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Abstract

Background: Predicting miRNA-disease associations (MDAs) is time-consuming and expensive. It is imminent to
improve the accuracy of prediction results. So it is crucial to develop a novel computing technology to predict new
MDAs. Although some existing methods can effectively predict novel MDAs, there are still some shortcomings.
Especially when the disease matrix is processed, its sparsity is an important factor affecting the final results.

Results: A robust collaborative matrix factorization (RCMF) is proposed to predict novel MDAs. The L2,1-norm are
introduced to our method to achieve the highest AUC value than other advanced methods.

Conclusions: 5-fold cross validation is used to evaluate our method, and simulation experiments are used to
predict novel associations on Gold Standard Dataset. Finally, our prediction accuracy is better than other existing
advanced methods. Therefore, our approach is effective and feasible in predicting novel MDAs.
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Background
A short class of non-coding RNAs called miRNAs, whose
length is generally 19 to 25 nt. They usually regulate gene
expression and protein production [1–7]. Since the first
two miRNAs lin-4 and let-7 were discovered in 1993 and
2000, respectively [8, 9]. Thousands of miRNAs have been
detected by biologists from nematodes to human eukary-
otes [10, 11]. The latest miRNA database version miRBase
contains 26,845 entries and more than 2000 human miR-
NAs are detected [12–14]. It is worth noting that with the
development of bioinformatics, more researchers are start-
ing to focus on the function of miRNAs. In addition, miR-
NAs begin to play an important role in biological
processes such as proliferation, cell differentiation, viral
infection, and signal transduction [15]. Moreover, some
miRNAs are closely related to human diseases [16–18].

For example, mir-433 will upregulate the expression of
GRB2 in gastric cancer, which is a known tumor-
associated protein [19]. And in every pediatric brain
tumor type, mir-25, mir-129, and mir-142 are differen-
tially expressed [20]. Considering the strong association
between miRNA and disease, all their potential associa-
tions should be explored [15, 21]. In medicine, the advan-
tage is that it can promote the diagnosis and treatment of
some complex diseases [22–25]. However, predicting
MDAs is time-consuming and expensive. Only a few novel
associations are discovered and used in clinical medicine
each year, and most of the associations are not be discov-
ered by researchers. Therefore, it is imminent to improve
the accuracy of prediction results.
In previous studies, functionally similar miRNAs always

appear in similar diseases [26, 27]. Based on such theory,
more and more computational methods and models are
proposed for identifying novel miRNA-disease associa-
tions (MDAs) [13]. However, these methods have some
shortcomings more or less. For example, Jiang et al.
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proposed an improved disease-gene prediction model
[28]. They introduced the principle and use of hypergeo-
metric distribution. And then they analyzed the actual
effect in the prediction model. Moreover, different data-
sets are used to predict novel MDAs, including the known
human miRNA-disease data, miRNA functional similarity
data and disease semantic similarity data. However, the
shortcoming of this model is the excessive dependence on
neighbor miRNA data. Chen et al. proposed a method
HGIMDA (Heterogeneous Graph Inference miRNA-
Disease Association) to predict novel MDAs [29]. It is
worth noting the known miRNA-disease associations,
miRNA functional similarity, disease semantic similarity,
and Gaussian interaction profile kernel similarity for
diseases and miRNAs are integrated into this method. The
benefit is that the accuracy of the algorithm is improved
to some extent. The functional relationship between
miRNA targets and disease genes in PPI (Protein–Protein
Interaction) networks are considered by researchers. Shi
et al. proposed a computational method to predict MDAs
by performing random walk [30]. They used PPIs, the
miRNA-target interactions and disease-gene associations
to identify potential MDAs. However, the model strongly
depended on the miRNA-target interactions with high
rate of false-positive and high false-negative results [31].
Considering this disadvantage, Chen et al. proposed the
RWRMDA (Random Walk with Restart for MiRNA-
disease association) model [32]. Their approach was to
map all miRNAs to a miRNA functional similarity net-
work. Then, random walk with restart method was imple-
mented until they got stable probability [33]. Finally, all
candidate miRNAs will be sorted according to the prob-
ability of stability. Moreover, the method was the first
global network-based method. Xuan et al. proposed a
HDMP method [34]. The mothed was based on weighted
k-nearest-neighbors. The phenotype similarity and sem-
antic similarity between diseases were used to calculate
the miRNAs functional similarity matrix. However, the
simple ranking of k-nearest-neighbors was not always reli-
able for prediction. So Chen et al. proposed a new method
of ranking-based KNN called RKNNMDA to identify
potential MDAs [34]. These previously similarity-based
sorted neighbors were re-ranked to get better prediction
results. Recently, matrix factorization methods have been
used to identify novel MDAs. The advantage is that these
methods can better handle missing associations. Shen
et al. proposed a matrix factorization model based collab-
orative matrix factorization to predict novel MDAs [10].
Matrix factorization method takes one input matrix and
tries to obtain two other matrices, then the two matrices
are multiplied to approximate the input matrix. Gao et al.
proposed a dual-network sparse graph regularized matrix
factorization method (DNSGRMF) to predict novel MDAs
and obtained better experimental results [35]. However,

this method does not necessarily solve the overfitting
problem very well. Chen et al. developed a computational
model of ELLPMDA (Ensemble Learning and Link Pre-
diction for miRNA-Disease Association) to predict novel
MDAs [36]. The miRNA-disease association, miRNA
functional similarity, disease semantic similarity and
Gaussian profile kernel similarity for miRNAs and diseases
were integrated, they used the integrated similarity
network and utilized ensemble learning. Three classical al-
gorithms based on similarity are combined to obtain bet-
ter prediction results. However, even such an excellent
method still has some shortcomings, such as excessive en-
semble learning will bring more noise. Gao et al. proposed
a Nearest Profile-based Collaborative Matrix Factorization
(NPCMF) method to predict potential miRNA-disease
associations [37]. More importantly, this method has
achieved the highest prediction accuracy so far.
In this paper, a simple yet effective matrix

factorization model is proposed. Its main function is to
predict new MDAs based on existing MDAs. Consider-
ing that the missing associations will have a negative
impact on the predictions, a pre-processing step is used
to solve this problem. The main purpose of this pre-
processing method is to try to weight K nearest known
neighbors (WKNKN) [38, 39]. It is worth noting that
the L2,1-norm is introduced in the collaborative matrix
factorization (CMF) method. And the L2,1-norm can
avoid over-fitting and eliminate some unattached dis-
ease pairs [40, 41]. We also use Gaussian interaction
profile kernel similarity to get the network similarity of
miRNAs and the network similarity of diseases. There-
fore, the final prediction accuracy is greatly improved.
Meanwhile, 5-fold cross validation is used to evaluate
our experimental results. Our proposed method is
superior to other methods. In addition, a simulation
experiment is conducted to predict novel associations.

Materials
MDAs dataset
The information about associations between miRNA
and disease is obtained from HMDD [42], including 383
diseases, 495 miRNAs and 5430 experimentally con-
firmed human miRNA-diseases associations. And it is a
Gold Standard Dataset. The dataset contains three
matrices: Y ∈ℝn ×m, Sm ∈ℝn × n and Sd ∈ℝ

m ×m. In
addition, Y is an adjacency matrix. In the adjacency
matrix, there are n miRNAs as rows and m diseases as
columns. If miRNA D(i) is associated with disease d(j),
the entity Y(D(i), d(j)) is 1, otherwise 0. The matrix Y is
used as the original input matrix. Y is decomposed into
two latent feature matrices, and the product of the two
latent feature matrices is used to approximate Y. Table 1
lists the specific information for the dataset.
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MiRNA functional similarity
Considering the assumption that similarly functioning
miRNAs have similar diseases, Wang et.al. proposed a
method for calculating the similarity scores of RNA
functions [26]. And the miRNA functional similarity
scores are downloaded from http:// www.cuilab.cn/files/
images/cuilab/misim.zip. The matrix Sm is represented
miRNA function similarity network. The functional
similarity score between miRNA m(i) and m(j) can be
represented Sm(m(i),m(j)). The Sm matrix is also used as
an input matrix, which represents the functional similar-
ity of miRNA pairs. Among them, each miRNA has a
similarity score of 1 to itself.

Disease semantic similarity
In this work, Directed Acyclic Graph (DAG) is used to
describe the diseases. DAG(DD) = (d, T(DD), E(DD)) is
used to describe disease DD, where T(DD) is the node
set and E(DD) is the corresponding links set [26]. Sd is
represented disease semantic similarity network. The se-
mantic value of disease DD in DAG(DD) formula is de-
fined as:

DV1 DDð Þ ¼
X

d∈T DDð Þ
D1DD dð Þ; ð1Þ

D1DD dð Þ ¼ f
1 if d ¼ DD

max Δ�D1DD d
0� �
jd0

∈childrenof d
n o

if d≠DD;

ð2Þ
where Δ is represented the semantic contribution factor.
Generally, the semantic contribution of disease DD to it-
self is 1. Based on previous research [43], we set Δ to
0.5. It is worth noting that the further the distance be-
tween DD and other disease, the smaller the semantic
contribution score. Therefore, disease terms contribute
the same score to the semantic value of the disease DD
in the same layer. Finally, if the two diseases d(i) and
d(j) have a larger common part of the DAGs, then the
two diseases have a greater similarity score. The disease
semantic similarity can be defined as follows:

Sd d ið Þ; d jð Þð Þ ¼
P

t∈T d ið Þð Þ∩T d jð Þð Þ D1d ið Þ tð Þ þ D1d jð Þ tð Þ
� �

DV1 d ið Þð Þ þ DV1 d jð Þð Þ ;

ð3Þ
where Sd is the disease semantic similarity matrix. In
addition, the Sd matrix is also used as an input matrix
with Y and Sm. Similar to the Sm matrix, each disease

has its own semantic similarity score of 1. Therefore, the
two feature matrices decomposed by Y are controlled by
the Sm matrix and the Sd matrix.

Methodology
Problem formalization
Formally, the known associations Y(m(i), d(j)) of
miRNA m(i) associated with disease d(j) are considered
to be a matrix factorization model. First, the input asso-
ciations matrix Y is decomposed into two low rank
latent feature matrices A (for miRNAs) and B (for dis-
eases). Then, some constraints are added to the two
low rank matrices [44]. Specifically, the L2,1-norm is
added to the latent feature matrix B (for diseases).
Finally, the specific matrices of A and B are obtained
by using some update rules. It is worth noting that we
need a prediction matrix that is derived from the prod-
uct of A and B. Considering the stronger association of
miRNAs with diseases, the correlation score between
them is higher. So, the miRNA-disease pairs Y(m(i),
d(j)) are ranked from high to low.

Robust collaborative matrix factorization (RCMF)
The traditional CMF is an effective method for predict-
ing novel MDAs [10]. Collaborative filtering is used by
CMF. The objective function of CMF is given as follows:

minA;B ¼ Y−ABT
�� ��2

F
þ λl Ak k2F þ Bk k2F

� �

þλd Sm−AAT
�� ��2

F
þ λt Sd−BBT

�� ��2
F
;

ð4Þ

where ‖⋅‖F is Frobenius norm, λl, λd and λt are non-
negative parameters.
However, although the B matrix is a low rank matrix,

it is not sparse enough. In fact, B is indeed sparse. But
we want to get the B matrix better, we use the L2,1-norm
to constrain the latent feature matrix B of the disease.
Because the L2,1-norm can achieve row sparse, the L2,1-
norm can better remove the meaningless elements of
the B matrix. For matrix B, overfitting problems may be
generated to reduce the accuracy of the prediction in
predicting novel MDAs.
Therefore, to overcome this problem, a robust collab-

orative matrix factorization method named RCMF is
proposed to predict MDAs. The L2,1-norm is intro-
duced to the RCMF method to solve over-fitting prob-
lems [45, 46]. In this paper, the dataset used in the
experiment, the number of diseases is less than the
number of miRNAs, we are more concerned about
which miRNAs are likely to be associated with the
diseases. Therefore, we apply the L2,1-norm on the po-
tential feature matrix B of the disease to make the B
matrix sparse. The advantage is that more miRNAs can
be accurately matched to the disease to improve the
accuracy of prediction. The interaction matrix Y is

Table 1 MiRNAs, Diseases, and Associations in Gold Standard
Dataset

Datasets MiRNAs Diseases Associations

Gold Standard Dataset 495 383 5430
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decomposed into two matrices A and B, where ABT ≈
Y. RCMF uses two collaborative regularization terms to
constrain A and B. Specifically, these two regularization
terms require similar miRNAs or diseases potential fea-
ture vectors to be similar, and dissimilar miRNAs or
diseases potential feature vectors are not similar, re-
spectively [38]. Where Sm ≈AAT and Sd ≈ BBT. There-
fore, the objective function of RCMF can be written as:

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �þ λl Bk k2;1

þλd Sm−AA
T

�� ��2
F þ λt Sd−BB

T
�� ��2

F ;

ð5Þ

where ‖⋅‖F is Frobenius norm, ‖⋅‖2, 1 is L2,1-norm, λl, λd
and λt are non-negative parameters. Based on previous
research [38], the grid search method is used to perform
the selection of optimal parameters, where λl ∈ {2

−2, 2−1,
20, 21} and λd/λd ∈ {0, 10

−4, 10−3, 10−2, 10−1}. In order to
find the latent feature matrices A and B, an approximate
model of the matrix Y is constructed in the first term. In
the second term, the Tikhonov regularization can
minimize the norms of A, B. The L2,1-norm is applied
on B in the third term. And this advantage is able to in-
crease the sparsity of the disease matrix and eliminate
undesired disease pairs. The last two regularization
terms represent the minimization of squared error be-
tween Sm (Sd) and AAT (BBT).

Initialization of A and B
A and B are initialized to use the SVD (Singular Value
Decomposition) method for the input MDAs matrix Y.
The initialization formula can be written as:

U; S;V½ � ¼ SVD Y; kð Þ;A ¼ US1=2k ;B ¼ VS1=2k ;

ð6Þ
where Sk is a diagonal matrix, which contains the k
largest singular values.

Optimization algorithm
A and B are updated using least squares in this study.
First, F is represented as the objection function of RCMF
method. Then, ∂F/∂A and ∂F/∂B are set to be 0, respect-
ively. A and B are continued to use the least squares
until convergence. Figure 1 shows the convergence of
the RCMF method. We perform the RCMF method on
the dataset used in the experiment, where the x-axis rep-
resents the number of iterations and the y-axis repre-
sents the error. As can be seen from Fig. 1, after 50
iterations, the curve begins to converge on a straight
line, which proves that our method begins to converge
after 50 iterations. In addition, λl, λd and λt are automat-
ically determined. The optimal parameter values are ob-
tained when cross validating the training set. The update
rules of A and B can be written as:

A ¼ YBþ λdSmAð Þ BTBþ λlIk þ λdAAT
� �−1

; ð7Þ

B ¼ YTAþ λtSdB
� �

ATAþ λlIk þ λtB
TBþ λlDIk

� �−1
;

ð8Þ
where D is a diagonal matrix with the i-th diagonal
element as dii = 1/2‖(B)i‖2. Based on these update
rules, we first calculate the maximum time complexity
required to perform the iterative steps, and then we
conclude that the final time complexity of RCMF
method is O(nmk), where n is the number of miR-
NAs, m is the number of diseases and k is the

Fig. 1 Convergence analysis of RCMF method
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number of singular values in the SVD. Therefore, the
algorithm of RCMF is as follows:

Results
Cross validation experiments
In this study, our experiments are compared to the previ-
ous advanced methods CMF [10], HDMP [33], WBSMDA
[47], MKRMDA [31], HAMDA [48] and ELLPMDA [36].
For each method, 5-fold cross validation is conducted 100
times. However, the WKNKN pre-processing steps is per-
formed before running our method. This can solve the
problem of missing unknown values. At the same time, it
can also improve the accuracy of prediction to some
extent.
In general, AUC (Area Under the Curve) is used as

a reasonable indicator when evaluating the predictive
performance of a method. The popular indicator of
AUC is also used to evaluate our approach in this
study. The area under the ROC (Receiver Operating
Characteristic) curve is considered to be AUC. In
other words, the value of this area will not be greater
than 1. AUC values between 0.5 and 1 are normal
and reasonable. Once below 0.5, the method will have
no meaning at all. Before running cross validation,
the miRNA-disease pairs are randomly removed in
the input MDAs matrix Y. Doing this is a compre-
hensive assessment of our approach by increasing the

difficulty of prediction [49]. This way is called CV-p
(Cross Validation pairs).

Association prediction under CV-p
Table 2 lists the experimental results at CV-p. The AUC
average of 100 times 5-fold cross validation is used as
the final AUC score. It is worth noting that AUC is
known to be insensitive to skewed class distributions
[50]. The gold standard miRNA disease dataset is highly
unbalanced in this study. One problem is that there are
more negative factors than positive ones. Thus, AUC is a
more suitable measure for other methods. As shown in

Table 2 AUC Results of cross validation experiments

Methods Gold Standard Dataset

WBSMDA 0.8185(0.0009)

HDMP 0.8342(0.0010)

CMF 0.8697(0.0011)

MKRMDA 0.8894(0.0015)

HAMDA 0.8965 (0.0012)

ELLPMDA 0.9193(0.0002)

RCMF 0.9345(0.0004)

Table 3 Predicted MiRNAs for Esophageal Neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-let-7a known 16 hsa-mir-145 known

2 hsa-mir-100 known 17 hsa-mir-146a known

3 hsa-mir-130a known 18 hsa-mir-148a known

4 hsa-let-7c known 19 hsa-mir-617 known

5 hsa-mir-192 known 20 hsa-mir-758 known

6 hsa-mir-19a known 21 hsa-mir-342 known

7 hsa-mir-21 known 22 hsa-mir-34a known

8 hsa-mir-150 known 23 hsa-mir-34b known

9 hsa-mir-205 known 24 hsa-mir-296 known

10 hsa-mir-22 known 25 hsa-mir-29c known

11 hsa-mir-223 known 26 hsa-mir-215 dbDEMC

12 hsa-mir-25 known 27 hsa-mir-421 dbDEMC

13 hsa-mir-26a known 28 hsa-mir-184 dbDEMC

14 hsa-mir-27a known 29 hsa-mir-519a Unconfirmed

15 hsa-mir-28 known 30 hsa-mir-610 Unconfirmed

Table 4 Predicted MiRNAs for Liver Neoplasms

Rank miRNA Evidence

1 hsa-mir-372 known

2 hsa-mir-486 known

3 hsa-mir-10b known

4 hsa-mir-122 known

5 hsa-mir-133b known

6 hsa-mir-200a known

7 hsa-mir-148b known

8 hsa-mir-21 known

9 hsa-let-7b known

10 hsa-mir-629 known

11 hsa-mir-24 known

12 hsa-mir-34c known

13 hsa-mir-200b dbDEMC

14 hsa-mir-15b dbDEMC

15 hsa-mir-183 dbDEMC
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Table 2, the AUC values for each method are counted,
including the highest AUC in bold, and standard devia-
tions are given in (parentheses).
As listed in Table 2, our proposed method RCMF

achieves an AUC of 0.9345 on Gold Standard Dataset,
which is 1.52% higher than ELLPMDA with an AUC
of 0.9193. The AUC value of the WBSMDA method
is the lowest, and our method is 11.6% higher than it.
Also, our method is 6.48% higher than the traditional
CMF method. Therefore, our proposed is better than
other existing methods. Figure 2 visually shows the
AUC level of each method.

Comprehensive prediction for novel MDAs
A simulation experiment is conducted in this subsection.
Two cases are tested by our method, one is Esophageal
Neoplasms, the other is Liver Neoplasms. Esophageal
Neoplasms is very common in many areas of China, es-
pecially in northern China [51].. More information about
the disease are published in http://www.omim.org/
entry/133239. For Esophageal Neoplasms, the 30 miR-
NAs associated with it are removed. Then, the simula-
tion is conducted to get the final prediction score
matrix. Based on the predicted scores for this disease,
the miRNAs associated with this disease are ranked from

Fig. 2 AUC value on Gold Standard Dataset

Fig. 3 Sensitivity analysis for K under CV-p Fig. 4 Sensitivity analysis for p under CV-p
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high to low. At the same time, whether the removed
miRNA is successfully predicted and the novel asso-
ciations are also needs to be counted. Twenty known
associations are successfully predicted and five novel as-
sociations are predicted. Among the unknown asso-
ciations, the three of five unknown associations are
confirmed by the dbDEMC [52]. It is worth noting that
hsa-mir-215 has the highest correlation with Esophageal
Neoplasms. About hsa-mir-215, Fassan et al. have
discovered this miRNA in 2011 related to Esophageal
Neoplasms. They performed qRT-PCR and ISH analyses
on two independent series of endoscopic biopsies (qRT-
PCR) and esophagectomy specimens (ISH) [53]. In
particular, hsa-mir-215 is significantly overexpressed
during the pathogenesis of Esophageal Neoplasms.
About hsa-mir-184, Kojima et al. discovered this miRNA
in 2015 related to Esophageal Neoplasms. They con-
ducted miRNA expression analysis by microarray [54].

By comparing Esophageal Neoplasms with normal sam-
ples, hsa-mir-184 is under-expressed in diseased sam-
ples. Table 3 lists the experimental results. And the
known associations are in bold.
Another case is Liver Neoplasms. It is the fifth most

common cancer and the third most common cause of
death from cancer worldwide [55]. More information
about the disease are published in http://www.omim.
org/entry/114550. For Liver Neoplasms, fifteen miR-
NAs associated with it are removed from the dataset
while running our method. Then based on the pre-
dicted scores for this disease, the miRNAs associated
with this disease are ranked from high to low. Finally,
twelve known associations are successfully predicted.
At the same time, three novel associations are pre-
dicted. And, all three are confirmed by dbDEMC.
About hsa-mir-200b, hsa-mir-15b and hsa-mir-183,
Naoki et al. have discovered this miRNA in 2012 re-
lated to Liver Neoplasms. In particular, hsa-mir-200b,
hsa-mir-15b,and hsa-mir-183 are significantly overex-
pressed during the pathogenesis of Liver Neoplasms
[56]. Table 4 lists the experimental results.
According to the above simulation results, most

known miRNAs are predicted. At the same time, some
unknown miRNAs are also confirmed by dbDEMC.
Therefore, our method can be used to predict novel
MDAs and achieve excellent predictions.

Discussion
Sensitivity analysis from WKNKN
As mentioned earlier in this study, there are some miss-
ing unknown associations in the matrix Y, so WKNKN
method is used to minimize the error. K represents the
number of nearest known neighbors and p represents a
decay term where p ≤ 1. Before running RCMF method,

Fig. 5 Joint sensitivity analysis of parameters K and p

Fig. 6 Robustness comparison between RCMF and CMF when there
are 0 noise points
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the parameters K and p will be fixed. The sensitivity
analysis of these two parameters is given by Figs. 3 and
4, respectively. It can be clearly seen from the figures
that when K = 5, p = 0.7, the AUC tends to be stable.
Furthermore, to more fully verify the sensitivity of these
two parameters to AUC, their joint sensitivity analysis
is shown in Fig. 5.

Robust analysis of our method
The L2,1-norm can increase the robustness of the algo-
rithm. This is mainly reflected in the distinction between
outliers in the dataset. In this section, we use a simulation
dataset of 200 data points to verify the robustness of the
algorithm. To illustrate RCMF’s ability to learn a subspace,
we apply RCMF on a synthetic dataset composed of 200
two-dimensional data points. It is worth noting that all
data points are distributed in a one-dimensional subspace,
i.e., a straight line (y = x). In addition, both RCMF and
CMF are applied to the synthetic data set for comparison.
Specifically, we add different numbers of noise points to
the simulation dataset to compare RCMF and CMF. Fig-
ures 6 and 7 show the data distribution of 0 noise points,
20 noise points, 40 noise points, 60 noise points and 80
noise points, respectively. As can be seen from Fig. 6, both

RCMF and CMF remain stable when there are no noise
points in the dataset. It can be seen from Fig. 7 that as the
noise point increases, the CMF cannot continue to main-
tain stability but gradually shifts. It is worth noting that
RCMF can still maintain the same state as the original
data point due to the L2,1-norm. Even if the number of
noise points is constantly increasing, RCMF is still un-
affected by outliers. This proves that RCMF is robust.

Conclusions
Abnormal expression of miRNA has a crucial impact in
the development of complex human diseases. More and
more diseases are confirmed by biologists to have a close
relationship with miRNAs. In this paper, a novel compu-
tational model is proposed to predict MDAs. The most
valuable contribution is that the L2,1-norm is added to
the CMF. AUC value is used as a reliable indicator to
evaluate our approach. Meanwhile, the excellent results
are generated by our method.
More importantly, WKNKN is used as a pre-processing

method. This step plays a crucial role in predicting MDAs.
The best predictions are achieved by dealing with missing
unknown associations.

Fig. 7 Robustness comparison between RCMF and CMF when there are 20, 40, 60 and 80 noise points, respectively
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In the future, more and more novel MDAs will be
predicted and more datasets will be available. At the
same time, more valuable MDA information will be
published in public databases. In fact, there are many
other methods to predict MDAs. RCMF is hoped to
be helpful for MDA prediction and relevant miRNA
research from the computational biology. In future
work, we will continue to study more effective
methods to predict novel MDAs.
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