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Abstract

of reliable negative samples.

learned from the constructed reliable negative samples.

Background: Detection of new drug-target interactions by computational algorithms is of crucial value to both old
drug repositioning and new drug discovery. Existing machine-learning methods rely only on experimentally validated
drug-target interactions (i.e., positive samples) for the predictions. Their performance is severely impeded by the lack

Results: We propose a method to construct highly-reliable negative samples for drug target prediction by a pairwise
drug-target similarity measurement and OCSVM with a high-recall constraint. On one hand, we measure the pairwise
similarity between every two drug-target interactions by combining the chemical similarity between their drugs and
the Gene Ontology-based similarity between their targets. Then we calculate the accumulative similarity with all
known drug-target interactions for each unobserved drug-target interaction. On the other hand, we obtain the signed
distance from OCSVM learned from the known interactions with high recall (>0.95) for each unobserved drug-target
interaction. After normalizing all accumulative similarities and signed distances to the range [0,1], we compute the
score for each unobserved drug-target interaction via averaging its accumulative similarity and signed distance.
Unobserved interactions with lower scores are preferentially served as reliable negative samples for the classification
algorithms. The performance of the proposed method is evaluated on the interaction data between 1094 drugs and
1556 target proteins. Extensive comparison experiments using four classical classifiers and one domain predictive
method demonstrate the superior performance of the proposed method. A better decision boundary has been

Conclusions: Proper construction of highly-reliable negative samples can help the classification models learn a clear
decision boundary which contributes to the performance improvement.

Keywords: Drug target prediction, Reliable negative samples, Pairwise similarity

Background

Detection of drug-target interactions plays a vital role
in both old drug repositioning and new drug discov-
ery. It helps to identify new targets for existing drugs
or predict new drugs for known targets. Currently, only
a small number of drug-target interactions are validated
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via wet-lab experiments. A large proportion of interac-
tions remain to be investigated by computational algo-
rithms due to the high monetary and time cost of wet-lab
experiments.

Some specially designed machine-learning methods
have been proposed recently in this research domain
to overcome the challenging issues. These methods can
be classified into three major categories: similarity-based
methods, feature vector-based methods and other meth-
ods. The similarity-based methods are all guided by
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the “guilt-by-association” assumption that similar tar-
gets tend to be targeted by similar drugs and vice
versa [1]. Ding et al. [2] had a comprehensive review
on similarity-based machine learning methods. Mod-
els including nearest neighbor [3], kernelized Bayesian
matrix factorization [4], network-based inference [5],
bipartite local models [3], gaussian interaction profile
[6], and pairwise kernel method (PKM) [7] are summa-
rized briefly and computationally compared in their work.
The comparison results show that PKM performed the
best in terms of AUC (area under the receiver operating
characteristic curve).

In the feature vector-based methods, each drug-target
pair (DTP) is represented as a fixed-length feature vector.
The feature vector is encoded by various types of proper-
ties of drugs and targets, such as drug chemical structures
and target sequences. For example, using the method pro-
posed by Yu et al. [8], each drug is represented as a 1080-
feature vector consisting of constitutional descriptors,
topological descriptors, 2D correlations, molecular prop-
erties and etc. Likewise, each protein is transformed into
a 1080-dimension feature vector. Merging them together,
a set of 2160 features is taken to describe the drug-
protein pairs for the Random Forest predictor. Luo et al.
[9] developed DTINet, a computational pipeline which
integrates diverse drug-related information from hetero-
geneous data sources. DTINet can learn well from low
dimensional vector representations for accurate interpre-
tation of the topological properties of nodes in the hetero-
geneous network. Then, DTINet makes predictions based
on these representations via a vector space projection
scheme.

Apart from detecting the drug-target interactions using
similarity information or feature vector-based representa-
tion, researchers also attempted to use other information
such as bio-medical documents for detection. Zhu et al.
[10] proposed a probabilistic model named MAM to mine
drug-gene relations from literature. MAM is composed
of a mixture of aspect models, each of which is designed
for one type of co-occurrence data and its learning algo-
rithm. Their experimental results show that the prediction
performance is improved via combining different types of
co-occurrence data. Although potential drug-target inter-
actions can be mined from the bio-medical documents,
they have significant drawbacks such as low data quality
and incompetency for novel relations.

These existing machine-learning approaches use the
experimentally validated DTPs as positive samples, and
use all or a random subset of unobserved DTPs as nega-
tive samples for the training of the classification models
[3, 4, 6, 7]. As suggested by Ding [2], such negative sam-
ples might include potential drug-target interactions not
yet known, and would unavoidably result in inaccurate
predictive results. Because the current machine-learning
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methods are severely impended by the lack of reliable
negative samples, we develop a method to identify highly
reliable negative samples of DTPs to improve the predic-
tion performance.

Based on the “guilt-by-association” assumption that
similar drugs tend to interact with similar targets, the
existing methods have achieved remarkable performance.
Thus it is also reasonable to select reliable negative sam-
ples based on its converse negative proposition, i.e., a drug
dissimilar to all drugs known to interact with a target is
less likely to bind the target and vice versa.

One-class Support Vector Machine (OCSVM) [11] has
demonstrated its advantages for classification in the
absence of positive or negative samples [12]. It learns
a hypersphere from the training data, ensuring most
training data are in the hypersphere. OCSVM requires
one-class data only, thus it is an ideal technique to identify
reliable negatives (i.e., outliners) for drug-target predic-
tion where only positives are available.

In this work, we propose a method to construct
highly-reliable negative samples for drug target predic-
tion by a pairwise drug-target similarity measurement and
OCSVM with a high-recall constraint. On one hand, we
measure the pair-wise similarity between every two drug-
target interactions by combining the chemical similarity
between their drugs and the Gene Ontology-based simi-
larity between their targets. Then we calculate the accu-
mulative similarity with all known drug-target interac-
tions for every unobserved drug-target interaction. On the
other hand, we obtain the signed distance using OCSVM
learned from the known interactions with high recall
(= 0.95) for each unobserved drug-target interaction.
Unobserved DTPs with lower accumulative similarities
or lower signed distances are less likely to be positives,
thus of high-probability to be negatives. Consequently,
we compute the score for each unobserved drug-target
interaction via averaging its accumulative similarity and
signed distance after normalizing all accumulative similar-
ities and signed distances to the range [0,1]. Unobserved
interactions with lower scores are preferentially served
as reliable negative samples for the classification algo-
rithms. The specific negative number is determined by
the negative sample ratio which will be discussed in the
experiment section.

In the performance evaluation, we investigated impact
of the ratio levels of negative samples on the prediction.
We also demonstrated that the performance improve-
ment brought by the reliable negative samples can be
achieved for four different classical classifiers and for a
domain specially designed prediction model (the pair-
wise kernel method PKM). Extensive experiments fur-
ther show that the performances of all models have
been improved significantly owing to the use of reliable
negative samples.
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Methods

Prediction framework

The prediction framework is illustrated in Fig. 1. It
consists of three main components: credible nega-
tive sample generation, data representation, and drug-
target interaction prediction. First, unobserved DTPs
are ranked in ascending order of their scores com-
puted by the pair-wise similarity and OCSVM. A cor-
responding number of them are sequentially selected
to construct a reliable negative sample set. Then drugs
and targets are represented as 5682-dimensional and
4198-dimensional vectors respectively according to their
properties. Drug-target vectors can be obtained by
appending the target vector to the drug vector together.
Following that, PCA (principal component analysis) is
performed to reduce the dimension of raw drug-target
vectors. Finally, truncate drug-target vectors with their
labels are used to train the classifier for subsequent
predictions.

Credible negative sample generation
It can be observed from Fig. 2 that a great number
of targets only interact with one drug. It is indicative
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that there are abundant unobserved DTPs. Among these
unobserved DTPs, some should be true interactions (pos-
itive samples) which are yet unobserved. Therefore, treat-
ing these unobserved DTPs all as negative samples by
the traditional methods is unreasonable which may cause
more false classifications [13]. A method to construct
a reliable negative sample set becomes vital to achieve
precise predictions.

Most existing machine-learning approaches developed
for drug-target interaction prediction are based on the
assumption that similar drugs tend to bind similar tar-
gets and vice versa. Consequently, it is reasonable to select
reliable negative samples based on its converse negative
proposition that drugs dissimilar to all drugs known to
bind a target are less likely to interact with the target and
vice versa.

In this work, we propose to combine the converse
negative proposition of the guilt-by-association methods
and the power of OCSVM to construct reliable nega-
tive samples. On one hand, we infer the probabilities of
unobserved DTPs to be negatives by a pairwise drug-
target similarity measurement. To be specific, we first
measure the similarities between drugs according to their

Credible Negative Sample Generation
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Fig. 1 Framework of the proposed method. It consists of three components: credible negative sample generation, data representation, and
drug-target interaction prediction. DTPs: drug target pairs; OCSVM: one-class support vector machine; PCA: principle component analysis
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Fig. 2 Characteristics of targets and their associated drugs. The left panel (a) is the index-plot of the number of associated drugs for each target and
the right panel (b) is the histogram of the associated drug number for the targets

chemical structures. Each drug is represented as a 1024-
dimensional fingerprint using the open-source tool CDK
(Chemistry Development Kit) [14]. Formally for a drug

d, it is represented as f¢ (fl«d € {0,1},i € {1,2,.., 1024}).

Then the chemical similarity between two drugs, say drug
d; and drug dj, is calculated by their Tanimoto score:

1134 (fli A fzj)
2 (ivAl)

where A and V are bit-wise “and” and “or” operators

Simchem(dbdj) = (1)

respectively; f/ and le are the [ bit of fingerprints of drug
d; and drug d; respectively. We also measure the similar-
ity between two target proteins as the overlapping ratio of
their related GO terms. Suppose GO’ and GO/ are the GO
term sets for the target protein #; and ¢ respectively, the
similarity score between ; and #; is defined as:

GO' NGO
GO'U GO/’
where N and U are “intersection” and “union” opera-
tors respectively. Then, we measure the pairwise similar-
ity between two DTPs by combining the drug similarity
and the target protein similarity. The pairwise similarity
between the drug-target pair p; (d; — t;) and p; (d; — ;) is
given by:

Simgo(ti, L‘j) = (2)

Simpair (Pis Pj) = SiMchem (d;, dj) * Simgo (L, 1)) 3)

Following that, we calculate the accumulative pairwise
similarity with all the validated DTPs for each unobserved
DTP. For an unobserved DTP p;, its accumulative pairwise
similarity is measured by:

n
Simgec(pi) = Z Simpair(ﬁi;l)j), (4)

j=1

where 7 is the total number of validated DTPs.

On the other hand, we infer the probabilities by
OCSVM. Specifically, we use signed distances which
denote the distances between the unobserved DTPs and
the calculated OCSVM separating hyperplane to measure
their probabilities (obtained using sklearn.svm.
OneClassSVM.decision_function of the Python scikit-
learn package). We feed OCSVM with all known DTPs
and optimize its parameters via 5-fold cross-validation.
A high recall constraint (>0.95) is required to ensure
that the majority of true DTPs are correctly predicted.
With the optimized parameter settings (nu: 0.1, gamma:
0.05, recall=0.96), we obtained the signed distances for all
unobserved DTPs.

After we get the accumulative pairwise similarities and
signed distances for all DTPs, we normalize them to the
range [0,1] via the formula 5 and 6 respectively.

Sitigee(pi) — Sim™in

NSimgec(pi) = 2, (5)
r1Max __ 1y Min
Simiax — Sim!"

where Simi%* and Sim!)) are the maximum and min-

imum value of all accumulative pairwise similarities
respectively, NSim,..(p;) and Simgq.(p;) are the normal-
ized and raw accumulative pairwise similarity for DTP p;.

DiS(Pi) — Disyin 6
Disygx — Disyin ' ©
where Dis,;, ., and Dis,,;, are the maximum and minimum
value of all signed distances, NDis(p;) and Dis(p;) are the
normalized and raw signed distance for DTP p;.

The “guilt-by-association” methods assume that simi-
lar drugs are more likely to interact with similar targets
[2]. Consequently, unobserved DTPs with lower accumu-
lative similarities are less likely to be true positives and
of high-probability to be true negatives. OCSVM pre-
dicts DTPs with higher normalized signed distances as
positives, thus unobserved DTPs with lower normalized
signed distances are more likely to be true negatives.
Consequently, it’s reasonable to combine the above two

NDisp;) =
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factors as a single probability score as follows: Score(p;) =
(NSimgec(pi) + NDis(p;))/2. Finally, we rank all unob-
served DTPs in ascending order of their probability scores
(screen negative list, see Additional file 1), and those with
lowest scores are taken to form the set of negative sam-
ples. The specific number is determined by the negative
sample ratio which is discussed in the experiment section.

Data representation via vectors

To perform the machine-learning task, we represent
drugs and target proteins as vectors according to their
properties. Specifically, each drug is represented as a
5682-dimensional binary vector using its chemical sub-
structures (881), side-effects (4063) and substituents
(738). The elements of the drug vector encode for the
presence or absence of each property (i.e., chemical
substructures/side-effects/substituents) by 1 or 0. The
drug chemical substructures correspond to the 881 chem-
ical substructures defined in PubChem [15]. The side-
effects and substituents are 4063 unique side-effects from
SIDER [16] and 738 unique substituents from Drugbank
[17, 18] respectively. Likewise, each protein is repre-
sented as a 4198-dimensional binary vector where each bit
denotes the presence or absence of the unique GO term
by 1 or 0. Finally, we obtain the vector of any drug-target
pair by appending the target vector to the drug vector.

Prediction of drug-target interactions

The dimension of each DTP vector is 9880 (5682
+ 4981) and there are 1,702,264 (1,094*1,556) possi-
ble DTPs between 1094 drugs and 1556 targets used
for experiments. Thus the size of the classification
input could be around the order of magnitude of bil-
lion (9,880%1,702,264). Such high dimensionality will
inevitably incur a huge time and computational cost. In
this study, we employ PCA to map raw vectors of DTPs
into lower-dimension space to speed up the prediction
process. To be specific, we fit PCA with all training DTP
vectors first. Then we transform both the training and test
DTP vectors into lower-dimensional vectors. The PCN
(principle component number) is set as 225 and the spe-
cific determining process is described in Additional file 2:
Figure S2.

We label all positive samples (i.e., experimentally vali-
dated DTPs) as +1 and the reliable negative samples as -1.
The compressed vectors of DTPs together with their labels
are used to train a binary classifier (e.g., Random Forest)
for subsequent prediction. The prediction performance is
evaluated via 5-fold cross validation: (1) samples in the
gold standard are split into 5 roughly equal-sized subsets;
(2) each subset is taken in turn as the test set, and the
remaining subsets are used as training set; (3) all results
over the 5-fold validation are used for evaluation. Evalua-
tion metrics widely used in binary classification including
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AUC, precision, recall, and F1-Score are employed to
demonstrate the prediction performance.

Results and discussions

In this section, we first describe the details of the data
used in this work. Then we investigate impacts of the
ratio levels of negative samples to the positive samples on
the prediction performance. Using the best setting for the
negative sample ratio, we then evaluate the performance
improvement brought by the reliable negative samples by
four classical classifiers. Finally, we further demonstrate
the superior performance of the proposed method using
PKM, a state-of-the-art predictive method proved to be
the most powerful in Ding’s review [2].

Data resources

We use the benchmark dataset collected by Zheng
et al. [19] for experiments. It consists of 1094 drugs
and 1556 targets. Drug properties including chemical
structures and substituent are extracted from DrugBank
[17, 18], a comprehensive drug database. All side-effects
are downloaded from SIDER [16] and the GO terms of
target proteins are retrieved from the EMBL-EBI website
[20]. The statistical details of the data sources are sum-
marized in Table 1. The distribution of the experimentally
validated drug-target interaction pairs is illustrated in
Fig. 2. Information of all researched drugs, targets and val-
idated DTPs is available in Additional file 3. All the above
data and the source codes are included in Additional file 4.

Impacts of negative sample ratio levels on the prediction
performance

There are 11,819 experimentally validated interactions
between the 1094 drugs and the 1556 target proteins
used in this work. The remaining 1,690,445 (1094*1556
- 11,819) DTPs are unobserved DTPs, about 143 times
the number of validated DTPs. It is impossible to take all
unobserved DTPs as negative samples for prediction. In
this work, we take all validated DTPs as positive samples.
Similar to [21], we investigate how the performance varies
when the ratio of negative samples (ratio relative to pos-
itive samples) increases from 0.5 to 5. The negative sam-
ples are sequentially extracted from the screen negative

Table 1 Statistical details of the dataset used in this work

Field Value
Number of drugs 1094
Number of targets 1556
Number of validated interacted DTPs 11,819
Number of unique side-effects 4063
Number of unique substituents 738
Number of unique GO terms 4198
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list (see “Credible negative sample generation” section).
Four classical classifiers including Adaboost, LR (logis-
tic regression), KNN (k-nearest neighbor) and RF (ran-
dom forest) are employed for the training and prediction.
All the classifiers are implemented using Python 2.7.13
(sklearn) with the default settings. The F1-Scores achieved
by these classifiers under different levels of negative sam-
ple ratios are depicted in Fig. 3. It can be seen that the
prediction performance of all the four classifiers increases
a bit with the negative sample ratio 0.5. Then the per-
formance begins to decrease when the negative sample
ratio is larger than 1. The same trend can be observed
from the AUC shown in Additional file 2: Figure S1. The
training time increases with the increasing number of
training samples. Considering the prediction performance
and time cost, we take 1 as the optimized negative sample
ratio in the following experiments.

Much better performance than using accumulative
pairwise similarity alone and randomly generated negative
samples

To demonstrate the advantage of incorporating signed
distances to accumulative pairwise similarities and the
prediction performance improvement brought by the
constructed reliable negative samples (Reliable, nega-
tives sequentially extracted from the screen negative
list), we compare them with negative samples inferred
by accumulative pairwise similarities alone (Pairwise)
and randomly generated negative samples (Random).
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The negative samples inferred by the accumulative pair-
wise similarities are negatives sequentially extracted from
DTPs in ascending order of their accumulative pairwise
similarities. The randomly generated negative samples are
obtained by randomly sampling DTPs which are not in
the positive samples. Apart from the negative samples,
other settings are the same (NSR = 1). To avoid bias,
Random is repeated 5 times and the average results are
used for the final evaluation. The bar chart of the results
are presented in Fig. 4 and the specific values are listed
in Additional file 3: Table S1. It can be observed from
Fig. 4 that all the four classifiers achieve significantly bet-
ter performance on all the evaluation indices when using
the reliable negative samples (colored yellow) than using
negative samples inferred by the accumulative pairwise
similarities (colored orange) and randomly generated neg-
ative samples (colored green). For example, Adaboost,
KNN, Logistic Regression, and Random Forest’s F1-Score
improvements are 24.38%, 22.75%, 14.14% and 19.92%
over Random respectively, and 14.6%, 22.35%, 7.82% and
6.89% over Pairwise respectively. Besides, with Pairwise,
Adaboost, KNN, LR and RF achieves 8.5%, 0.3%, 5.86%
and 12.19% F1-Score improvements over Random respec-
tively. The above results show that the proposed pairwise
similarity and its combination with the OCSVM signed
distances contribute the performance improvement. Bet-
ter classification boundary has been successfully learned
from the constructed reliable negative samples by these
classifiers.
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Fig. 3 The F1-Scores of four classifiers on reliable negative samples with different negative sample ratio levels. The x-axis is the negative sample ratio




Zheng et al. BMC Bioinformatics 2019, 20(Suppl 23):605

Page 7 of 9

Precision Recall
1.0 1.0
09 | — — ] ] 09 | — — ] =
0.8 0.8
0.7 0.7 |7 —‘ |7
0.6 0.6 |_
Adaboost KNN LR RF Adaboost KNN LR RF
(a) (b)
F1-Score AUC
1.0
1.0 _
0.9 _ . ] — 0.9 B - B
0.8 0.8
0.7 0.7
0.6 0.6
Adaboost KNN LR RF Adaboost KNN LR RF

(c)
|:| Random

|:| Combined

Fig. 4 Histograms of precision/recall/F1-Score/AUC values for four classical classifiers on reliable, pairwise, and randomly generated negative
samples. Panel (@) shows the precision, panel (b) shows the recall, panel (c) denotes the F1-Score and panel (d) is the AUC

(d)
:l Pairwise

Significant improvement for the domain predictive method
To further confirm the superior prediction performance
when using the reliable negative samples, we investigated
whether the existing domain predictive methods can
achieve better performance. Specifically, we conducted
experiments for the domain prediction method PKM
(pairwise kernel method), which was suggested to be the
most powerful prediction method in Ding’s review [2].
PKM first computes the pairwise similarity between two
drug-target pairs as follows:

iy ((d, 0, (d, t/)) = simy(d,d ) simy(t,£),  (7)

where sim; and sim; are the drug similarity and target
similarity (drug chemical structure similarity and target

GO similarity used in this work) respectively. Then PKM
trains an SVM (support vector machine) with the pairwise
similarity kernel to predict scores of arbitrary drug-target
pairs. As mentioned in the “Impacts of negative sample
ratio levels on the prediction performance” section, we set
the negative sample ratio as 1. We compare the prediction
performance of PKM when it used the reliable negative
samples or when it used randomly selected negative sam-
ples (the default setting of PKM). The results are shown
in Fig. 5. We can see that the performance of PKM is
improved on all the indices when using the reliable neg-
ative samples. In detail, the improvements on precision,
recall, F1-Score and AUC are significant at 22.1%, 40.3%,
33.4% and, 11.4% respectively. The result reveals that
training with the reliable negative samples, PKM learned
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a better decision boundary indeed for a significant overall
improvement on prediction performance.

Conclusions

In this work, we propose to improve drug-target pre-
dictions by constructing highly reliable negative samples
by a pairwise drug-target similarity measurement and
OCSVM (one-class support vector machine) with a high-
recall constraint. On one hand, we measure the pair-
wise similarity between every two drug-target interac-
tions by combining the chemical similarity between their
drugs and the Gene Ontology-based similarity between
their targets. Then we calculate the accumulative sim-
ilarity with all known drug-target interactions for each
unobserved drug-target interaction. On the other hand,
we obtain the signed distance using OCSVM learned
from the known interactions with high recall (>0.95) for
each unobserved drug-target interaction. After normal-
izing all accumulative similarities and signed distances
to the range [0,1], we compute the score for each unob-
served drug-target interaction via averaging its accumu-
lative similarity and signed distance. Unobserved interac-
tions with lower scores are preferentially served as reliable
negative samples for the classification algorithms. In the
experiment, we investigated how the negative sample ratio
level impacts on the prediction performance first. Then
we evaluated the performance improvement brought by
the constructed negative samples comparing with the case
of training on the random negative samples. The com-
parison experiments were conducted for four classical
classifiers and a domain specifically designed predictive
model PKM. The extensive experiments demonstrate that
the prediction performance has been improved signifi-
cantly owing to the constructed highly-reliable negative
samples.
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The proposed method is valuable to both old drug re-
positioning and new drug discovery. It can guide and
speed up the laborious, expensive and tedious experimen-
tal identification of drug-target interactions [22]. In this
work, drug chemical structures and protein related GO
terms are employed to measure the similarity between
drugs and target proteins respectively. We note that more
information about drugs (e.g., side-effects, substituents)
and target proteins (e.g., protein sequences) can be uti-
lized to measure more of their similarities. This is an
interesting problem which will be studied in our future
work.
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