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Abstract

Background: In ab initio protein-structure predictions, a large set of structural decoys are often generated, with the
requirement to select best five or three candidates from the decoys. The clustered central structures with the most
number of neighbors are frequently regarded as the near-native protein structures with the lowest free energy;
however, limitations in clustering methods and three-dimensional structural-distance assessments make identifying
exact order of the best five or three near-native candidate structures difficult.

Results: To address this issue, we propose a method that re-ranks the candidate structures via random forest
classification using intra- and inter-cluster features from the results of the clustering. Comparative analysis indicated
that our method was better able to identify the order of the candidate structures as comparing with current
methods SPICKR, Calibur, and Durandal. The results confirmed that the identification of the first model were closer
to the native structure in 12 of 43 cases versus four for SPICKER, and the same as the native structure in up to 27 of
43 cases versus 14 for Calibur and up to eight of 43 cases versus two for Durandal.

Conclusions: In this study, we presented an improved method based on random forest classification to transform
the problem of re-ranking the candidate structures by an binary classification. Our results indicate that this method
is a powerful method for the problem and the effect of this method is better than other methods.

Keywords: Protein structural prediction, Random forest, SPICKER
Background
Proteins are basic elements involved in biological func-
tions. Recent advances in computational methods and
algorithmic efficiency have enabled prediction of the three-
dimensional (3D) structures of proteins from their
sequences, which represents an increasingly important
method for exploring their roles, networks, functions, and
potentials as drug targets. Whether comparative modeling,
protein threading modeling, or ab initio modeling, detect-
ing the lowest free energy model (best model) from decoys
by clustering represents an important step in protein-
structure prediction [1]. In these methods, decoys are clus-
tered, and the centroid structures of each cluster are
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reported as the final predicted structures. In popular
protein-structure-prediction systems, including I-TASSER
[2], MODELLER [3], and Rosseta [4], clusters are created
iteratively. One criterion for clustering involves choosing
decoys with more neighbors over decoys with fewer neigh-
bors. The cluster centers ranked according to cluster size
and suggested that larger cluster centers are closer to the
best near-native models.
Zhang and et al. [5] developed SPICKER, which uses a

simple and effective strategy to identify near-native con-
formations via cluster analysis. In the strategy, the best
of the top five identified folds has a root-mean-square
deviation (RMSD) from the native structure in the top
1.4% of all decoys. For 78% of the proteins, the differ-
ence in the model RMSD from the native structure and
that of the native structure to the absolutely best indi-
vidual decoy is < 1 Å. Li and Ng [6] proposed Calibur,
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which uses three strategies to enhance performance,
which remains stable, regardless of increases in the
number of decoys, and Francois et al. [7] proposed a fast
method effective for large-scale models. Clusco [8] was
developed to compare high-throughput protein models
using different similarity measures, including those gen-
erated using parallel execution on CPUs and GPUs. Li
et al. [9] proposed an efficient clustering method allow-
ing rapid estimation of cluster centroids and efficient
pruning of rotation spaces. Although these methods im-
proved the accurate detection of optimal near-native
models and accelerated the clustering process, their ac-
curacy is lacking, as usually cluster centers harboring the
largest models might include the closest model to the
native structure due to inaccuracies related to evaluating
the lowest free energy and 3D distance metrics. These
stat-of-art methods have successfully explored the best
five or three candidate structures from the decoys, but
unfortunately sometime they failed to give a correct
order of the five or three candidate structures. The ac-
curacies of SPICKER, Calibur, and Durandal in predict-
ing the first model are 60, 44, and 49%, respectively,
with 17, 31, and 27 incorrectly ranked models in candi-
dates, respectively. If we can re-rank the candidate struc-
tures in 100% correct order, the average RMSD of the
first model can be improved 11.9, 16.3 and 15.9% with
SPICKR, Calibur, and Durandal.
To address this issue, we propose an algorithm based on

random forest classification to re-rank candidate structures
detected by clustering. The algorithm solves the problem of
re-ranking candidate structures by an binary classification,
taking the length of the protein, PSSM (position-specific
scoring matrix), the size of each cluster category associated
with the protein, the average RMSD and average TM_
SCORE [10] between the models and the other four
models, and the average RMSD and average TM_SCORE
between each model and all other models in the cluster cat-
egory as features. Finally, the RMSD between each protein
and its corresponding native protein is used as a label. Our
results suggest that the algorithm chooses the first models
were closer to the native structure in 12 of 43 cases versus
four for SPICKER, and the same as the native structure in
up to 27 of 43 cases versus 14 for Calibur and up to eight
of 43 cases versus two for Durandal.

Method
Cluster methods for detecting candidate near-native
structures
Protein-structure clustering is an important step in pro-
tein 3D structure, function, and interaction predictions.
Structure-prediction methodologies involving clustering
require identification candidate structures with the high-
est degree of similarity to the native structure from a
large number of decoy structures, generated by the free
modeling or template modeling, based on 3D structures
similar to those provided to the clustering algorithm.
The following three methods represent current methods
for detecting near-native models.

SPICKER
The method developed by Zhang and et al. [5] generates
clusters in a single-step process using a set of shrinking
scales, followed by dynamic adjustment of the
conformational-similarity threshold between candidate
pairs during each iteration. After labeling a set of 1489
non-homologous proteins representing all protein struc-
tures in the PDB > 200 residues, a fast algorithm for
population-based protein structural model analysis was
proposed. Two new distance matrices for describing the
differences and similarities among models were devel-
oped. Compared with existing methods using calculation
times quadratic to the number of models, Dscore1-based
clustering achieves linear-time complexity to obtain al-
most the same accuracy for near-native model selection.

Calibur
The method developed by Li and Ng [6] clusters decoys
using proximate decoy organization, preliminary screen-
ing via lower and upper bounds, and outlier filtering.
This method scales well with respect to increases in the
number of decoys and automatically discovers a suitable
threshold distance for clustering based on the decoys
used as input. Several algorithms for this discovery are
implemented in Calibur, with the fastest used by default.

Durandal
The method developed by Francois and et al. [7] works
on large decoy sets and is consistently faster than other
methods in the performance of exact clustering. In some
cases, Durandal also outperforms approximate methods,
with this attributed to its use of triangular inequality to
accelerate exact clustering without compromising the
distance function.
Although these three clustering methods can detect

near-native models, the limitations of clustering methods
and three-dimensional structure-distance evaluation make
it difficult to determine the exact order of the candidate
structures. Therefore, we chose to use random forest clas-
sification to re-rank the near-native models obtained by
the three clustering algorithms.

Inter-cluster and intra-cluster features
Feature selection is one of the key issues of the any ma-
chine learning method. The complex biological evolution-
ary process increases the difficulty of feature selection [11,
12]. This re-rank task is closely related to the protein and
the cluster information, so we divided the seven features
employed by the method into three categories: protein
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features, intra-cluster features (information within each
cluster) and inter-cluster features (relationships between
clusters). Proteins features are directly related to the pro-
tein information include 1) the length of the protein se-
quence and 2) position-specific scoring matrix, PSSM
which is a way of encoding amino acids. The type of the
PPSM is a matrix which has N lines that represent the
number of amino acid in the protein and M columns that
the number of types of amino acid. We converted this
matrix into an vector of length 1 × (MAXN ×M) and
spliced it into a vector of length 6 +MAXN×M with the
other six features. If N is greater than MAXN,we take
MAXN. Intra-cluster features include the following: 3) the
size of the clusters, which means the number of elements
in the clusters; 4) the average RMSD between the cluster
center and the remaining models in the cluster which rep-
resents the similarity of intra_cluster; and 5) the average
Fig. 1 Schematic of the re-ranking method via random forest classification
TM_SCORE between the cluster center and the remaining
models in the cluster which represents the similarity of
intra_cluster. Inter-cluster features include the following:
6) the average RMSD between the current center model
and the other four center models, which represents the
similarity of inter_cluster; 7) the average TM_SCORE be-
tween the current center model and the other four center
models, which represents the similarity of inter_cluster.

The schematic of the method
Random forest classification employs a combination of the
bagging algorithm and the random subspace algorithm [13,
14], with a decision tree used as a foundation of the method
[15, 16]. Classification accuracy is improved by combining
multiple decision trees: h1(x), h2(x), …, hnTree(x) [17, 18].
Once the random forest classifier is obtained (Fig. 1), classi-
fication of samples of unknown categories is performed.
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The original data T = (xi1, xi2, xi3,…, xi6 +MAXN ×M, yi),
i ∈ [1,N] (the index i represents ith samples in the original
and the index x represents each feature of the random for-
est.) contains N samples corresponding to 6 +MAXN×M
features in the dataset. Y = yi, i ∈ [1,N] is the category label
that corresponds to the RMSD between each decoy and the
native protein structure. yi takes c ≥ 2 values, which repre-
sent c classifications. The method used four different ran-
dom forest to identify the first model, the second model,
the third model, the forth model and the fifth model. Each
random forest is a binary classification where “1” represents
the candidate that has minimum RMSD with native protein
and “0” represents the remaining candidates in decoys. We
built these four random forest sequentially. After each ran-
dom forest was completed, we selected candidate that la-
beled “1” as the best near-native model and removed it
from the decoys. At the same time, we used the remaining
candidates as the input for the next random forest. The
method was done until all candidates were selected. The
process of method is shown in Fig. 1.

Algorithm
The first step involves clustering using each method in
order to obtain K clusters [19, 20], followed by ranking
by the number of proteins in each category and extract-
ing the top five or three optimal models [21], which are
divided into a training set and a test set.
The training set T1 is randomly divided into N sub-

datasets which are the number of trees in forest that is
set as 100, discretization of each continuous attribute
using the dichotomy, and the best classification node is
selected from the 6 +MAXN ×M features using infor-
mation entropy [22]. The feature with the best value is
selected as the best split feature [23], with Eq. (1) show-
ing the calculation method. Until the division of the fea-
ture ends, a decision tree is formed, the result is
obtained according to the voting criterion. And until the
N trees are constructed, the random forest is completed.

Entropy Tð Þ ¼ −
X4

i¼1
Pi log2Pi ð1Þ

According to Eq. (1), the larger the information entropy,
the higher the purity of the data. Pi represents the propor-
tion of category i samples relative to the total number of
samples. Therefore the training set T1 is divided n parts
which equal to the number of attribute values of the fea-
ture that is chosen by the information entropy.
Finally, the test set is used to obtain the sorted results [24].
The end conditions of the random forest algorithm are

as follows: the decision tree reaches the maximum
depth, and the end node impurity reaches the threshold,
and the number of samples at the end node reaches the
set value, and the features are fully used. The algorithm
of random forest is shown in Table 1.
Evaluation indices
To evaluate the performance of the re-rank method, the
RMSD and TM_SCORE are used to evaluate the dis-
tance of models to the native structure, respectively.

RMSD
As a commonly used measure of the difference between
protein structures, RMSD describes variation between two
models. The RMSD represents the sample standard devi-
ation of the difference between the predicted value and
the observed value. When these differences are estimated
by data samples, they are often referred to as residuals,
whereas when they are not calculated by samples, the dif-
ferences are referred to as prediction error. The RMSD is
mainly used to aggregate the size of the error in the pre-
diction and often expresses this prediction as a magnitude
at different times. The RMSD is a measure of good accur-
acy and generally used to compare the predicted error of a
particular variable between different models [25–27].
RMSD is calculated according to Eq. (2):

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

1
x2i −x

2
j

� �
þ y2i −y

2
j

� �
þ z2i −z

2
j

� �r

ð2Þ

where N is the number of atoms corresponding to the
two proteins i and j.

TM_SCORE
TM_SCORE measures structural similarity between
two protein models. This index addresses global mul-
tiple similarity and is insensitive to local structural
changes, with the TM_SCORE of random structure
pairs generally independent of sequence length. TM_
SCORE values are presented as a set (0, 1), where 1
represents a perfect match between two structures.
According to calculations of TM_SCORE using struc-
tures from the Protein Data Bank, a score > 0.17 cor-
responds to randomly selected unrelated proteins,
whereas a score > 0.5 assumes highly similar folds
[28]. TM_SCORE is calculated according to Eq. (3):

TM Score ¼ Max
1
Ln

XLa

i

1

1þ di
d0

� �2

2
64

3
75 ð3Þ

where Ln is the sequence length of the native struc-
ture, La is the sequence length of the residue-specific
alignment with the template structure, di is the dis-
tance residual between the ith alignment, d0 is the
scale of the standardized matching difference, and
Max indicates the maximum value after optimal
spatial superposition.



Table 2 Datasets

Data set Number of proteins Average length

I-TASSER Decoy Set-I 43 80

QUARK Decoy Set 145 107

CASP10 dataset 54 212

CASP11 dataset 39 203

Table 1 Improved detection of near-native structures via random forest classification
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Results
Datasets
Four datasets are employed in the experiments. They are
I-TASSER Decoy Set-I, QUARK Decoy Set, CASP10
dataset and CASP11 dataset which are generated by I-
TASSER and QUARK (https://zhanglab.ccmb.med.
umich.edu/decoys/). These datasets are widely used to
evaluate protein decoy clustering [29]. We used I-
TASSER Decoy Set-I as a test dataset and the other
three datasets as the training sets. Table 2 provides an
overview of the four datasets.
The TASSER Decoy Set-I contains a complete set

of atomic structure decoys for 56 non-homologous
proteins. Among them, 13 proteins whose decoys are
not able to cluster into more than five clusters are re-
moved. The remaining 43 proteins are employed in
the dataset. The backbone structure was ab initio
modeled by I-TASSER, and side-chain atoms were
added using Pulchra (http://www.pirx.com/pulchra/
index.shtml).
The QUARK Decoy Set contains 145 non-homologous

proteins. The backbone structure was ab initio modeled
by QUARK, with the all-atom and models of the best
candidate generated by ModRefiner (https://zhanglab.
ccmb.med.umich.edu/ModRefiner/).

https://zhanglab.ccmb.med.umich.edu/decoys/
https://zhanglab.ccmb.med.umich.edu/decoys/
http://www.pirx.com/pulchra/index.shtml
http://www.pirx.com/pulchra/index.shtml
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
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The CASP10 dataset relies upon I-TASSER and
QUARK decoys for single-domain proteins in CASP10
that the I-TASSER server predicted as belonging to a
single domain. The dataset contains 54 proteins with ex-
perimental structures resolved before the CASP10 meet-
ing. The data harbor a gap between the submitted model
and the best model among the decoys; therefore, choos-
ing the best model relative to the experimental structure
is extremely challenging.
The CASP11 dataset includes decoys generated by I-

TASSER and QUARK for CASP11 targets and that the I-
TASSER server predicted as belonging to a single domain.
Multi-domain targets were ignored to avoid the possibility
that ambiguity in domain splitting might render the decoys
meaningless. These decoys were used during CASP11.

Comparison of the three clustering methods with random
forest classification
We evaluated the ability of the method to identify
near-native structures relative to that of previous
methods according to clustering methodology. Predic-
tions were performed across the same time points,
with the first false prediction leading to inaccuracies
in subsequent predicted models and resulting in poor
rankings. The comparative analysis removes the
ranked data and ranks the remaining data for subse-
quent rounds of processing.
Fig. 2 Comparison of RMSD of the second model in the absence of the fir
Comparison of the first model
Because the RMSD between decoy models and the
native model is used as a label for the random forest
classifier, we assigned model with the lowest RMSD
as label “1”, and the remaining models as label “0” to
establish a two-category set (0,1) for ranking. How-
ever, the percentage of model with “0” is four-fifths
and the percentage of model with “1” is one-fifth,
there is an imbalance of the training set. We used
over-sampling to increase the amount of data in the
“1” case, so that we can reduce the imbalance of
training set. The 43 sets representing the protein data
were submitted for training, with the models having
an RMSD of “1” predicted as the first model. Com-
paring RMSD values between the first model pre-
dicted by the random forest classifier and those
predicted using the three different clustering methods
indicated that our method outperformed the others
(Table 3).
Use of the random forest classifier ranked the can-

didate structures with higher accuracy according to
average RMSD. Twelve of the models predicted by
the random forest classifier were closer to the native
structure than those predicted by SPICKER, 27 were
the same, and four were inferior. The average RMSD
decreased 8.40% from 5.36 to 4.91 after ranked by
random forest classifier. Twenty-one of the models
st model
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predicted by the random forest classifier were closer
to the native structure than those predicted by Cali-
bur, eight were the same, and 14 were inferior. Fi-
nally, six of the models predicted by the random
forest classifier were closer to the native structure
than those predicted by Durandal, 35 were the same,
and two were inferior. These data indicated that the
random forest classifier allowed more accurate order
of candidate structures exhibiting the highest degree
Fig. 3 Comparison of the RMSD of the third model and the fourth model.
RMSD of the fourth model
of similarity to the native structure relative to the
three other methods.
Comparison of the second model
After removal of the first model from the dataset,
we followed the same algorithmic procedure to es-
tablish the optimal RMSD values between decoy
models and the native structure, resulting in another
a. Comparison of the RMSD of the third model. b. Comparison of the



Wu et al. BMC Bioinformatics 2019, 20(Suppl 25):683 Page 10 of 13
two-category set (0,1). However, the percentage of
model with “0” is three-fourths and the percentage
of model with “1” is one-fourth. We used over-
sampling to overcome the imbalance of training set.
Comparing RMSD values between the first model
predicted by the random forest classifier and those
predicted using the three different clustering
methods indicated that our method outperformed
the others (Fig. 2).
Use of the random forest classifier generated

predictions with higher accuracy according to
average RMSD. Fifteen of the models predicted by
the random forest classifier were closer to the native
structure than those predicted by SPICKER, 22 were
the same, and six were with higher RMSDs, resulting
in a 21% increase in accuracy. Eleven of the models
predicted by the random forest classifier were closer
to the native structure than those predicted by Cali-
bur, 19 were the same, and 13 were worse, resulting
in a 4% increase in accuracy. Sixteen of the models
predicted by the random forest classifier were closer
to the native structure than those predicted by
Durandal, 19 were the same, and eight were worse,
resulting in a 18% increase in accuracy. These data
indicated that the random forest classifier allowed
more accurate prediction of models exhibiting the
highest degree of similarity to the native structure
relative to the three other methods.

Comparison of the third model and the fourth model
Since Calibur and Durandal usually predict only the
three of the near-native candidate structures, while
SPICKER can predict five structures, the comparisons
of the third and the fourth models are only imple-
mented against SPICKER. Comparing RMSD values
Fig. 4 Comparison of the numbers of correct predictions
between the third and the fourth model predicted by
the random forest classifier and those predicted using
the three different clustering methods indicated that
our method outperformed the others (Fig. 3). In the
Fig. 3a, the random forest classifier ordered predictions
with higher accuracy according to average RMSD. Six-
teen of the models predicted by the random forest clas-
sifier were closer to the native structure than those
predicted by SPICKER, 17 were the same, and ten were
worse, resulting in a 14% increase in accuracy. In the
Fig. 3a, Use of the random forest classifier generated
predictions with higher accuracy according to average
RMSD. Eleven of the models predicted by the random
forest classifier were closer to the native structure than
those predicted by SPICKER, 27 were the same, and
five were worse, resulting in a 14% increase in accuracy.
These data indicated that the random forest classifier
allowed more accurate prediction of models exhibiting
the highest degree of similarity to the native structure
relative to SPICKER.

Comparison of the numbers of correct predictions
The Fig. 4 indicated that the random forest classifier
allowed more accurate prediction of models exhibiting
the highest degree of similarity to the native structure
relative to three clustering methods. After re-ordered
by RF_SPICKER, 35(81.39%) out of 43 first models
are exactly identified, while SPICKER only correctly
identified 26(60.46%) first models. When detecting the
second third and fourth models, RF_SPICKER cor-
rectly predicted 4, 5 and 6 targets more than
SPICKER, respectively. Even if Calibur and Durandal
usually predict only three near-native candidate struc-
tures, RF_Calibur and RF_ Durandal successful pre-
dicted 1 and 5 more targets than Calibur and
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Durandal on the first model respectively. And they
successful predicted 1 and 8 more targets on the sec-
ond model respectively.

Discussion
1dcj is a small protein encoded by the yhhP gene in
the Escherichia coli database. Its high precision NMR
(Nuclear Magnetic Resonance) structure is identified
by Katoh E and his colleagues at 2000 [30–32]. In
the previous research the cell division process is re-
lated to 1dcj although the precise biological function
of this protein has not been yet identified. The
serum glycoprotein C5a(1kjs) is derived from the
proteolytic cleavage of complement protein C5, has
been implicated in the pathogenesis of a number of
Fig. 5 Visual Comparison of random forest classifier and current prediction
inflammatory and allergic conditions [16, 33]. The
three-dimensional structure is detected by two-
dimensional NMR. The computational structures are
very useful for protein functional and evolutional
understanding.
Visual structural comparisons of native, SPICKER,

Calibur and Durandal are shown in the Fig. 5a and b.
The native structure is in green, the first models de-
tected by SPICKER, Calibur and Durandal are in yel-
low, and the re-ranked models predicted via random
forest classification are in red. In the visual compari-
son on 1dcj, both SPICKER model (1dcj, RMSD
11.66) and RF_SPICKER model (1dcj, RMSD 10.45)
successful built two helixes in the purple circles, but
the helixes of RF_SPICKER model are more closer to
methods on 1dcjA and 1kjs_
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the native structure. The native structure of 1dcj has
three beta-strand motifs. Although prediction of the
three-dimensional structure of beta-strand is com-
monly regarded as difficult task, the random forest
classification successfully choose RF_Calibur model
(1dcj, RMSD 11.66) with one beta-strand as the first
model. Unfortunately Calibur choose the model (1dcj,
RMSD 12.18) without any beta-strand. The main dif-
ference between Durandal model (1dcj, RMSD 11.95)
and RF_Durandal model (1dcj, RMSD 9.96) is the lo-
cation of first helix region. On the protein 1kjs,
SPICKER model (1kjs, RMSD 8.67) completely failed
to build the right-side short helix, while the RF_
SPICKER model (1kjs, RMSD 5.88) has this short
helix and only the direction of the helix is not exactly
consistent with the native helix. In Calibur and Dur-
andal model comparison, RF_Calibur model (1kjs,
RMSD 5.89) and RF_Durandal model (1kjs, RMSD
5.92) successfully built the short helix rather than
Calibur model (1kjs, RMSD 8.44) and Durandal model
(1kjs, RMSD 8.74) and well aligned with the native
model.

Conclusion
This study presented a method re-order the candidate
near-native structures by random forest classification
after the clustering methods explored the five or three
candidate structures. The method employed four binary
classifier to detect the first, second, third, fourth and
fifth model with protein features, inter-cluster features
and intra-cluster features. To evaluate the performance
of the method four widely-used datasets, I-TASSER
Decoy Set-I, QUARK Decoy Set, CASP10 dataset and
CASP11 dataset, are employed. Comparison with three
dominated methods, the method decreased the average
RMSD 8.40% from 5.35 to 4.91 for SPICKER, decreased
9.76% from 5.53 to 4.99 for Calibur and decreased the
average RMSD 3.91% from 5.36 to 5.15 for Durandal on
the first model.
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