) is found on TSnew. Finally the SVM
classifier is built based on the best pair of parameters
(C, γ) and the new training subset TSnew to predict
PVST.

Evaluation methods
The power of our proposed RFA-PVST is evaluated in
two aspects. First, it is evaluated by the performance of
the SVM classifier built on the selected risk indexes by
proposed RFA-PVST. Second, it is evaluated by the sig-
nificant statistic test between the SVM classifiers built
on the risk indexes by RFA-PVST and by other popular
feature selection algorithms.

Model evaluation
The performance of the SVM classifier is tested by exem-
plars in test subset in terms of predictive accuracy shorted
as Acc, sensitivity, specificity, precision, F-measure, FPR
(False positive rate), FNR (False negative rate), FDR (False
discovery rate), AUC(Area under an ROC curve) and
MCC(Matthews correlation coefficient). ROC is the acro-
nym of receiver operating characteristic curve, which is a
very famous metric to evaluate a model. AUC is the quan-
tity value of ROC [47, 48]. These metrics are defined in
eqs. (8)–(17) based on the confusion matrix in Table 8.
The power of our RFA-PVST is compared to the available
feature selection algorithms including mRMR [32], SVM-
RFE [33], Relief [34], S-weight [35] and LLEScore [36].

Acc ¼ TP þ TN
TP þ FP þ FN þ TN

ð8Þ

sensitivity ¼ TP
TP þ FN

ð9Þ

specificity ¼ TN
FP þ TN

ð10Þ

precision ¼ TP
TP þ FP

ð11Þ

F−measure ¼ 2precision�sensitivity
precisionþ sensitivity

¼ 2TP
2TP þ FP þ FN

ð12Þ

FPR ¼ FP
FP þ TN

¼ 1−specificity ð13Þ

FNR ¼ FN
TP þ FN

¼ 1−sensitivity ð14Þ

FDR ¼ FP
TP þ FP

¼ 1−precision ð15Þ
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MCC ¼ TP�TN−FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ� FP þ TNð Þ� TP þ FPð Þ� FN þ TNð Þp ð16Þ

AUC ¼

Xn
i¼1

rið Þ− n0 � n0 þ 1ð Þ
2

n0 � n1
ð17Þ

where in (17), n0 and n1 are the number of patients in the
test subset with and without PVST respectively, and are re-
ferred to as the number of exemplars respectively in posi-
tive and negative class, and n = n0 + n1 is the total number
of patients in the test subset, and ri is the rank of the ith pa-
tient in descending order of its probability to be a PVST pa-
tient. The minimum start rank is set to 1.
From the above metric definitions, we can see that

sensitivity expresses the ratio of detecting PVST patients
from the true PVST patients, while specificity indicates
the ratio of recognizing non-PVST patients from pa-
tients without PVST, and precision implies the ratio of
the true PVST patients among the recognized PVST pa-
tients by our SVM predictive model. F-measure is the
harmonic mean of precision and sensitivity.

Statistic test
The statistic test is undertaken between the SVM classi-
fiers built on the risk indexes detected by our RFA-
PVST and by the aforementioned very popular feature
selection algorithms from [32–36] to verify whether or
not our proposed RFA-PVST is statistically significant.
That is, the statistic test results can disclose whether or
not the risk indicators detected by our RFA-PVST are
statistically significant to predict PVST. The Friedman’s
test [49, 50] is adopted to discover the significant differ-
ence between algorithms for it is considered preferable
for comparing algorithms over datasets without any nor-
mal distribution assumption. Once the significant differ-
ence is detected, the multiple comparison test will be
adopted as a post hoc test to detect the significant differ-
ence between pairs of algorithms. We’ll do Friedman’s
test with α = 0.05 of algorithms in terms of Acc, AUC,
sensitivity, specificity, and precision of the SVM predict-
ive models of PVST with same number of risk indexes
detected by each algorithm, respectively.
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