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Abstract

Background: Protein structure prediction has always been an important issue in bioinformatics. Prediction of
two-dimensional structure of proteins based on the hydrophobic polarity model is a typical non-deterministic
polynomial hard problem. Currently reported hydrophobic polarity model optimization methods, greedy meth
brute-force method, and genetic algorithm usually cannot converge robustly to the lowest energy conformati
Reinforcement learning with the advantages of continuous Markov optimal decision-making and maximizing
cumulative return is especially suitable for solving global optimization problems of biological sequences.

Results: In this study, we proposed a novel hydrophobic polarity model optimization method derived from
reinforcement learning which structured the full state space, and designed an energy-based reward function
rigid overlap detection rule. To validate the performance, sixteen sequences were selected from the classica
set. The results indicated that reinforcement learning with full states successfully converged to the lowest en
conformations against all sequences, while the reinforcement learning with partial states folded 50% sequen
the lowest energy conformations. Reinforcement learning with full states hits the lowest energy on an average
which is 40 and 100% higher than the three and zero hit by the greedy algorithm and reinforcement learning wi
partial states respectively in the last 100 episodes.

Conclusions: Our results indicate that reinforcement learning with full states is a powerful method for predicting
dimensional hydrophobic-polarity protein structure. It has obvious competitive advantages compared with gree
algorithm and reinforcement learning with partial states.

Keywords: Reinforcement learning, HP model, Structure prediction
Background
The biological function of proteins is determined by
their spatial folding structure. Understanding the folding
process of proteins is one of the most challenging issues
in the field of bioinformatics [1]. The bioinformatics
hypothesis believes that the protein form found in
nature is the most stable form (the lowest free energy).
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Protein sequences determine protein structure, and
protein structure determines protein function [2, 3].
Current research has put forward many computational
theoretical models, such as hydrophobic polarity (HP)
model, AB off-lattice model (Toy model) and continuous
model of Euclidean space. The HP model is a widely
studied simplified protein folding model with high confi-
dence in the prediction of the protein helical structure.
In this model, each amino acid is treated either hydro-
phobic (H) or hydrophilic (P) and represented as a point
on a two-dimensional lattice structure. The rationale
behind the HP model is that the hydrophobicity of
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amino acids is the main driving force for small globulins
to form a natural conformation [4]. The primary struc-
ture analysis of protein sequences involves the analysis
of amino acid physicochemical properties (such as
hydrophilicity and hydrophobicity) and sequence pat-
terns, so 2D-HP protein structure prediction refers to
predicting the folding structure based on the primary
structural analysis of proteins. Although the HP grid
model is a simplified model, solving the protein folding
problem of this model is still difficult. This problem has
proven to be an NP-hard problem, which means that
there is no solution algorithm that is both complete and
not too slow.
Currently, the methods used to solve the HP model

optimization include evolutionary algorithm (EA), gen-
etic algorithm (GA), ant colony optimization (ACO),
and supervised classification methods. Genetic algorithm
is a method of searching for optimal solutions by simu-
lating natural evolutionary processes. The asymptotic
analysis of the computational complexity of the GA and
EA is difficult and is usually limited to specific problems
[5, 6]. The ACO is a probabilistic algorithm used to find
optimized paths. In most cases, the ACO has high com-
putational complexity [7–9]. Supervised classification is
a method of pattern recognition, and its training process
requires external supervision [10–12]. The versatility of
these methods is not good, especially when calculating
the energy minimum, it is easy to fall into the local opti-
mal solution, which makes it difficult to achieve global
optimization [13–15]. Protein structure prediction has
two major problems. The first question is how to abstract
the mathematical model that can reflect the interaction
between amino acids and how to design its energy func-
tion. The second problem is how to find an efficient
search method for the exploration of the structure and
then find the structure with the lowest energy [16–18]
within limited central processing unit power and time.
Recently, reinforcement learning has been successfully

applied to many aspects of the biological field, such as bio-
logical sequence comparisons, genome sequencing and so
on, and it has become more extensive in other fields, such
as vehicle positioning and recognition, game automation
detection and robot simulation [19]. The advantage of
reinforcement learning is that the training process does
not require external supervision. The agent will conduct
autonomous learning based on their interaction experi-
ence with the environment, and can find the overall opti-
mal solution based on the reward, and it is not easy to fall
into the local optimum [20]. For example, transfer learn-
ing in reinforcement learning is considered to be an opti-
mal learning strategy under limited data conditions,
especially in areas where labeling data are scarce and dis-
tribution is heterogeneous, such as clinical medical diag-
nosis and animal behavior control [21].
Therefore, this paper proposes an HP model optimization
method based on reinforcement learning. In the
reinforcement learning framework, the state set and state
transition space are given according to the length of the HP
sequence to be tested. The agent uses the Q-learning algo-
rithm to select different actions under different conditions
to obtain different reward values, and continuously calcu-
lates and updates the Q-value table. At last, the agent se-
lects the optimal solution to obtain the optimal structure
according to the converged Q-value table. This method has
strong universality and simple calculation [22]. It can pre-
dict the optimal structure well for short length sequences.

Methods
The framework based on reinforcement learning
In recent years, some scholars have proposed some simpli-
fied models for protein folding problems. The most typical
one is the two-dimensional hydrophobic-polarity (2D-HP)
grid model proposed by Dill et al. [23]. According to the
differences in the hydrophilicity and hydrophobicity of
each type of amino acid, they are divided into two categor-
ies: one is a hydrophobic amino acid (indicated by H, the
black circle), and the other is a hydrophilic amino acid (in-
dicated by P, the white circle), so any protein chain can be
expressed as a finite-length string of H and P [24, 25]. A
legitimate protein space configuration must meet the fol-
lowing three constraints:

① The center of the sphere for each circle in the
sequence must be placed on an integer coordinate in
two dimensions.
② Any two adjacent circles in the chain must be
adjacent to each other in 2D space. That is, the
distance between adjacent numbered circles is 1.
③ Each integer grid in 2D space can only represent
one circle at most, that is, no two balls overlap.

The reinforcement learning method is used to solve
the HP 2D sequence model optimization problem, which
can be converted into a Markov decision process and
solved by the Q-learning algorithm. The framework is
shown in Fig. 1.

Environment
Amino acids are classified into H (hydrophobic) and P
(hydrophilic) according to their hydrophilicity and hydro-
phobicity. In this case, the amino acid sequence is con-
verted into an HP sequence. Using the HP sequence as
input data, the entire state set S of the sequence corre-
sponds to the environment part of reinforcement learning.

Action set A
Action set A consists of 4 actions that corresponds to
four directions: L (Left), U (Up), R (Right), D (Down),



Fig. 1 A framework for 2D-HP protein folding based on reinforcement learning with full states
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that is A = {a1, a2, a3, a4}, where a1 = L, a2 = U, a3 = R,
a4 = D.
In the training process, the agent uses ε-greedy policy

to select the action (ε ∈ [0, 1]), which means that the
agent will explore other actions with the probability of ε
and the probability of remaining 1 − ε goes “greedy “,
which means that the agent takes the best action, and
constantly calculates and updates the Q value [26].
Result output pool
The theory shows that, as long as the number of training
is enough, the Q value will converge to the optimal
value. At the end of training, the agent adopts greedy
policy to choose the optimal action in different states ac-
cording to the converged Q value to further obtain the
optimal structure of HP model. Different folded struc-
tures with the lowest energy are the final output results.
The full state set S of 2D-HP model
The initial state of the agent in the environment is s1.
For a two-dimensional sequence of length n, its state
space S consists of 4n−1

3 states. When the state of the first
amino acid is fixed, all possible states of the successor of
each amino acid are the collection of four states (up,
down, left, right) of the previous amino acid, that is, the
number of all possible states of subsequent amino acid is
four times the number of previous amino acids. The
total number of the state set is the sum of the geometric
series with an initial value of 1 and an odds ratio of 4, as
shown in Eq. (1):

S ¼ 1� 1−4nð Þ
1−4

¼ 4n−1
3

ð1Þ

So S ¼ fs1; s2;…; s4n−1
3
g . For example, when there is

only one amino acid in the sequence, there is only one
state s1 in the whole state space. When there are two
amino acids, the possible state of the second amino acid
consists of four states of the first amino acid s2, s3, s4, s5,
so there are 5 states s1, s2, s3, s4, s5 in the whole space.
Similarly, when there are three amino acids, the possible
states of the third amino acid consist of four states (up,
down, left, right) of the second amino acid, and the sec-
ond amino acid may have four states, so the third amino
acid may have 16 states, namely s6, s7 … s20, s21, and the
whole state set has 21 states, and so on, all the states of
subsequent amino acids are obtained.
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At the same time, we need to define the state transfer
function T : s→ s′ of the HP model, that is, T(s, a) = s′.
The process that the agent takes the action a in the state
s to the subsequent state s′ can be written as the con-
crete expression as shown in Eq. (2)

T s4i−1−1
3 þk ; al

� �
¼ s4i−1

3 þ4� k−1ð Þþl ð2Þ

where, i ∈ [1, n − 1] is the index of the amino acid in the
sequence. k ∈ [1, 4i − 1] represents the kth state of all the
states of the i-1th amino acid. l ∈ [1, 4] represents the
number corresponding to the action.
This means that the agent can move to one of four

possible successor states from the state s∈ S by perform-
ing one of four possible actions. It should be noted that
each state s′ ∈ S can be accessed from the state s.

The new definition of full state space of 2D-HP model
Further research has found that when the number of ac-
tions is reduced to three, a simpler representation of the
state space can be obtained. Action set can be described
as A = {a1, a2, a3}, where a1 = Left, a2 = Up, a3 = Right.
Then for a two-dimensional sequence of length n, the
state space S has 3n−1

2 states. The number of states is cal-
culated in the same as before, as shown in Eq. (3):

S ¼ 1� 1−3nð Þ
1−3

¼ 3n−1
2

ð3Þ

So S ¼ fs1; s2;…; s3n−1
2
g . Accordingly, the state transfer

function is updated to Eq. (4):

T s3i−1−1
2 þk ; al

� �
¼ s3i−1

2 þ3� k−1ð Þþl ð4Þ

where, i ∈ [1, n − 1] is the index of the amino acid in the
sequence. k ∈ [1, 3i − 1] represents the kth state of all the
states of the i-1th amino acid. l ∈ [1, 3] represents the
number corresponding to the action.

Energy-based reward function with criterions
The protein folding thermodynamic hypothesis holds
that the energy of proteins under natural structures is
the lowest [27, 28]. Therefore, the problem of predicting
protein folding structures is to find the lowest energy
structure of all available structures for a given amino
acid sequence. The determination of the energy function
is especially important for this paper.
The energy value is only determined by the hydrophobic

force. Each pair of hydrophobic amino acids that is not
adjacent in sequence but adjacent in 2D space produces
energy of − 1, and in other cases, the energy is calculated
as 0. The energy value of the entire structure is the sum of
energy of each pair of hydrophobic amino acids that meets
the requirements mentioned above in the legal
configuration. A formal description of the legal configur-
ation energy E of a protein of chain length n is as follows:

E ¼
Xn−1

i

Xn

j¼iþ1
Wij ð5Þ

where, n is the length of the amino acid sequence. Both
i and j are the indices of the amino acids in the se-
quence. And

Wij ¼ −1; applicable conditions
0; other cases

�
ð6Þ

where, applicable conditions mean that the ith and jth
amino acid are both hydrophobic amino acids and they
are not adjacent in the sequence but adjacent in 2D space.
The purpose of reinforcement learning is to maximize

the objective function, which is to maximize the reward.
However, in the HP model problem, the ultimate goal is to
minimize the energy function, so we need to take the abso-
lute value of the energy function to achieve the positive
unite. At the same time, using the absolute value of the
energy function as a reward after reaching the end state
enables the trained structure closer to the ideal structure.
In the training process, the agent tends to put amino

acids in the lattice which placed in the amino acid before,
which is not allowed in the actual situation. This overlap-
ping problem can be solved by setting the reward function.
We define the reward function by flexible and rigid criteria.

Flexible criterion

① When the agent selects the action, they are allowed
to place the succeeding amino acid in the lattice
position where the amino acid was placed before. A
negative reward (which can be defined as a penalty) is
given to the agent to judge and optimize to maximize
the prize. Before reaching the terminal state, the next
state of the amino acid is placed in the invalid position
with the reward set to − 10.
② Before reaching the terminal state, the next state of
the amino acid is placed in the valid position (blank
position) with the reward set to 0.
③ When the terminal state is reached, the absolute value
of the energy of the final folded structure is rewarded.

That is R ¼
−10;

i∈ 1 � n−1ð Þ
the ith amino acid is in the invalid position

0;
i∈ 1 � n−1ð Þ

the ith amino acid is in the valid position
Ej j; i ¼ n

8>>><
>>>:

ð7Þ
where, n is the length of the amino acid sequence. i is
the index of the amino acid in the sequence. E is the
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sum of the energy formed by the final folded structure.
R is the symbolic representation of reward in this
article.
Rigid criterion
Compared to the flexible criterion, when the agent
places the next amino acid in the selection process, if
this action causes the next amino acid to be placed on
the lattice of the existing amino acid, the action is called
invalid and needs to be re-selected until a valid action
occurs. The check matrix ‘Check’ is introduced here. For
a sequence of length n, the check matrix is a 2D matrix
of 2n-1 rows and 2n-1 columns. The lattice position
where the amino acid has been placed is marked (also
called invalid position), then in this episode, this position
can no longer be placed, that can be expressed as

Check ¼ 1; p; qð Þis the invalid position
0; p; qð Þis the valid position

�
ð8Þ

where, (p, q) indicates the two-dimensional coordinates
of the placement of the amino acid.
Table 1 HP model training algorithm based on reinforcement l
① Before reaching the terminal state, the reward is set
to 0.
② When the terminal state is reached, the absolute
value of the energy of the resulting structure is
rewarded.

That is R ¼ 0; i∈ 1 � n−1ð Þ
Ej j; i ¼ n

�
ð9Þ

where, n is the length of the amino acid sequence. i is
the index of the amino acid in the sequence. E is the
sum of the energy formed by the final folded structure.
R is the symbolic representation of reward in this
article.

HP model training algorithm based on reinforcement
learning with Q-learning
The algorithm for solving 2D-HP protein folding based
on reinforcement learning with full states using Q-
learning in rigid criterion is shown in Table 1. The pro-
gram of this method is implemented on PyCharm.
earning with Q-learning



Wu et al. BMC Bioinformatics 2019, 20(Suppl 25):685 Page 6 of 11
Function approximation
The function approximation theory is an important part
of the function theory. The basic problem involved is
the approximate representation of the function. In
reinforcement learning, for some basic methods such as
dynamic programming (DP), Monte Carlo (MC) and
temporal difference (TD), there is a basic premise that
the state space and the action space are discrete and not
too large [29]. Note that the value function of these
methods is actually a table. For state value function (V),
the index is the state; for state-action value function (Q),
the index is a state-action pair. The process of iterative
update of the value function is an iterative update of this
table. If the dimension of the state space is large, or the
state space is contiguous, the value function cannot be
represented by a table. At this time, it is necessary to
represent the value function by means of function
approximation [30].
In the value function approximation method, the value

function corresponds to an approximation function. From
a mathematical point of view, the function approximation
method can be divided into parameter and non-
parametric approximation. Therefore, the reinforcement
learning value function estimation can be divided into
parametric and non-parametric approximation. The most
commonly used is parameter approximation. When the
approximation of the value function structure is deter-
mined, then the approximation of the value function is
equivalent to the approximation of the parameter. The
update of the value function is equivalent to the update of
Table 2 HP sequence set for testing

Sequence No. HP Sequence Length
ener

1 HPPHHPH [32] 7 −2

2 HPHHHPHHPH [32] 10 −4

3 HPPHPPPPHPPHP [33] 13 −4

4 HHPHPPHPHPHHPH [32] 14 −6

5 HPHHHHHHHHHPHH 14 −7

6 HHHPPHHHHHPHHH 14 − 7

7 HHHHHPPHHHHPHH 14 −7

8 HPHHPPPHHHHHHH 14 −6

9 HHHPHHPPPHHPHH 14 −6

10 HHPHHHHHPPPPPH 14 −4

11 HHPPHHHPHPPHPH 14 −6

12 HHHPPPPHPHHPHH 14 −5

13 HPHPPHHPHPPHPHHPPHPH [34] 20 − 9

14 HHHPPHPHPHPPHPHPHPPH [34] 20 −10

15 HHHHHPHHPHHHHPPHHHHHH 21 − 12

16 PHPPHPHHHPHPPHPHHHPPH 21 −9
the parameter. In other words, it is time to use experimen-
tal data to update parameter values [31].

Results
Comparative experiment between rigid criterion and
flexible criterion
According to two different reward settings of rigid and
flexible criteria, six paper dataset sequences and ten
sequences in the classic Uniref50 database are selected as
experimental objects. The known information and test en-
ergy information were shown in Table 2. The parameters
were set as follows: step-size parameter α = 0.01, explor-
ation probability ε = 0.5, and learning parameter γ = 0.9.
In Table 3, the first four sequences were chosen to

compare the performance of reinforcement learning with
rigid and flexible criteria. In order to avoid contingency,
the rigid and flexible criteria experiments were repeated
five times. The number of training iterations per round
was set to 5 million, and the test was performed once
every 10,000 times. In training process, the number of
episodes required to converge to the lowest energy was
counted as shown in Table 3.
Combination of Tables 2 and 3 showed that reinforcement

learning with rigid criterion can stably find the lowest
energy conformation faster than reinforcement learning
with flexible criterion. For the shorter sequences (1 and
2), the number of training episodes required for agent
to achieve convergence conformation by flexible criter-
ion was greater than rigid criterion. Reinforcement
learning with rigid criterion sampled an average 30,000
Known lowest
gy

Rigid
criterion

Flexible
criterion

Greedy
algorithm

Partial state
space

−2 − 2 -2 -2

− 4 − 4 − 4 − 4

− 4 −2 − 4 −3

− 6 − 5 −6 − 6

− 7 − 7 − 7 − 7

− 7 −7 − 7 − 6

−7 −6 − 7 − 6

− 6 −5 − 6 − 6

−6 −5 − 6 −6

−4 − 4 − 4 − 4

−6 −5 − 6 − 4

− 5 − 5 −5 − 5

− 9 − 4 −8 − 6

− 10 −7 − 9 − 8

− 12 −9 − 11 − 11

− 9 −4 − 9 − 7



Table 3 Comparison of convergence required number of
sequences under two criteria (unit: / ten thousand)

Sequence No. Criterions 1 2 3 4 5 AVG

1 Rigid 3 3 3 3 2 3

Flexible 8 9 3 2 7 6

2 Rigid 29 28 31 9 10 21

Flexible 37 142 43 22 41 57

3 Rigid 439 345 186 200 418 318

Flexible – – – – – –

4 Rigid 238 380 256 339 114 265

Flexible – – – – – –

Table 4 The number of successfully folding to the lowest
energy conformations in the last 100 episodes

Sequence No. Methods 1 2 3 4 5 AVG

5 Full states 8 10 8 7 6 8

Greedy algorithm 7 7 8 5 7 7

Partial states 0 0 0 0 0 0

6 Full states 3 8 3 1 6 4

Greedy algorithm 9 11 6 3 10 8

Partial states 0 0 0 0 0 0

7 Full states 7 4 3 3 3 4

Greedy algorithm 7 5 7 9 9 7

Partial states 0 0 0 0 0 0

8 Full states 7 8 8 11 5 8

Greedy algorithm 2 3 2 6 2 3

Partial states 0 0 0 1 0 0

9 Full states 5 4 1 3 2 3

Greedy algorithm 0 0 0 1 1 0

Partial states 0 0 0 0 0 0

10 Full states 14 12 11 15 1213

Greedy algorithm 12 9 9 17 8 11

Partial states 1 1 1 2 0 1

11 Full states 3 7 2 3 4 4

Greedy algorithm 4 0 0 2 1 1

Partial states 0 0 0 0 0 0

12 Full states 9 7 8 6 8 8

Greedy algorithm 2 5 2 5 2 3

Partial states 0 0 1 0 0 0

13 Full states 0 2 2 3 4 2

Greedy algorithm 0 0 0 0 0 0

Partial states 0 0 0 0 0 0

14 Full states 2 0 1 1 2 1

Greedy algorithm 0 0 0 0 0 0

Partial states 0 0 0 0 0 0

15 Full states 2 4 5 2 2 3

Greedy algorithm 0 0 0 0 0 0

Partial states 0 0 0 0 0 0

16 Full states 1 2 4 5 1 2

Greedy algorithm 1 0 0 0 0 0

Partial states 0 0 0 0 0 0

The data in bold and italic indicates the average number of successfully
folding to the lowest energy conformations by the reinforcement learning
with full states is more than the other two methods
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and 210,000 episodes to achieve the robust lowest energy
conformation, which was 50 and 63% less than 60,000 and
570,000 episodes required by reinforcement learning with
rigid criterion. For the longer sequences (3 and 4),
reinforcement learning with flexible criterion could not
find the lowest energy conformation. One possible reason
was that, although flexibility criterion gave a negative re-
ward (or penalty) for states that caused repetition, the
states still had some positive Q values, and the Q values of
these repeated states in rigid criterion still had an initial
value of 0. Therefore, the probability of the repeated states
in flexibility criterion being selected was greater than rigid
criterion. And as the length of the sequence increased, the
number of states that caused repetition in the full state
space was also greater, and it was more difficult to find
the lowest energy structure.

Comparative experiment with greedy algorithm
Reinforcement learning with full states using rigid criter-
ion was compared with greedy algorithm. The experimen-
tal objects were the twelve sequences in the Uniref50 data
set. Similarly, in order to avoid accidentality, two methods
were trained for five rounds, and the number of training
iterations per round was set to 5 million, and the samples
were performed once every 10,000 times. We counted the
number of times the lowest energy was obtained in the
last 100 samples (Table 4).
It can be seen from Table 2 that reinforcement learning

with full states using rigid criterion can find the lowest en-
ergy for all 16 sequences, but the greedy algorithm can
only find 13 of them. From Table 4, the training process
with 10 sequences was far superior to the greedy algo-
rithm for the above 12 sequences. And the total number
of times that the lowest energy was found was 300, which
was greater than 205 for the greedy algorithm.

Comparative experiment with the reinforcement learning
with partial states
Reinforcement learning with full states using the rigid cri-
terion was compared with reinforcement learning with
partial states. The experimental objects and experimental
settings were the same for greedy algorithm above.
In the reinforcement learning with partial states, for

an HP sequence of length n, its state space S consists of
1 + 4 (n-1) states. Apart from the first amino acid that
had only one state, each of the other amino acids had
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four different actions (up, down, left, and right) to trans-
fer to four different states, so the number of the entire
state set was expressed as 1 + 4 (n-1), so S = {s1, s2,…, s1 +
4(n − 1)}. For example, the state of the first amino acid is s1.
In this state, the four actions of up, down, left, and right
were respectively transferred to states s2, s3, s4, s5, which
were all possible states of the second amino acid. On the
same basis, the four actions of up, down, left and right re-
spectively transferred to the states s6, s7, s8 and s9, which
were all possible states of the third amino acid, and so on,
to find all the states of the subsequent amino acids.
In Table 2, there were 8 sequences that cannot converge

to the lowest energy conformations by the reinforcement
learning with partial states, while reinforcement learning
with full states successfully folded all sequences to the
lowest energy conformations. Table 4 showed that in the
last 100 episodes, reinforcement learning with full states
hits the lowest energy an average five times, which was 40
and 100% higher than the three and zero times hit by the
greedy algorithm and reinforcement learning with partial
states, respectively. Reinforcement learning with full states
achieved lower energy structures on ten out of twelve
sequences than the greedy algorithm.

Discussion
Analysis of time complexity and space complexity
In this algorithm, for one sequence, many iterations of
training are required to get its lowest energy. Therefore,
the time complexity of the algorithm is determined by the
length of the amino acid sequence (N) and the number of
training iterations (I), that is, the time complexity is O(N ×
I). The time complexity of the ant colony algorithm for
solving HP two-dimensional structure prediction is O(N × (
N − 1) ×M × I/2), where N is the sequence length, I is the
number of iterations, and M is the number of ants. The
time complexity of particle swarm optimization is O(N ×
I ×M), where N is the sequence length, I is the number of
Fig. 2 The optimal 2D conformations of sequence no.12 under the ri
optimal structure
iterations, and M is the number of particles. Obviously, the
time complexity of the method in this paper is the smallest
of the three methods, and the larger the sequence length,
the more prominent the time advantage.
The space complexity is composed of state-transfer

function matrix and state-action value matrix. The rows
of both matrices represent states, and the columns all
represent actions. The number of rows in new state-

transfer function matrix is 3N−1−1
2 and the number of

columns is 3. The number of rows in state-action value

matrix is 3N−1
2 and the number of columns is 3. So the

space complexity is Oð3N−1−1
2 � 3þ 3N−1

2 � 3Þ.

Case study
Sequence 12 is a zinc finger protein 528 (fragment),
which is a transcription factor with a finger-like domain
and plays an important role in gene regulation. Taking
sequence 12 as an example, a series of optimized struc-
tures with the lowest energy obtained by the method of
this paper under rigid criterion are given, as shown in
Fig. 2a-c. The results of the last 100 samples of the
method and the greedy algorithm and reinforcement
learning with partial states in the training exploration
process are given, as shown in Fig. 3a-c. The greedy
algorithm itself cannot converge, and the convergence of
reinforcement learning with full and partial states in the
test process is shown in Fig. 4a, b.
For reinforcement learning with full states, the agent

can be trained to select the better action to obtain a lower
energy structure after training for several million times,
and then guarantee that the structure obtained after con-
vergence is the optimal structure, and it can be considered
that the training effect of reinforcement learning with full
states is stable. However, the greedy algorithm is not ideal
for training. Only several structures with the lowest energy
are trained occasionally, and the accuracy of the lowest
gid criterion.a First optimal structure.b Second optimal structure.c Third
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Fig. 3 The last 100 samplings of the training process of three methods.a Training process sampling of full state space.b Training process
sampling of greedy algorithm.c Training process sampling of partial state space
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energy structure cannot be guaranteed. As a who
reinforcement learning with full states is better than th
greedy algorithm. This is because, for reinforcement lea
ing, the agent can choose better actions based on the p
vious interaction with the environment during the
exploration process. Therefore, as the number of traini
increases, the agent can select the optimal action m
quickly and accurately. Also, because of the setting of
reward function, the agent is more concerned about t
overall situation without being trapped in a loca
optimum. The calculation of each plot in the greedy alg
rithm is independent, and the previous experience do
not help the development of the current plot. As a resu
the calculation amount becomes larger and the corre
structure cannot be stably obtained.

From the testing process, it can be found th
reinforcement learning with full states can maintain th
lowest energy and achieve stable convergence after re
ing the minimum energy. In contrast, reinforcemen
learning with partial states has fluctuations, cannot
stably maintained, and cannot reach the convergen
state. This is because each state in the full state spac
uniquely determined and can only be transferred by
Fig. 4 Comparison of testing process between full state space and p
partial state space
,

-
-

e

h-

is

unique state-action pair, and the process has Mark
properties. However, the state in the partial state spa
can be transferred by different state-action pairs, whi
has partial uncertainty.

Full state space compares to partial state space
The full state space and the partial state space are t
different descriptions of the state space in the 2D-H
model under reinforcement learning framework. Th
same point of the full and partial state spaces is that d
ferent states corresponding to each amino acid are se
advance, but they differ in the rules of the state settin
For the full state space, the number of states of sub
quent amino acids is always three times the number
previous amino acid states. The state of the subsequ
amino acid is obtained by a specific action of the pre
ous amino acid in a specific state. That is to say, ea
state is transferred by a certain state-action pair, and t
whole process has Markov properties. For the part
state space, the number of states for each amino acid
cept the first amino acid is four. The four states of th
subsequent amino acid can be transferred from the fo
states of the previous amino acid through four differe
artial state space.a Testing process of full state space.b Testing process of


