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Abstract

Background: Accurate classification of diffuse gliomas, the most common tumors of the central nervous system in
adults, is important for appropriate treatment. However, detection of isocitrate dehydrogenase (IDH) mutation and
chromosome1p/19q codeletion, biomarkers to classify gliomas, is time- and cost-intensive and diagnostic
discordance remains an issue. Adenosine to inosine (A-to-I) RNA editing has emerged as a novel cancer prognostic
marker, but its value for glioma classification remains largely unexplored. We aim to (1) unravel the relationship
between RNA editing and IDH mutation and 1p/19q codeletion and (2) predict IDH mutation and 1p/19q
codeletion status using machine learning algorithms.

Results: By characterizing genome-wide A-to-I RNA editing signatures of 638 gliomas, we found that tumors
without IDH mutation exhibited higher total editing level compared with those carrying it (Kolmogorov-Smirnov
test, p < 0.0001). When tumor grade was considered, however, only grade IV tumors without IDH mutation
exhibited higher total editing level. According to 10-fold cross-validation, support vector machines (SVM)
outperformed random forest and AdaBoost (DeLong test, p < 0.05). The area under the receiver operating
characteristic curve (AUC) of SVM in predicting IDH mutation and 1p/19q codeletion were 0.989 and 0.990,
respectively. After performing feature selection, AUCs of SVM and AdaBoost in predicting IDH mutation were higher
than that of random forest (0.985 and 0.983 vs. 0.977; DeLong test, p < 0.05), but AUCs of the three algorithms in
predicting 1p/19q codeletion were similar (0.976–0.982). Furthermore, 67% of the six continuously misclassified
samples by our 1p/19q codeletion prediction models were misclassifications in the original labelling after
inspection of 1p/19q status and/or pathology report, highlighting the accuracy and clinical utility of our models.

Conclusions: The study represents the first genome-wide analysis of glioma editome and identifies RNA editing as
a novel prognostic biomarker for glioma. Our prediction models provide standardized, accurate, reproducible and
objective classification of gliomas. Our models are not only useful in clinical decision-making, but also able to
identify editing events that have the potential to serve as biomarkers and therapeutic targets in glioma
management and treatment.
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Background
Diffuse gliomas are the most common tumors of the
central nervous system (CNS) in adults.
Accurate diagnosis and classification of diffuse gliomas

is important for appropriate treatment. Historically dif-
fuse gliomas are categorized predominantly according to
histology: astrocytoma (grade II or III), oligodendrogli-
oma (grade II or III), and glioblastoma (grade IV). Pa-
tients carrying lower grade gliomas (LGG; grade II or
III) have a more-favorable prognosis, while patients with
glioblastoma multiforme (GBM; grade IV) tend to have a
poor prognosis regardless of recent advances in clinical
management [1, 2]. However, histology diagnosis is pri-
marily based on subjective opinion of experienced pa-
thologists; a sample may be graded differently by
different pathologists.
In 2016, the World Health Organization (WHO) chan-

ged its classification of diffuse gliomas by considering
the presence/absence of isocitrate dehydrogenase (IDH)
mutation and chromosome 1p/19q codeletion [3]. A
large subset of adult diffuse gliomas now falls into one
of the following categories: IDH mutation with 1p/19q
codeletion (oligodendroglioma), IDH mutation without
1p/19q codeletion (most grades II and III astrocytoma),
and IDH wildtype (most glioblastoma). This new classifi-
cation has been shown to provide better prognostica-
tions. Some studies have found that LGG patients with
IDH mutation had prolonged overall survival (OS) com-
pared with those carrying wildtype IDH [4, 5]. Also,
GBM and anaplastic astrocytoma patients who had IDH
mutation exhibited improved progression-free survival
and OS compared with those without IDH mutation [6].
Furthermore, patients with both IDH mutation and 1p/
19q codeletion had increased OS compared with those
with only IDH mutation [7]. Therefore, identification of
the status of IDH mutation and 1p/19q codeletion is es-
sential in clinical practice. However, the identification
process is time- and cost-intensive and diagnostic dis-
cordance remains an issue. For example, immunohisto-
chemistry (IHC) is a common method to detect IDH
mutation and requires antibodies to recognize muta-
tions. However, IHC fails to detect less common IDH
mutations and the concordance rate between IHC and
Sanger sequencing was estimated to range 88 to 99% [8].
Similarly, fluorescent in situ hybridization (FISH) is
widely used in hospitals to detect 1p/19q status, but con-
firmation from experienced pathologist is needed [9, 10].
Taken together, a single method which provides stan-
dardized, accurate and objective prediction of IDH mu-
tation and 1p/19q codeletion is warranted.
Recent advance in high throughput molecular profiling

(both sequencing and array-based) has promoted the ex-
ploration of genome-wide changes during carcinogen-
esis. Large-scale molecular data and machine learning

algorithms has enabled more objective diagnostics. For
example, several studies have used DNA methylation
data to cluster/classify brain tumors. Ceccarelli et al.
[11] identified the association between DNA methylation
and the status of 1p/19q codeletion through unsuper-
vised clustering of DNA methylation patterns. IDH mu-
tant gliomas were clustered into three groups: (1)
presence of 1p/19q codeletion; (2) absence of 1p/19q
codeletion and low global DNA methylation; and (3) ab-
sence of 1p/19q codeletion and high global DNA methy-
lation. However, the authors did not develop a method
capable of predicting IDH mutation and 1p/19q codele-
tion, which limits the clinical utility of DNA methyla-
tion. Capper et al. [12] developed a random forest-based
classifier to classify approximately 100 CNS tumor types
based on DNA methylation patterns. However, DNA
methylation-based classification is not clinically practical
at present because of the cost and it provides little hint
on the identification of driver events during tumor de-
velopment and progression.
Compared with DNA methylation array, RNA sequen-

cing (RNA-Seq) is cost-effective and provides more hints
on the identification of tumor driver events. RNA-Seq
data can be used to identify events that could cause
tumor development and progression, including single
nucleotide variation, gene expression alteration, alterna-
tive isoforms, gene fusion, and RNA editing events. Re-
cently, Wang et al. used gene expression data to predict
1p/19q codeletion status with high accuracy [10],
highlighting the potential of RNA-related features to
serve as prognostic markers for gliomas.
RNA editing, converting nucleotides at the RNA level,

increases transcriptome diversity and alters microRNA
regulation [13]. The most common type of RNA editing
in human is adenosine to inosine (A-to-I) editing, which
is catalyzed by the adenosine deaminase acting on RNA
(ADAR) enzyme family [14]. Inosine is recognized as
guanosine (G) by the cellular machinery, resulting in A-
to-G mutation (when comparing edited reads to genome
sequence). Recent studies have highlighted a link be-
tween RNA editing and tumor development and pro-
gression [15]. Choudhury et al. [16] reported a negative
correlation between the editing level of miR-376a-5p
and glioma tumor volume. The authors found that re-
duced editing of miR-376a-5p was associated with more
aggressive glioblastoma and poor prognosis. Tomaselli
et al. [17] reported that reduced editing of miR-222/221
and miR-21 precursors led to cell proliferation and mi-
gration in glioblastoma. However, whether genome-wide
RNA editing signature is a marker for glioma classifica-
tion remains largely unexamined.
In this study, we aimed to (1) unravel the relationship

between RNA editing and IDH mutation and 1p/19q
codeletion and (2) develop models which provide
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standardized, accurate and objective prediction of IDH
mutation and chromosome 1p/19q codeletion using
RNA editing signature. Three supervised learning algo-
rithms including support vector machines (SVM), ran-
dom forest (RF) and AdaBoost (AB) were used. We also
performed feature selection to avoid overfitting and pos-
sibly improve prediction performance. RNA editing
events that contribute most to the prediction have the
potential to serve as biomarkers and therapeutic targets
in glioma management and treatment.

Results
Sample characteristics
From The Cancer Genome Atlas (TCGA) glioma cohort,
we selected tumors that have both RNA-Seq bam files
and annotation of IDH mutation and 1p/19q codeletion
available, resulting in 638 samples [496 low grade glioma
(LGG) and 142 glioblastoma multiforme (GBM)]. Sam-
ples were classified into three groups based on the status
of IDH mutation and 1p/19q codeletion (Table 1): (1)
IDH wt: samples without IDH mutation; (2) IDH mut-
codel: samples with both IDH mutation and 1p/19q
codeletion; and (3) IDH mut-non-codel: samples with
only IDH mutation (no 1p/19q codeletion). More than
half of IDH wt samples were grade IV tumors and classi-
fied as GBM. On the contrary, almost all IDH mutant
tumors (IDH mut-codel and IDH mut-non-codel) be-
long to LGG. Moreover, the vast majority of IDH mut-
codel samples were classified as oligodendroglioma,
while more than half of IDH mut-non-codel samples be-
long to astrocytoma.

Identification of A-to-I RNA editing events
We downloaded 638 RNA-Seq bam files from Genomic
Data Commons [18]. For each sample we characterized

A-to-I editing events on sites reported in REDIportal
[19], currently the most comprehensive A-to-I editing
database. Among approximately 4.5 million sites in
REDIportal, more than 100 thousand sites have at least
one editing event in at least one of the 638 samples. To
focus on sites that have better discriminative power for
classifying gliomas, we removed sites that (1) did not
have enough read coverage (< 10 reads); (2) were not
edited in > 75% samples; or (3) have small editing vari-
ability among samples (see Methods). Finally, the above
criteria resulted in 10,642 sites.
We annotated genic location of the 10,642 sites using

ANNOVAR [20] and found that the majority of sites lo-
cated in 3′ untranslated regions (3’UTR), followed by
intergenic and intronic regions (Fig. 1a). To examine the
relationship between RNA editing and IDH mutation
and 1p/19q codeletion status, we calculated total editing
level of each sample by considering reads covering the
10,642 sites [total editing level = total (edited G) / total
(unedited A+ edited G)]. We found that IDH wt sam-
ples, on average, had higher total editing level than IDH
mut-non-codel and IDH mut-codel samples (Fig. 1b;
Kolmogorov-Smirnov test, p < 0.0001). When tumor
grade was considered, however, only grade IV tumors
with wildtype IDH exhibited significantly higher total
editing level (Fig. 1c). Our results support the idea that
RNA editing has the potential to classify gliomas. Next,
we developed models to classify gliomas by predicting
the status of IDH mutation and 1p/19q codeletion.

Prediction performance for IDH mutation and 1p/19q
codeletion
We first applied three supervised learning algorithms
(SVM, RF and AB) to predict the mutation status of
IDH using RNA editing signatures of the 10,642 sites.

Table 1 Histology and grade information of the 638 glioma tumors

IDH wt IDH mut-codel IDH mut-non-codel

Cases 225 163 250

Histology

Astrocytoma 56 (24.9%) 5 (3.1%) 126 (50.4%)

Glioblastoma 133 (59.1%) 0 9 (3.6%)

Oligoastrocytoma 15 (6.7%) 36 (22.1%) 74 (29.6%)

Oligodendroglioma 21 (9.3%) 122 (74.8%) 40 (16.0%)

Unknown 0 0 1 (0.4%)

Grade

G2 20 (8.9%) 91 (55.8%) 127 (50.8%)

G3 72 (32.0%) 72 (44.2%) 112 (44.8%)

G4 127 (56.4%) 0 8 (3.2%)

Unknown 6 (2.7%) 0 3 (1.2%)

IDH wt Samples with wildtype isocitrate dehydrogenase (IDH), IDH mut-codel Samples with both IDH mutation and chromosome 1p/19q codeletion, IDH mut-non-
codel Samples with only IDH mutation (no 1p/19q codeletion)

Chen et al. BMC Bioinformatics 2019, 20(Suppl 19):659 Page 3 of 11



Ten-fold cross-validation was applied for generalization
of our models and to derive a more accurate estimate of
prediction performance. SVM and AB achieved better
prediction performance than RF in terms of specificity
(SPE) (0.920 and 0.916 vs. 0.764) (Table 2) and the area
under the ROC curve (AUC) (0.989 and 0.986 vs. 0.968;
DeLong test, p < 10− 4) (Fig. 2a). To rule out DNA
changes misidentified as RNA editing events, for each
sample we excluded editing events overlapping with
sample-specific somatic mutations or germline variants.
However, this approach is not feasible in clinical practice
because identification of germline variants is time- and

cost-intensive. To make our model more practical, we
removed all editing sites that overlap with known vari-
ants in the public databases (See Methods). This proced-
ure resulted in 9016 sites and their editing signatures
were used to predict the mutation status of IDH. The
performance of 10,642 sites and 9016 sites were virtually
the same (Table 2 and Fig. 2a), suggesting the robustness
of our approach.
Next, to avoid overfitting of SVM and possibly im-

prove prediction performance of RF, we tried to reduce
the number of sites used in the models by performing
feature selection.

Fig. 1 Genic location and editing level of glioma editome. a Genic location of 10,642 editing sites using ANNOVAR (RefSeq gene annotation).
Sites are located in one of the following ANNOVAR-defined categories: UTR3 (overlaps a 3′ untranslated region), intergenic (in intergenic region),
intronic (overlaps an intron), downstream (overlaps 1-kb region downstream of transcription end site), ncRNA (overlaps a transcript without
coding annotation in the gene definition), exonic (overlaps a coding), upstream (overlaps 1-kb region upstream of transcription start site), and
UTR5 (overlaps a 5′ untranslated region). b Total editing level of three glioma subtypes. IDH wt: samples with wildtype isocitrate dehydrogenase
(IDH); IDH mut-codel: samples with both IDH mutation and chromosome 1p/19q codeletion; IDH mut-non-codel: samples with only IDH mutation
(no 1p/19q codeletion). c Total editing level of glioma subtypes considering tumor grade. G2/G3/G4: grade II, III and IV. Asterisk represents
statistical difference between subtypes (Kolmogorov-Smirnov test, p < 0.0001)
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Fig. 2 ROC plots for SVM, random forest, and AdaBoost with different number of editing sites. a Full models (10,642 and 9016 sites) for
predicting isocitrate dehydrogenase (IDH) mutation. b Feature selected models for IDH mutation. c Full models for predicting chromosome 1p/19q
codeletion d Feature selected models for 1p/19q codeletion. AB: AdaBoost; RF: random forest; SVM: support vector machines

Table 2 Prediction performance for IDH mutation

Number of sites SVM Random forest AdaBoost

ACC SEN SPE ACC SEN SPE ACC SEN SPE

10,642 0.955 0.973 0.920 0.895 0.966 0.764 0.953 0.973 0.916

9016 0.961 0.976 0.933 0.903 0.971 0.778 0.937 0.964 0.889

FS 0.948 0.964 0.920 0.920 0.961 0.844 0.937 0.971 0.876

FS Sites selected within each fold using feature importance, ACC Accuracy, SEN Sensitivity, SPE Specificity, AUC Area under the receiver operating
characteristics curve
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Each algorithm selected a number of sites based on their
importance within each cross-validation fold (137~173
sites for SVM, 163~186 sites for RF, and 45~50 sites for
AB). Similar to the full models, the feature selected SVM
and AB had higher AUCs (0.985 and 0.983, respectively)
compared with the feature selected RF (0.977) (DeLong
test, p = 0.01). Notably, the AUC of the feature selected RF
was slightly increased compared with the full models
(0.968 and 0.972 for 10,642 sites and 9016 sites, respect-
ively) (DeLong test, p = 0.049), probably due to the re-
moval of noise data points. However, for SVM and AB the
performance was similar between feature selected and full
models (Table 2 and Fig. 2b).
For the prediction of 1p/19q codeletion, SVM outper-

formed RF and AB in the full models (AUC: 0.990 vs.
0.976 and 0.975; DeLong test, p < 0.001) (Table 3 and
Fig. 2c). Feature selection resulted in 166~273 sites in
SVM, 196~211 sites in RF, and 45~49 sites in AB. The
three feature selected classifiers performed similarly
(Table 3 and Fig. 2d), but AUC of the feature selected
SVM slightly decreased compared with full models
(0.982 vs. 0.990; DeLong test, p = 0.004).

RNA editing signatures of sites used in the prediction
models
To get a better idea about how glioma samples clustered to-
gether using the selected editing sites, we performed hier-
archical clustering of editing signatures of sites that were
repeatedly selected (at least 5 times) in RF classifiers (132
and 124 sites for IDH and 1p/19q codeletion, respectively).
Figure 3 shows blocks of editing signatures and these blocks
corresponded well to the status of IDH and 1p/19q codele-
tion. Figure 3a reveals sites more heavily edited in IDH wild-
type (especially GBM) samples as well as sites more heavily
edited in IDH mutant samples. Figure 3b reveals sites more
heavily edited in 1p/19q codeletion samples and also sites
more heavily edited in 1p/19q non-codeletion samples.
We next examined the functional and locational enrich-

ment of these repeatedly selected sites. We performed
gene enrichment analyses using The Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) v6.8
[21, 22] with the 9016 editing sites as the background. No
functional enrichment was detected with FDR < 0.05. For
the locational enrichment, we perform hypergeometric
test and focused on the top five categories: UTR3,

intergenic, intronic, downstream, and ncRNA_intronic.
For IDH (132 sites), we found enrichment in UTR3 (p <
0.02) and depletion in intergenic (p < 0.01) and intronic
(p = 0.02) regions. For 1p/19q codeletion (124 sites), en-
richment in ncRNA_intronic (p = 0.02) and depletion in
UTR3 (p = 0.01) and intronic (p = 0.01) were detected.

Examination of the continuously misclassified samples
We also examined the samples continuously misclassi-
fied by our models. For IDH prediction, 13 samples were
continuously misclassified. The misclassification is likely
due to heterogeneity and the low number of cases in
certain subtypes. For example, three of the 13 misclassi-
fied samples are GBM with IDH mutation. However,
only nine of the 413 samples with IDH mutation belong
to GBM. For 1p/19q codeletion, six samples were con-
tinuously misclassified. Remarkably, 67% of them were
misclassifications in the original labelling after inspec-
tion of 1p/19q status and/or pathology report, demon-
strating the accuracy and clinical utility of our models.

Discussion
This study represents the first genome-wide RNA edit-
ing analysis to date of adult diffuse gliomas. Our analysis
demonstrates that RNA editing signature has crucial bio-
logical and clinical relevance. Using editing signatures of
less than 200 sites, our models achieved high accuracy of
predicting IDH mutation and 1p/19q codeletion. Com-
pared with the IHC and FISH methods, our models pro-
vide more objective diagnostics and avoid labelling error.
Four of the six continuously misclassified samples by
our 1p/19q codeletion prediction models were misclassi-
fications in the original labelling after inspection of 1p/
19q status and/or pathology report, highlighting the ac-
curacy and clinical utility of our models.
Compared with DNA methylation-based classification,

our method has some advantages. First, our model is
more cost-effective. RNA-Seq has become indispensable
in biological research because it generates large amount
of data useful for many applications. Currently, the cost
of RNA-Seq can be as low as ~$200 per sample, whereas
the cost of FISH and Illumina DNA methylation array is
~$340 [10]. With the increasing sequencing output of
the Illumina platform, the cost of RNA-Seq will likely be
further reduced with time. Additionally, a cost-effective

Table 3 Prediction performance for 1p/19q codeletion

Number of sites SVM Random forest AdaBoost

ACC SEN SPE ACC SEN SPE ACC SEN SPE

10,642 0.971 0.963 0.976 0.913 0.822 0.972 0.939 0.920 0.952

9016 0.983 0.988 0.980 0.918 0.853 0.960 0.932 0.920 0.940

FS 0.937 0.914 0.952 0.930 0.908 0.944 0.932 0.920 0.940

FS Sites selected within each fold using feature importance, ACC Accuracy, SEN Sensitivity, SPE Specificity, AUC Area under the receiver operating
characteristics curve
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Fig. 3 Pan-glioma RNA editing signatures. a Heatmap of RNA editing level of the 132 sites repeated selected in the IDH mutation classifiers
(random forest). Columns represent z-score of RNA editing level of 132 sites sorted by hierarchical clustering. Rows represent 638 TCGA glioma
samples sorted by hierarchical clustering. IDH mutation status (red: mutant; blue: wildtype) and grade information (G2/G3/G4: grade II, III and IV)
of each sample is labeled. b Heatmap of z-score of RNA editing level of the 124 sites repeated selected in the 1p/19q codeletion classifiers
(random forest). Columns represent RNA editing level of 124 sites sorted by hierarchical clustering. Rows represent 413 TCGA glioma samples
(carrying IDH mutation) sorted by hierarchical clustering. 1p/19q codeletion status (red: codeletion / blue: non-codeletion) of each sample
is labeled
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RNA-Seq protocol was proposed recently, which greatly
reduced the cost of sample preparation and sequencing
[23]. With the cost of RNA-Seq continuing to drop in
the future, our RNA editing-based classification will be-
come more practical and gain more widespread adoption
by laboratories and clinics. Second, RNA editing-based
classification has the potential to help understand mech-
anisms driving gliomagenesis and indicate how the

tumor could behave in the future. Many of the editing
sites used in our models could serve as prognostic
markers. For example, chr6:159679878 (one of the sites
used to predict 1p/19q codeletion) has prognostic value
for LGG patients. Patients with higher level of editing at
chr6:159,679,878 have worse OS and progression free
interval than those with lower editing (log-rank test: p <
0.0001; Fig. 4). This site resides in 3’UTR of the gene

Fig. 4 Kaplan-Meier survival curves for LGG samples with different editing level at site chr6:159,679,878. a Overall survival (OS) b Progression free
interval (PFI). This site located on the 3’UTR of the gene mitochondria-localized manganese superoxide dismutase (MnSOD/SOD2). High (Q3): top
25% samples (with higher editing level). Low (Q1): bottom 25% samples (with lower editing level). Seven and three samples, respectively, were
not included in the OS and PFI plots because of lack of data or more than 10 years
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mitochondria-localized manganese superoxide dismutase
(MnSOD/SOD2). SOD2 has both tumor promoting and
suppressing functions in cancer [24]. It has been sug-
gested that the dichotomous function of SOD2 results
from the context-dependent regulation of SOD2 during
different stages of tumor development [24]. The dynamic
nature of RNA editing might play a role in the temporal
regulation of SOD2 during cancer development, al-
though further investigation is needed.
Although our model classifies gliomas using only RNA-

seq data, it can be adjusted easily to include other -omic
data (such as methylation chip and/or exome sequencing).
Several studies have shown that DNA methylation is able
to cluster/classify brain tumors. The beta value obtained
from the methylation chip is between [0,1] (same as the
value of RNA editing). It is straightforward to include
methylation data in our models and likely to increase the
performance. We also developed models to classify pa-
tients into one of three groups simultaneously. However,
SVM and AB had lower AUCs in predicting IDH mut-
non-codel (See Additional file 1: Figure S1).
Some limitations of the study should be considered.

First, we did not have an independent validation cohort
to assess the performance of our classifiers. Second, our
classifiers may only apply to adult gliomas and its per-
formance on children brain tumors requires further in-
vestigation. Furthermore, our models are not able to
distinguish grade II and grade III (anaplastic) astrocy-
toma, which are still listed in WHO 2016 classification
guidelines.

Conclusions
In summary, our results reveal the clinical utility of RNA
editing in glioma classification. Our prediction models
provide standardized, accurate, reproducible and object-
ive classification of gliomas. Our model is not only use-
ful for clinical decision-making, but also able to identify
editing events that have the potential to serve as bio-
markers and therapeutic targets in glioma management
and treatment.

Methods
Data collection
We downloaded The Cancer Genome Atlas (TCGA)
LGG (low grade glioma) and GBM (glioblastoma multi-
forme) RNA-Seq bam files (v.2016) and clinical informa-
tion from Genomic Data Commons (GDC [18];). We
selected tumors that have both RNA-Seq bam files and
annotation of IDH mutation and 1p/19q codeletion
available, resulting in 638 samples (496 LGG and 142
GBM). IDH mutation is defined as carrying any type of
known IDH1 or IDH2 mutation. The status of IDH mu-
tation and 1p/19q codeletion of each sample was down-
loaded from [25].

Identification of RNA editing events in gliomas
Similar to Peng et al. [26], we used REDItools [27] with
default settings to detect editing events on sites reported
in REDIportal [19], currently the most comprehensive
A-to-I RNA editing database. Hyper-edited reads were
detected according to Porath et al. [28] and only reads
covering sites in REDIportal were included. For each
sample, both total editing level and site-specific editing
level were calculated. Total editing level was calculated
by dividing the number of reads with the edited G nu-
cleotide by total number of A + G reads of the sample.
Site-specific editing level was calculated by dividing the
number of covering edited G reads by the number of
covering A +G reads of an editing site. Because DNA
changes could result in misidentification of RNA editing
events, we downloaded somatic mutation data from
GDC and germline variant data from the TCGA Pan-
Cancer analysis project [29] and GDC legacy archive.
Editing events overlapping with sample-specific somatic
mutations or germline variants were excluded.

Selection of discriminative editing sites
We focused on sites that have better discriminative power
for classifying gliomas by dividing sites into three types
(based on the number of covering edited G and A +G
reads): (1) Type I: (a) covered by ≥3 edited G reads and ≥
10 A +G reads; and (b) editing frequency (edited G reads
/ A +G reads) is significantly greater than 0.1% (binomial
test with FDR < 0.05); (2) Type II: covered by ≥10 reads
but (a) < 3 edited G reads or (b) editing frequency is not
significant greater than 0.1% (binomial test); and (3) Type
III:: covered by < 10 reads. We first removed sites that
were Type III in > 25% samples, resulting in 65,428 sites.
We next selected sites with larger editing variability
among samples. Median absolute deviation (MAD), de-
fined as the median of the absolute deviations from the
data’s median, is often used to measure data variability. To
include more sites, here we defined MAD3Q as the median
of the absolute deviations from the data’s third quantile.
We required sites to be Type I in at least 25% samples and
with MAD3Q > 0, resulting in 10,642 sites as starting fea-
tures in our prediction models.

Annotation of editing sites
Gene structure (RefSeq) and variant (dbSNP, ExAc, and
gnomAD) information of editing sites were derived from
ANNOVAR (2018 Jul 08) [20].

Machine learning algorithms, ten-fold cross-validation,
evaluation measures, and feature selection
Three supervised learning algorithms including support
vector machines (SVM), random forest (RF) and AdaBoost
(AB) were used in this study to predict the status of IDH
mutation and 1p/19q codeletion. SVM is popular because
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of its accuracy and less usage of computational resource.
We selected linear kernel because other kernel functions
did not perform better. RF, an ensemble method, first fits a
number of decision tree classifiers on various sub-samples
of the dataset and then uses averaging to improve accuracy
and control over-fitting. AdaBoost (short for “Adaptive
Boosting”; AB) is another ensemble learning method, which
aims to create a strong classifier from a number of weak
classifiers. Python’s scikit-learn (with default parameters)
was used to build the above classifiers.
Our models were evaluated using 10-fold cross-

validation, which is widely used when sample size is lim-
ited and provides a more accurate estimate of prediction
performance. The process started from randomly separ-
ating the whole dataset into 10 groups with equal size.
In each validation, nine groups were used to train the
model (i.e., training group) and one group (i.e., test
group) was used to evaluate the performance. Accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area
under the receiver operating characteristics curve (AUC)
were used to assess model performance. ACC was calcu-
lated as the sum of correct predictions (TP+ TN) divided
by total number of predictions (TP + FP + TN + FN),
where TP, FP, TN, and FN, respectively, represents true
positives, false positives, true negatives, and false nega-
tives. SEN was calculated by TP/(TP + FN) and SPE was
calculated by TN/(TN + FP). ROC curves were plotted
using SEN and 1-SPE under different cutoff points. The
above validation process was repeated 10 times and thus,
the whole dataset was completely assessed. We also per-
formed feature selection within each fold for both IDH
mutation and 1p/19q codeletion classifiers to avoid over-
fitting and possibly improve prediction performance.

Survival analysis
Kaplan-Meier (KM) method was used to analyze the as-
sociation between editing level and overall survival (OS)
and progression free interval (PFI). Log-rank test was
used to examine statistical significance. Seven and three
samples, respectively, were not included in the OS and
PFI plots because of lack of data or more than 10 years.
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