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Abstract

Background: Cost-sensitive algorithm is an effective strategy to solve imbalanced classification problem. However,
the misclassification costs are usually determined empirically based on user expertise, which leads to unstable
performance of cost-sensitive classification. Therefore, an efficient and accurate method is needed to calculate the
optimal cost weights.

Results: In this paper, two approaches are proposed to search for the optimal cost weights, targeting at the
highest weighted classification accuracy (WCA). One is the optimal cost weights grid searching and the other is the
function fitting. Comparisons are made between these between the two algorithms above. In experiments, we
classify imbalanced gene expression data using extreme learning machine to test the cost weights obtained by the
two approaches.

Conclusions: Comprehensive experimental results show that the function fitting method is generally more
efficient, which can well find the optimal cost weights with acceptable WCA.
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Background
Classification of gene expression data reveals tremen-
dous information in various application fields of biomed-
ical research, such as cancer diagnosis, prognosis and
predictions [1–3]. However, the gene expression data is
composed of high-dimensional, noisy and imbalanced
data samples [4]. The characteristic of imbalanced data
is serious imbalance in the proportion of positive and
negative samples [5, 6]. Gene expression data exacts a
series of pre-processing steps to eliminate misleading
classification results [7]. Moreover, the classification of
gene expression data is a cost-sensitive problem, al-
though both positive and negative classifications of
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cancer genes provide important evidences for doctors to
make the treatment plan.
Traditional machine learning algorithms usually as-

sume that the training set is balanced. For imbalanced
datasets, such as the gene expression datasets, the clas-
sical classification algorithms with the correct classifica-
tion rates (CCR) may bias towards the majority classes.
However, the misclassifications of minority classes usu-
ally contribute the higher influences than those of ma-
jority classes. Therefore, The introduction of cost
sensitive learning (CSL) is necessary to eliminate the de-
fects of traditional classification algorithms for imbal-
anced datasets. Traditionally, oversampling the minority
class, undersampling the majority class, and synthesizing
new minority classes can be used to handle this problem.
In this work, we utilize a more sophisticated way to
search for the optimal weights, and the proposed
methods are more advanced than ever.
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In CSL, misclassification cost is an important factor to
evaluate the classification performance of imbalanced
datasets. However, solving the misclassification cost
matrix is not a trivial task in many situations [8–10]. A
direct solution for finding the misclassification costs is
to assign them manually according to user expertise or
inversely calculate the costs based on class distribution
[11–13]. More sophisticated solutions can be found by
fitting the importance of features to adaptive equations.
In this paper, we learn the misclassification cost from

the evaluation functions of cost-sensitive algorithms,
using weighted classification accuracy as the measure-
ment of cost-sensitive classification performance. The
cost weights that lead to optimal classification perform-
ance are learned by grid searching strategy. It will help
the researchers to obtain a reference weight. Then, three
fitting functions will be found to represent the optimal
cost weights. A series of comprehensive experimental re-
sults show that the function fitting approach is an effective
way of finding the optimal cost weights, targeting at high
weighted classification accuracy (WCA). Fitting functions
can accurately locate optimal weights. Appropriate weights
will greatly improve the accuracy of the model.
Imbalanced data greatly affects the accuracy of classifi-

cation. We discuss the cost-sensitive classification algo-
rithms in the imbalance problem. CSL is one of the
most hot topics in the field of machine learning. Many
works have studied on CSL and embedded the misclassi-
fication costs into various classifiers, such as the decision
trees (DTs), support vector machines (SVMs) and ex-
treme learning machines (ELMs). Chai et al. [14] consid-
ered the testing costs of missing values in naive Bayes
(NB) and DT algorithms. Feng [15] defined a customized
objective function for misclassification costs and de-
signed a score evaluation based cost-sensitive DT. For
multi-class classification problems, Feng’s method gener-
ally achieves higher classification accuracy or lower mis-
classification costs. Zhao and Li [16] extended the
evaluation function by including weighted information
gain ratio and the test cost for the cost-sensitive DT.
The proposed cost-sensitive DT algorithm not only re-
duced the misclassification cost, but also improved the
classification efficiency of the original C4.5 algorithm
[17, 18]. Lu et al. [19] made use of the cost-sensitive
DTs as base classifiers and constructed a cost-sensitive
rotational forest. Two kinds of DTs, i.e., EG2 and C4.5,
are considered and tested [20]. These experiments show
that integrating cost-sensitive to classification algorithms
can effectively improve classification efficiency.
Cost sensitivity and classification algorithms combine to

form efficient classification methods. Cao et al. [21] pro-
posed to embed evaluation measures into the objective
function for to improve the performance of a cost-sensitive
support vector machine (CS-SVM). He et al. [22] integrated
the Gaussian Mixture Model (GMM) into the CS-SVM to
deal with the imbalanced classification problem. Cheng and
Wu [23] added weights to features and introduced a
weighted features cost-sensitive SVM (WF-CSSVM). The
WF-CSSVM algorithm showed significant performance im-
provement on both aspects of accuracy and cost. Silva et al.
[24] combined CS-SVM with semi-supervised learning
method to form a hybrid classification algorithm. The ef-
fectiveness of the proposed hybrid method is shown in the
experimental results on Earth monitoring and landscape
mapping. Cao et al. [25] tackled the problem of multi-
labeled imbalanced data classification problem. They suc-
cessfully assigned different misclassification costs to differ-
ent label sets for reducing the overall misclassification cost.
CS-ELM has been studied by many researchers in vari-

ous aspects. Zong et al. [26] introduced a weighted ex-
treme learning machine (WELM) for imbalanced data
learning. It was claimed that the WELM can be extended
to a cost-sensitive ELM (CS-ELM). Zheng et al. [27] for-
mally applied the concept of the cost-sensitivity to ex-
treme learning machine (ELM). Yan et al. [28, 29]
extended Zheng et al.’s work and introduced a cost-
sensitive dissimilar ELM (CS-D-ELM). Compared to
traditional ELM algorithms, the CS-ELM algorithms
guarantee the classification accuracy and reduce the mis-
classification cost. More recently, Zhang and Zhang [30]
solved the problem of defining and optimizing the cost
matrix for CS-ELM to make it more robust and stable
[31, 32]. Zhu and Wang [33] treated CS-ELM as a base
classifier to solve a semi-supervised learning problem.
Incremental results show that the CS-ELM has better
performance in terms of accuracy, cost, efficiency and
robustness over other existing classifiers.

Classical definition of cost matrix
Considering the binary classification problem, the confusion
matrix shows four types of classification results according to
the prediction values, namely, true positive, false positive,
false negative and true negative (Table 1) [34, 35].
The CSL seeks the overall minimum cost by introdu-

cing sensitive costs, rather than only aiming at high
CCR. While there are several types of classification costs,
it should be noted that this work only focuses on the
misclassification cost.
Misclassification cost can be viewed as penalties

for errors in the classification process. In binary
classification problems, costs caused by different
types of errors may be different. We define the mi-
nority class as positive (P), the majority class as
negative (N), and construct the cost matrix C as
shown in Table 2.
In Table 2, C00 and C11 show the cost of correct

classification. By default, we set the costs of correct
classifications as 0. C01 and C10 show the costs of



Table 1 The confusion matrix for binary classification

Prediction of Positive Prediction of Negative

Positive samples True Positive TP False Negative FN

Negative samples False Positive FP True Negative TN

Table 3 Specifications of datasets
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error classifications, where C01 denotes the misclassi-
fication costs of samples from P class, and C10 de-
notes the misclassification costs of samples from N
class. Therefore, the cost matrix in Table 2 can be
simplified as:

C ¼ 0 C01

C10 0

� �
ð1Þ

Correct classification rates versus weighted classification
accuracy
For classical machine learning problems, the classifi-
cation accuracy always refers to the correct classifica-
tion rate (CCR) [36–38], or called overall accuracy
(OA) [39–42], which is the proportion of all correctly
classified samples:

OA ¼ TP þ TN
TP þ FN þ TN þ FP

� 100% ð2Þ

However, for imbalanced datasets where the numbers
of positive and negative samples differ significantly, the
CCR might be misleading [43, 44]. Considering a test set
containing 99 negative samples but with only one posi-
tive sample [45, 46], a poorly designed classifier that
simply puts all samples as negative will achieve an over-
all accuracy of 99/100 = 0.99, even though the accuracy
for positive class is 0. To resolve this issue, we introduce
the notion of adaptive classification accuracy (ACA) de-
fined as follows:

ACA ¼ 1
2
� TP

TP þ FN
þ TN
TN þ FP

� �
ð3Þ

By embedding a weight wi into the i-th class, we get
the weighted classification accuracy (WCA) as:
Table 2 Cost matrix

Predicted Actual P N

P C00 C01

N C10 C11
WCA ¼ w1

w1 þ w2
� TP
TP þ FN

þ w2

w1 þ w2

� TN
TN þ FP

ð4Þ

By enforcing w1 +w2 = 1, Formula (9) is reduced to:

WCA ¼ w1 � TP
TP þ FN

þ w2 � TN
TN þ FP

ð5Þ

Formula (10) can be easily extended to multi-
classification problems:

WCAn ¼
Xn
i¼1

wi
CMi

Mi
;
Xn
i¼1

wi ¼ 1 ð6Þ

where n denotes the number of classes, Mi (i = 1,
2,..., n) denotes the number of samples belonging to
the i-th class, and CMi (i = 1, 2,..., n) denotes the
number of correctly classified samples within i-th
class. Since the WCA is more accurate describing
the classification accuracy, we use the WCA to
evaluate the classification performance of cost-
sensitive classifiers in the problem of gene expres-
sion data classification.

Methods
Optimal cost weights searching
From the University of California Irvine (UCI) standard
classification dataset, we choose Leukemia, Colon, Pros-
tate, Lung and Ovarian gene as the datasets for cost
weights searching and further test, i.e., the Leukemia
cancer dataset, the Colon cancer dataset, the Prostate
cancer dataset, the Lung cancer dataset, and the Ovarian
cancer in the tumor data respectively. All details of
aforementioned datasets are shown in Table 3.

Optimal cost weights searching by grid searching
strategy
The optimal weights are searched by an adaptive algo-
rithm using grid searching. There are two crucial factors
to consider: the sample importance w and sample cat-
egorical distribution p. The sample categorical distribu-
tion p is the proportion between the number of positive
Dataset Sample number Feature dimension Classification number

Leukemia 34 7130 2

Colon 62 2000 2

Prostate 136 12600 2

Lung 181 12533 2

Ovarian 253 15154 2



Table 4 Grid Searching Strategy

Grid Searching Strategy

1: procedure GRIDSEARCHING(M, T, P0)

2: P = P0

3: f = WCA(P)

4: if P < M then

5: P = P + T

6: if f > fmax then

7: fmax = f

8: Pmax = P

9: end if

10: end if

11: return Pmax, fmax

12: end procedure

Lu et al. BMC Bioinformatics 2019, 20(Suppl 25):681 Page 4 of 10
class and negative class in test sets. Test set is con-
structed by random sampling. As such, it is necessary to
study the relationship between the three factors, namely,
w, p and WCA, where WCA is the fitness value for the
grid searching strategy. In general, the grid searching
strategy can be described as follows (the detailed algo-
rithm steps are listed in Table 4):
1) Set the searching region as M, grid searching step

size as T, and the initial position as P0;
2) Calculate the fitness of the current position, record the

position Pmax that has the best fitness fmax (fmax =WCA);
3) Update current location, P=P + T;
4) if the current fitness value is greater than fmax, up-

date fmax and Pmax;
5) return fmax and Pmax.

Extreme learning machine is an effective single
hidden-layer feed-forward neural network (SLFN) learn-
ing algorithm. Cost-sensitive extreme learning machine
(CS-ELM) is a kind of ELM, which attaches a cost
Table 5 Optimal weights for different data set

Data set Sample categorical Influence facto

distribution p w1/(w1+w2)

Colon 1 0.2

Leukemia 1.33 0.9

Ovarian1 1.68 0.9

Prostate1 2 0.9

Prostate2 2.5 0.9

Lung1 3 0.9

Ovarian2 4 0.1

Lung2 5 0.1

Ovarian3 6.5 0.9

Lung3 8 0.9
matrix on output layer. In this research, we set the num-
ber of hidden neurons at 10. Less neurons will make the
result more sensitive to observe the change of weights.
And seven different gene expression datasets are used to
obtain the classification results with CS-ELM as the clas-
sifier. CS-ELM minimizes the conditional risk by embed-
ding misclassification cost in ELM.

argmin R ijxð Þ ¼ argmin
X
j

P jjxð Þ•C i; jð Þ ð7Þ

where R(i|x) is the conditional risk when the sample x is
assigned to the class i, and P(j|x) is the conditional prob-
ability that x belongs to j, C(i, j) is the risk of misclassify-
ing j to class i, where i, j ∈ {c1, c2, …, cm} and m is the
number of classification categories.

Results
Optimal cost weights searching by function fitting
In this subsection, we use w and p as independent vari-
ables, and define a function fitting problem as:

wc ¼ f w; pð Þ ð8Þ

where wc =C01/C10, w =w1/(w1 +w2) and p represents the
proportion of positive and negative classes. We set C10 to
1 to reduce the complexity of calculation, i.e., fc =C01.
The sample distribution p, the optimal weight wc =

C01/C10 and the highest fitness value of each dataset are
listed in Table 6.
We use an automatic fitting software named 1STOPT

to do the function fitting [47]. In 1STOPT, Levenberg-
Marquardt and Universal Global Optimization are used
to fit functions. We compared 500 functions with differ-
ent types, and selected the three functions with the high-
est correlation coefficient:
rs Optimal
weights
wc

WCA

w2/(w1+w2)

0.8 1.03 0.6167

0.1 0.9 0.9179

0.1 1.65 0.9055

0.1 1.06 0.939

0.1 1.04 0.9372

0.1 0.93 0.92

0.9 3.45 0.9094

0.9 4.26 0.9078

0.1 0.8 0.9075

0.1 0.92 0.9009



Table 6 Datasets, cost weights and WCAs with the two approaches proposed

Dataset Cost weight WCA

type p w optimal wc1 wc2 wc3 optimal wc1 wc2 wc3 ECSELM

ovarian 1.68 0.1 1.65 1.63 1.53 1.58 0.9055 0.9695 0.1966 0.2084 0.1017

Prostate 2.5 0.9 1.04 1.05 1.05 1 0.9372 0.9815 0.9509 0.9869 0.8985

Lung1 5 0.1 4.26 4.03 4.1 3.94 0.9078 0.9778 0.9786 0.9779 0.875

Lung2 8 0.9 0.92 0.9 0.66 0.61 0.9009 0.9564 0.9762 0.9675 0.9
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wc1 ¼ f 1 w; pð Þ

¼ a1 þ a2 � wþ a3 � w2 þ a4 � w3 þ a5 � a12 � lnpþ a6 � a12 � lnpð Þ2
1þ a7 � wþ a8 � w2 þ a9 � a12 � lnpþ a10 � a12 � lnpð Þ2 þ a11 � a12 � lnpð Þ3

ð9Þ
where a1 = 1.323, a2 = − 2.278, a3 = 3.047, a4 = − 1.286,
a5 = − 1.746, a6 = 0.998, a7 = − 0.400, a8 = 0.369, a9 = −
2.606, a10 = 2.544, a11 = − 0.818, a12 = 0.482. The correl-
ation coefficient R1 of f1 is 0.96346.

wc2 ¼ f 2 w; pð Þ ¼ b1 þ b3 � wþ b5 � lnpþ b7 � w2 þ b9 � ln2pþ b11 � w � lnp

1þ b2 � wþ b4 � lnpþ b6 � x2 þ b8 � ln2pþ b10 � w � lnp

ð10Þ
where b1 = 1.008, b2 = 2.618, b3 = 1.743, b4 = − 0.808,
b5 = 0.297, b6 = 2.327, b7 = 4.605, b8 = 0.406, b9 = 0.699,
b10 = − 2.343, b11 = − 4.984. The correlation coefficient
R2 of f2 is 0.95903.

wc3 ¼ f 3 w; pð Þ ¼ c1 þ c3 � lnwþ c5 � pþ c7 � ln2wþ c9 � p2 þ c11 � p � lnw

1þ c2 � lnwþ c4 � pþ c6 � ln2wþ c8 � p2 þ c10 � p � lnw

ð11Þ
where c1 = 1.279, c2 = 0.574, c3 = 0.943, c4 = − 0.152, c5 =
− 0.291, c6 = 0.113, c7 = 0.154, c8 = 0.009, c9 = 0.018, c10 =
Fig. 1 The values of function wc1 compared with the optimal weights
− 0.062, c11 = − 0.250. The correlation coefficient R3 of f3
is 0.95244.
We compare the fitting functions with the optimal

weights in Figs. 1, 2 and 3.
Figures 1, 2 and 3 show the comparison results of the

three-dimensional interpolation of optimal weights and
fitting functions. The red surface represents the optimal
weights. The green, yellow, blue planes are fit surfaces of
f1, f2 and f3. The correlation coefficient R of f1, f2 and f3
identified that the overall fitness of the function f1 is bet-
ter than other two. The function f2 gradually deviates
from optimal weights while we increase the value of w,
and decrease the value of p. The function f3 is slightly
coarser than the function f1 in general.
Discussion
Comparison with grid searching and function fitting
Using different gene expression datasets, we compared
the optimal cost weights obtained from the grid search-
ing strategy and fitted functions f1, f2 and f3. In Table 6,
we compared the WCAs with four different datasets,
namely, Ovarian, Prostate, Lung1 and Lung2. The ma-
jority over minority class proportion of the four datasets



Fig. 2 The values of function wc2 compared with the optimal weights
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are 1.68, 2.5, 5 and 8 respectively. All WCAs are com-
puted using ELM as the base classifier. We also compare
the two approaches with ECSELM. The best fit datasets
are listed in Table 6.
For each dataset, we plot the weight variance with

different values of w. For different dataset, the fittest
function (choice from f1, f2 and f3) might be different
(Fig. 4).
Figure 4 shows that the more unbalanced the dataset

is, the higher degree of fitness we can get; and the cost
weights obtained from the fitting functions are closer to
the optimal weights. In addition, the cost weights from
function f1 and f3 are slightly superior to f2. We put all
Fig. 3 The values of function wc3 compared with the optimal weights
cost weights obtained by different methods in a three-
dimensional picture and show the results in Fig. 5.
For each dataset, we also illustrate the comparison of

WCAs against different w values (Fig. 6). Besides, we com-
pare WCAs of optimal weights and f1–3 with ECSELM [48].
In Fig. 6, we can see that the WCAs of the three fitting

functions are lower than the optimal accuracy when w is
less than 0.5. The reason is that the fitting degree of the
cost weights in this range is lower. Moreover, it can be
seen from Fig. 6 that the WCAs of the fitting functions
approach to the optimal accuracy with the increment of
p. Furthermore, the WCAs of our approaches is better
than ECSELM in most field. Compared with ECSELM,



Fig. 4 Cost weight comparison using Ovarian, Prostate, Lung1, Lung2 dataset (p = 1.68, 2.5, 5, 8)
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our methods are more stable, and meanwhile can guar-
antee high WCA. This proves the robustness of our
strategy. Similar to the case of cost weights, we ensemble
all WCAs obtained by different methods in a three-
dimensional picture (Fig. 7). In summary, we find that
the function f1 provides better classification performance
than the other two functions in general; and the fitting
function f3 and f2 have better performance while the
valuable p is large (when p above 5).
Fig. 5 Cost weight comparison in overall
Conclusions
In this paper, we have proposed two approaches to
calculate the optimal cost weights for gene expression
data. The two approaches include a grid searching
strategy and a function fitting method. They enrich
the ways of calculating the cost weights for imbal-
anced data classification problems. In general, the
function fitting approach is more efficient than the
grid searching strategy. The experimental results also



Fig. 7 The WCA comparison in 3-dimension

Fig. 6 WCA comparison with Ovarian, Prostate, Lung1, Lung2 dataset (p = 1.68, 2.5, 5, 8)

Lu et al. BMC Bioinformatics 2019, 20(Suppl 25):681 Page 8 of 10



Lu et al. BMC Bioinformatics 2019, 20(Suppl 25):681 Page 9 of 10
show that the function fitting approach can accurate
find the optimal cost weights for imbalanced gene ex-
pression datasets.
The limitation of this work is that, although the ELM

classifier is tested, the stability of the function fitting
method is not proven, especially for other significantly
different datasets. The exploration of the proposed algo-
rithm’s stability is left as future work.
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