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Abstract

fields and have achieved good results.

occurrence of pests and diseases

Background: The occurrence of cotton pests and diseases has always been an important factor affecting the total
cotton production. Cotton has a great dependence on environmental factors during its growth, especially climate
change. In recent years, machine learning and especially deep learning methods have been widely used in many

Methods: First, this papaer used the common Aprioro algorithm to find the association rules between weather
factors and the occurrence of cotton pests. Then, in this paper, the problem of predicting the occurrence of pests and
diseases is formulated as time series prediction, and an LSTM-based method was developed to solve the problem.

Results: The association analysis reveals that moderate temperature, humid air, low wind spreed and rain fall in
autumn and winter are more likely to occur cotton pests and diseases. The discovery was then used to predict the
occurrence of pests and diseases. Experimental results showed that LSTM performs well on the prediction of
occurrence of pests and diseases in cotton fields, and yields the Area Under the Curve (AUC) of 0.97.

Conclusion: Suitable temperature, humidity, low rainfall, low wind speed, suitable sunshine time and low evaporation
are more likely to cause cotton pests and diseases. Based on these associations as well as historical weather and pest
records, LSTM network is a good predictor for future pest and disease occurrences. Moreover, compared to the
traditional machine learning models (i.e,, SYM and Random Forest), the LSTM network performs the best.

Keywords: Long short term memory, Weather factors, Association rules analysis, Recurrent neural network, The

Introduction

Cotton is an important economic crop, which occupies
a important position in the national economy. However,
cotton was always damaged by various pests and dis-
eases during its growth. Perennial pests and diseases can
cause about 15-20% economic loss, even up to 50% in
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some years. Therefore, the control of pests and diseases
is crucial to the growth of cotton, which can recover
more than 900,000 tons of cotton annually [1]. During
cotton growth, many factors can affect the production,
of which the most significant one is abnormal climate
change. Abnormal climate change can result in the con-
tinuous evolution of pests and further make pests adap-
tive to the environment, which seriously influences the
yield and quality and makes it more difficult to control
the pests and diseases [2]. Investigating the relationship
between pandemic diseases and weather factors is sig-
nificant for establishing weather-pest forecasting models
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and improving the long-term prediction of pests and
diseases.

Association rule analysis is one of the important meth-
ods in data mining, which is a rule-based machine
learning method for discovering interesting relations
between variables in large databases. It is intended to
discover strong rules in databases using some mea-
sures of interestingness [3]. Today, association rule min-
ing is applied in many fields including webpage min-
ing [4], intrusion detection [5], continuous production,
and bioinformatics [6]. This paper attempted to fur-
ther verify the correlation between weather factors and
pest occurrence through correlation rule analysis, and to
explore the potential laws of pest occurrence and weather
changes.

Nowadays, the methods of pest control in cotton mainly
included pesticide screening, ecological control, biolog-
ical control [7], etc, where pesticides were always used
in cotton fields. They were insecticidally effective and
direct in cotton fields, however, most pesticides are highly
toxic and often caused serious residual pollution. Sub-
sequently, high efficiency, low degree and environment-
friendly new types of pesticide have been tried to develop
for the prevention and control. With the rapid develop-
ment of life sciences, biological control has become a
popular direction. Singh et al. evaluated housekeeping
genes, and tried to feed/inject sequence-specific double-
stranded RNA (dsRNA), which targeted towards down-
regulation or knockdown of essential genes for causing
mortality [8]. However, controversies still existed in the
use of gene drive to control pests. The applications for pest
control in agriculture will bring important environmen-
tal, social and ethical issues [9]. Moreover, many natural
works have been developed, such as releasing natural
enemies of cotton fields, exploring habits and resources
related to habitat control, and attracting natural enemies,
which have played an important role in practice. Eco-
logical control seems simple, but there are consequences
of species invasion due to the introduction of natural
enemies.

With the development of big data and artificial intel-
ligence, more and more researchers have begun to use
machine learning methods to solve prediction problems in
different fields, and got good results. Bao et al. proposed
a model (Network Consistency Projection for Human
Microbe-Disease Association prediction, NCPHMDA),
which integrated known microbe-disease associations and
Gaussian interaction profile kernel similarity for microbes
and diseases, and were successfully confirmed by recent
published clinical literature partly [10]. Huang et al. pro-
posed a new method based on independent component
analysis (ICA) for tumor classification using gene expres-
sion data, which showed that the method is efficient and
feasible for DNA microarray datasets [11]. At the same
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time, machine learning-based methods are promising in
agriculture and research emphasis is on prevention of
pests. Extensive studies have focused on the pest predic-
tion of crops. Ding et al. proposed an automatic detec-
tion pipeline on the basis of deep learning technique,
which can real-time monitor the occurrence of pests in
the field [12]. Zhang et al. developed multiplier feed-
forward neutral networks (MLEN), general regression
neutral networks (GRNN) and support vector machine
(SVM), to predict the occurrence area of dendrolimus
superans [13].

Long short term memory (LSTM) is a deep learning
model that has attracted much attention in recent years.
It was first proposed by Hochreiter and Schmidhuber in
1997 [14], improved by Yann et al. in 2003 [15], and even-
tually got a wide range of applications. LSTM is a special
kind of recurrent neutral network (RNN), which intro-
duces gate mechanism into vanilla RNN to prevent the
problem of vanishing gradient or exploding gradient. Li
et al. adopted an LSTM-based auto-encoder with gener-
ating coherent text units from neural models to preserve
and reconstruct multi-sentence paragraphs [16]. Gao et al.
presented a mQA model to answer the questions about
the content of an image. The model contains four com-
ponents: an LSTM to extract the question representation,
a Convolutional Neural Network (CNN) to extract the
visual representation, an LSTM for storing the linguistic
context in an answer, and a fusing component to com-
bine the information from the first three components
and output the answer [17]. Theis and Bethge introduced
a recurrent image model based on multi-dimensional
LSTM units for image modeling [18]. Mirshekarian et al.
used LSTM units to learn a physiological model of blood
glucoses, which has shown outperformed physician pre-
dictions [19].

In this paper, we first found that it is more likely to
cause cotton pests and diseases during warm, humid,
windless, moderately light and other environments in
autumn and winter through association rules. It is
further confirmed that there are strong associations
between weather factors and the occurrence of crop pests
and diseases. Then we proposed an LSTM network-
based method to predict the occurrence of diseases and
insect pests in cotton. Results showed that our LSTM-
based model outperformed other traditional prediction
models.

Methods

The flowchart of the whole work is show in Fig. 1.
First, the selected datasets in different areas and different
pests were analyzed and preprocessed by association rules
and data preprocess. Second, the preprocessed data was
divided into training dataset and test dataset for build-
ing and testing the model of pest occurrence prediction.
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Fig. 1 Overview of analysis and prediction of cotton pests and diseases

Finally, results were achieved after optimizing the predic-
tion model.

Material and Dataset

Occurrence of cotton pests and diseases is related by
a number of weather factors, however, the interactions
among these factors are very complicated. Here, cotton
pests and diseases datasets from Crop Pest Decision Sup-
port System (http://www.crida.in:8080/naip/AccessData.
jsp) were used, where cotton documents was recorded
weekly (15,343) and contained 10 insect pests and diseases
in cotton along with corresponding weather conditions,
across 6 important regions in India. Several time series of
weather features are applied in the occurrence of pests,
including Maximum Temperature MaxT °C, Minimum
Temperature MinT °C, Relative Humidity in the morn-
ing (RH1 (%)), Relative Humidity in the evening (RH2
(%)), Rainfall (RF (mm)), Wind Speed (WS (kmph)), Sun-
shine Hour (SSH (hrs)) and Evaporation (EVP (mm)).
The historical records were used to predict future occur-
rence of pests and diseases. A total of 63 datasets of
cotton pests and diseases are obtained from the web-
site. Figure 2a and b provide simple statistics on dif-
ferent types and locations of cotton pests and diseases,
respectively.

It can be clearly seen from Fig. 2b that the Bollworm
is an important pest infestation in cotton boll stage. It
is widely distributed in the world and mainly eats buds,
flowers, bells and young leaves, which caused great eco-
nomic loss for crops such as cotton and that is the main
target of biological control. Therefore, we tried to use cot-
ton bollworm records to build weather-pest forecasting
model.

Association rules analysis

Applications of the association rule have been made
across multidisciplinary fields, including Web usage min-
ing, intrusion detection, continuous production, and
bioinformatics, etc [20, 21]. The goal of association rules
mining is to establish the relationship between a set
of input variables and a set of output variables [22].
Two important indices for an association rule are sup-
port and confidence.

In this paper, we analyzed the association rules of cotton
pest and disease records. Because the input of the Apri-
ori algorithm must be discretized data, here the K-means
clustering method was adopted to discretize different
weather factors, and then the Apriori algorithm was used
to mine association rules for the discretized data. Finally,
the matched association rules are selected, based on the
minimum support and minimum confidence set. Then
only the rules that lead to the occurrence of cotton pests
and diseases are considered.

K-means clustering

k-means clustering is a method of vector quantization,
which is popular for cluster analysis in data mining. In
order to divide the weather data into more categories,
more association rules related to pest occurrence need to
be retained. Therefore, all the pest data (15,343 records)
were used to select the K value of the k-means cluster-
ing. Here, let’s set minisupport = 0.05 and miniconfidence
= 0.5. Figure 3 shows the number of rules that directly
lead to the occurrence of pests and diseases under differ-
ent K values. When k = 3, more association rules can be
obtained, and the data can be better discretized. Table 1
lists the range of intervals after eight weather factors have
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Fig. 2 Classification and statistics of cotton pests and diseases in India. a Cotton pests and diseases in different regions of India. b The occurrence of
different types of cotton diseases and insect pests in India

been discretized. In order to facilitate the records in the
association rule analysis, A, B, C, D, E, F, G, Hand P to rep-
resent MaxT(°C), MinT (°C), RH1 (%), RH2 (%) , RF (mm),
WS (kmph), SSH (hrs), EVP (mm) and pest occurrence
were adopted.
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Fig. 3 Numbers of association rules directly related to the occurrence
of pests and diseases under different K values

Problem formulation

This work aims to predict the occurrences of cotton
pests and diseases. Suppose that X is the vector set of
weather feature records, and Y denotes the occurrence
of cotton pests and diseases. Giving the training feature

vectors (Xfoi, tiO,')’ i = 1.N, our aim is to build a

Table 1 Coefficient range for different weather factors

Weather features Coefficient range of each features

A-MaxT(°C) A1(0,27.791  A2(27.79,35.63] A3 (35.63,46.60]
B-MinT(°C) B1(0,13.68]  B2(13.68,21.05] B3 (21.05, 32.20]
C-RH1(%) C1(0,57.50] C2(57.50,7858]  €3(78.58,97.30]
D-RH2(%) D1(0,3637] D2(36.37,57.89] D3 (57.89,90.40]
E-RF(mm) E1(0,29.12] E2(29.12,103.52]  E3(103.52,602.00]
F-WS(kmph) F1(0,5.73] F2(5.73,2552] F3(25.52,71.40]
G-SSH(hrs) G1(0,4.97] G2(4.97,8.03] G3(35.63,12.70]
H-EVP(mm) H1(0,10.16] H2(10.16,23.09]  H3(23.09, 72.00]

Bold means that the weather condition is more likely to cause cotton pests and
diseases to occur according to the mined association rules
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model to capture the relationship among X' and Y%, and
therefore to identify the occurrence (Yiljzl, j = 1.M)

or non-occurrence (Yflj:O, j = 1..M) of cotton pests

and diseases for the future test vectors Xilj, j = 1.M,
where time £0 are earlier than time ¢1. So the prediction
problem can be formulated as a binary classification prob-
lem, according to the past weather factors (X) and pest
values (Y).

Long short term memory

LSTM has an end-to-end working mode like neural net-
work, which automatically processes input data and gets
people’s desired results [23]. It does not require com-
plex feature selection and model testing as traditional
machine learning. Once LSTM network training was com-
pleted, it only need to update network parameters based
on new data, without building the model again. In recent
years, researchers have improved the structure of LSTM,
such as Gated Recurrent Unit (GRU) [24] and bidirec-
tional LSTM (Bi-LSTM) [25], making it more applicable
and more efficient in prediction performance and training
time.

LSTM was adopted to capture potential relationship
among weather-pest time series data. There are three
doors in LSTM. The input gate decides the input x; enter-
ing into the current cell, the forget gate decides if and how
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much information is forgot for the previous memory, and
the output one controls the information outputting from
the current cell. The gating operation ultimately deter-
mines which information is forgot and which information
enters into the neural network as useful information. For
the weather-pest forecasting issue, it processes a series of
temporal dependency inputs x; at time ¢ and the hidden
vector /i;_i1from the last time step then gets the pre-
dicted /4;. The basic structure of LSTM cells can be seen
in Fig. 4.

iv = o (W[ h_1, 2] +b)
fi=o (W U x) +0)

0y =0 (W"'[htfl,xt] —|—b°) 1)
c; = tanh (Wc~[ht_1,xt] +bc)

Ci=fi-C1+it-c

h; = o; - tanh (C}),

where o is the sigmoid function; tanh(*) is a nonlinear
activation function; W is the recurrent weight matrix; b is
the corresponding bias vector; i, f and o are the outputs
of the input, forget, and output gates, respectively; and C
and / are the memory vector and out vector of the cell,
respectively.
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Fig. 4 Structure of LSTM cells
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According to the previous work [26], the output, (4, Cy),
of a cell can be represented as a whole function LSTM(*):

(he, Cp) = LSTM ([hs—1, %], Ce—1, W), 2)

where W concatenates the four weight matrices Wi, W
S, W and We.

Architecture of the LSTM network

The developed model mainly have two parts, the LSTM
layers and fully connection layers. The former can capture
the temporal relationship between weather data and the
occurrences of pests and diseases.The latter can reduce
the dimensionality of outputs and then map the reduced
output vector to a final prediction.

To implement LSTM, the weather-pest time series data
should be converted to 3D tenser (Nsap, timesteps, Nyy4;).
Here, Nygmp is set as the number of samples, timesteps
as 4 and Np,; as 9 including eight weather features and
one pest values. The final prediction can be defined as
below:

(hii Cl) = LSTM([ hi—l! xi] ) Ci—]: W)

(3)
prediction = o (W .y + b,

where (4;, C;) denotes the output of the i-th cell of
LSTM; o is the sigmoid function; /; is the hidden vec-
tor in the last time step of LSTM layer; W and b are
the weight matrix and bias term in full-connection layer,
respectively; prediction = {0, 1} is the classification result
of LSTM network.

To identify whether pests and diseases will occur in
the future. We should determine how long the historical
observations should be used to the prediction. Of course
the longer the historical data is, the better the prediction
will be, however the more computation it will need. Here
the ‘timesteps’ is set as 4, i.e., four samples of weather-pest
data are input together into the LSTM. In addition, three
parameters for the whole structure of the network should
be determined: the number of layers for LSTM layer /,, the
full-connected layer /;; and the corresponding number of
hidden units denoted by units_r.

In addition, to train the network, some critical param-
eters have to be determined, such as the optimization
method, the learning rate, the batch size, etc. Stochastic
gradient descent (SGD) is a standard algorithm for train-
ing artificial neural networks [27], The details of gradient
descent and the parameters of network can be seen in
Eq. (4):

_ 4
P de (4)
Or =01 — 1 gt
where f;(0) is the objective function used in the LSTM
network; 7 is the learning rate; 6 is parameter vector of
network.
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Here, binary-crossentropy was adopted as the loss func-
tion of the binary classification, whose definition is shown
in below,

fi (0) =— Zyime -log (ﬁrediction) , )

. diction . i
where y7 is the actual value; 52" “““**" is the prediction

value of network, which is calculated by Eq. (4).

Moreover, it is difficult for SGD optimizer to find a
best learning rate for non-stationary objectives, therefore
it usually falls into a local optimal solution. RMSProp (for
Root Mean Square Propagation) [28] was adopted instead
of SGD to optimize our model, which has shown excellent
adaptation of learning rate in different applications. The
idea is to divide the learning rate for a weight by arun-
ning average of the magnitudes of recent gradients for
that weight. The relevant formula of the algorithm is as
follows:

vi=vi1-y+A—-y) -gt29t =01 — (6)

1 &
= &b
AVt

where v is the raw moment estimate; y is the forget-
ting factor; 1 is the learning rate; 6 is parameter vector of
network.

Performance measurement

Accuracy (ACC) [29], Area Under the Curve (AUC) [30]
and FI-score were used to measure the effectiveness of
prediction methods. Each binary classification model out-
puts only two types, positive class and negative class
(records as P and N). Therefore bivariate model has four
outcomes for the case predictions: true positive (7P),
true negative (TN), false positive (FP), and false negative
(FN). The definitions of ACC and FI-score are shown in
below:

TP+ TN
Acc=
2TP @
F1—score = .
P+ P

In addition, Receiver Operating Characteristic (ROC)
curve was introduced and the area under the ROC curve
(AUC) can be used to evaluate a classifier. The definitions
of AUC is shown as below:
ZiepositiveClass rank; — %
M x N

AUC = , (8)

where M and N are the numbers of positive class and
negative class, respectively; we sort the probability values
of each sample predicted by the model from small to large,
and rank; represents the serial number of the i-th sample.
i=1,..,m nis the number of total data, n = M + N.
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Implementation

Other traditional classification models, i.e., support vector
machine (SVM), k-NearestNeighbor (KNN) and random
forest, were also implemented for cotton pests occurrence
prediction for comparing with our LSTM model. The
experiments were run under the environment of Intel (R)
Core (TM) i7-4790 CPU @3.60GHz (8CPUs), 8G RAM,
Windows 10 64 bits operating system, programmed with
Python 3.6. The proposed network was implemented with
TensorFlow 0.11 [31], while SVM was implemented by
Scikit-learn [32].

Experiment and results

Association rules analysis

The used Apriori algorithm is mainly divided into two
steps, finding frequent itemsets and generating associa-
tion rules.

First, let I = iy,..,i;y be a set of k items. A bas-
ket dataset B = (b3, ..., by) is any collection of n sub-
sets of I and each subset b; C I is called a basket
of items. We suppose that two sets of items, A and B,
do not intersect. Given support and confidence, there
is an established association rule: A (called antecedent)
— B (called consequent). This rule satisfies the follow-
ing conditions: (a) A and B occur together in at least
support x 100% of the n baskets; (b) Among those bas-
kets containing A, at least confidence x 100% also contain
B. Then, the significance of an association relationship
between A and B can be measured by the support and the
confidence,

nAB
Support(A - B) =P(AUB) = —
n

. nAB
Confidence(A — B) = P(B|A) = i
n

’

where A — B represents an association rule between
A and B; 7 is the total number of items in the population;
nA is the total number of items in A; and nAB is the total
number of items in both A and B.

Apriori algorithm filters frequent items based on min-
imum support. Then, a connection rule is established
between frequent items, and the confidence of the con-
nection rule is calculated, and the association rule sat-
isfying the minimum confidence can be finally retained.
Currently, the thresholds of the support and the confi-
dence are set arbitrarily by users and it is very difficult
to interpret the result. If the thresholds of the support
and the confidence are set too low, many rules will be
established. On the other hand, if the thresholds are set
too high, no rules may be established [33]. After many
attempts, we found that there have almost no associa-
tion rule information under higher thresholds. One of
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the reasons may be that different datasets (i.e., different
types of pest and disease datasets) have their own spe-
cific association rules. When we put all datasets together,
the disappearance of these specific association rules leads
to a decrease in the number of association rules gen-
erated by the dataset as a whole. However, in order
to make the results universal, we need to perform the
same pre-processing on all data sets, that is, discretiza-
tion in the same way, which requires all the samples to
be processed together. Therefore, we set a lower thresh-
old with a minimum support of 0.05 and a minimum
confidence of 0.5. Any association rule must meat these
minimal support and minimal confidence values to be
meaningful.

After discretization based on the method in Table 1,
we analyzed the association rules for the different loca-
tions of pest and disease datasets and the different types
of pest and disease datasets as show in Fig. 2a and b,
respectively. Some of the results are shown in Tables 2
and 3. The tables list the number of association rules asso-
ciated with the occurrence of cotton pests and diseases
and the top three association rules (If the number of rules
included in the top one or top two confidences exceeds
three, we will not show them all here.) under the minimum

Table 2 Partial association rules between pest occurrence and
weather factors in five different regions (25 rules)

Locations Numbers Association rules of pests occur and weather

factors

B2,C3,E1,HI—P,A2B2,C3E1—P,
B2,C3E1,F1I—P, B2C3E1—P,

A2,B2,C3,E1,F1I—P,A2,B2,C3E1,HI—P,
B2,C3,E1,FI,HI—P, A2B2,C3,E1,F1,HI—P,

Support= 0.07643, confidence=0.790816

Akola 241

A2,B3,03,F1— P, Support=0.0873694,
confidence=0.569307;

A2,D3,E1,F1—P, Support=0.0907882,
confidence=0.567023;

A2,B3,C3,D3,F1— P, Support=0.0849003,
confidence=0.565823;

Lam 94

A2,C3,E1,G2— P,A2,C3,E1,F1,G2— P,
Support=0.0615986, confidence=0.638629;

A2ET,H2— P, A2E1F1,H2— P,
Support=0.0585938, confidence=0.621019.

Nagpur 80

A2,D2,F1— P,A2D2,F1,HT— P,
Support=0.0631619, confidence=0.594306;

A2,C3,D2,E1— P,A2,C3,D2EI,HI— P,
Support=0.0540847, confidence=0.581301;

Pharbhani 44

A2,B3,D3E1—P,A2,B3,D3,E1,F1—P,
Support=0.0502674, confidence=0.87037;

B3,D3,E1—P, B3,D3,E1,F1—P,
Support=0.0572193, confidence=0.856;

Sirsa 121
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Table 3 Partial association rules between pest occurrence and
weather factors in five different types of cotton pests and
diseases (15 rules)

Pests and Numbers

Diseases

Association rules of pests occur
and weather factors

A2,E1,H3 —P, Support= 0.0523,
confidence=0.8438;

A2,F1,H3 — P, Support= 0.0630,
confidence=0.7927,

A2,C3,F1,H3 —P, Support= 0.0620,
confidence=0.7902;

Ahpid 153

B3,D03,F1,H1 —P Support=0.0527,
confidence=0.8814;

A2,B3,D03,F1 —P,Support=0.0927,
confidence=0.8592;

A2,B3,F1,G2 —P,Support=0.0567,
confidence=0.8550;

Jassid 199

A2,D3,ET,F1,G2— P,
Support=0.0577,
confidence=0.7762;

A2,C3,D3,E1,F1,G2— P,
Support=0.0541,
confidence=0.7704;

A2,D3,E1,FT — P, Support=0.0873,
confidence=0.7534.

Leaf Diseases 142

A2,C3,G2,H1 — P, Support=0.0709,

confidence=0.7024;

A2,B3,F1,H1— P, Support=0.0505,
confidence=0.7000;

A2,B3,C3El,HI— P,
Support=0.0637,
confidence=0.6883.

Thrios 109

A2,B3,C3,F1— P, Support=0.0729,
confidence=0.6667;

A2,B3,F1— P, Support=0.0816,
confidence=0.6613;

A2,B3,D3,F1— P, Support=0.0657,
confidence=0.6600.

Whitrfly 52

support and minimum confidence. For example, the rule:
A2,B3,D3,F1 — P,support = 0.0927, confidence =
0.8592, indicating that when the Maximum Temperature
in (27.79, 35.63], the Minimum Temperature in (21.05,
32.20], Relative Humidity in the evening in (57.89, 90.40],
and Wind Speed in (0, 5.73], the probability of occurrence
of pests and diseases is 85.92%, and the probability of this
occurrence is 9.27%.

In order to further analyze the impact of weather fac-
tors on the occurrence of cotton pests and diseases, we
separately counted the left items of all the rules (25 rules
and 15 rules) listed in Tables 2 and 3. then, we sim-
ply calculate the probability of each item. The results
are shown in Fig. 5 It can be seen from the figure
that the factors affecting the occurrence of cotton pests
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Fig. 5 The probability of occurrence of each item in the association
rules. a five different regions; b five different types of cotton pests and
diseases.

H1 H3

and diseases are concentrated, i.e., suitable temperature,
humid air, low rainfall and wind speed, which are more
likely to cause pests and diseases. In addition, there are
some differences in the two subfigures Fig. 5a and b, i.e.,
Fig. 5a shows that the factors affecting cotton pests and
diseases in different regions are more extensive, while
Fig. 5b concentrated more. Perhaps cotton grown in dif-
ferent areas is affected by more complex factors during its
growth.

Determination of parameters

There are a total of 63 time series datasets in the Crop
Pest Decision Support System, in which the sizes of the
datasets range from 52 to 1196. In order to guarantee
the accuracy and generalization ability of the network,
we use the top size datasets to train our model. Five
datasets of bollworm records with top size, which are
denoted as p1, p2, p3, p4 and p5, are selected to train the
LSTM network and determine the network parameters.
Table 4 shows the size of five groups of cotton bollworm
records.
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Table 4 The size of five groups of cotton bollworm records
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Table 6 Prediction results on five datasets in terms of /,

P1 P2 P3 P4 P5 Iy Metrics P1 p2 P3 P4 P5

Pests and diseases 335 316 167 197 70 1 ACC 0.9354  0.9041 09216 0.8983 0.9161

No pest and disease 861 724 457 286 190 AUC 09774 09595 0.9748 0.9622 0.9604

Total 1196 1040 624 483 260 Fl-score 08918 0.8183  0.8633 0.8817 0.8290

2 ACC 0.9331 0.8831 0.9190 0.8949 0.8936

Before training the LSTM model, each dataset is divided AUC 09727 0.9402 0.9656 0.9567 0.9657

into a training set and a test set, where the first three Flscore 0.8931 07844 08374 08710 07972
quarters of the dataset is regarded as the training set

and the rest records as the test set. Firstly, we fix /. 3 ACC 09245 0.8784 0.9216 08847 0.9129

and/; as 1, and choose a proper value of units_r from AUC 09732 09377 09598 09421 0.9712

{4, 5, 6, 7}. Table 5 shows the predictions on five datasets Fl-score  0.8769 0.7806 0.8559 0.8564 0.8445

of bollworm with different values of units r.The bold-
face items in the table represent the best performance,
i.e. the largest ACC, AUC and FI-score. It can be seen
from the results that the best performance occurs when
units_r = 5 on three datasets p1, p2 and p4. Although the
model performs not good enough when units r = 7 on
dataset p3 and umits_r = 6 on dataset p5, it can be seen
that the performance difference of the model and those
with other units r is not obvious. In addition, there are
fewer positive samples in the P3 and P5 datasets, which
may also be one of the reasons for the difference in net-
work predictions. So in the following experiments, we set
units_r as b.

Then, we also use the time series sequences from the
same five groups data in order to choose a proper value
for I, from {1,2,3}, the other two parameters are set by
units_r = 5 and [g= 1. Table 6 shows the results on five
datasets with different values of [,. The boldface items in
the table represent the best performance for each dataset.
Results shows that the best performance occurs when

Table 5 Predictions on five datasets in terms of units_r

The entry in boldface represents the best performance on one dataset with respect
of Ir

ly= 1. The reason may be due to the increasing number
of weights with increasing recurrent LSTM layers, which
results in insufficient dataset to train larger amount of
weights. Actually, experiences show that LSTM with more
layers did not always perform good. Results in this work
show that more LSTM layers yield unstable results more
likely. Therefore in the following experiments, we set /.
as 1.

Lastly, we still use the same five groups datasets to
choose a proper value for /i from {1, 2, 3} and its units.
Table 7 shows the results with different values of /;.. The
numbers in the square brackets stand for the number of
the hidden units. The boldface items in the table repre-
sent the best performance for each dataset. The model
achieves the best performance when /;, = 2. The reason is
similar to that in the choose of [,, i.e., the model with more
layers means there are more weights to be trained and

Table 7 Prediction results on five datasets in terms of /¢

Units_r  Metrics P1 P2 P3 P4 P5 It Metrics P1 p2 P3 P4 P5

4 ACC 0.9241 0.8973 09111 0.9017 0.8742 112] ACC 09300 0.8858 09189 08780 0.8936
AUC 09712 0.9532 0.9687 0.9578 0.9465 AUC 09735 09515 09668 09565 09510
Fl-score  0.8857 0.8258 0.8316  0.8737 0.7804 Fl-score 08819  0.8080  0.8545 08378 0.8256

5 ACC 09329 09169 09176 0.9136 0.8903 2[5,1] ACC 09206  0.9020 0.9320 0.8865 0.9129
AUC 0.9764 0.9674 0.9663 0.9704 0.9715 AUC 09694  0.9626 0.9738 0.9517 0.9640
Fl-score 0.8949 0.8555 0.8580 0.8955 0.7903 Fl-score 08662 0.8285 0.8735 0.8616 0.8660

6 ACC 0.9281 0.9063 0.9098 0.8949 0.8968 3[5,51] ACC 09292 08959 09124 08729  0.8903
AUC 09737 0.9643 0.9529  0.9628 0.9649 AUC 0.9695 09512 09506  0.9381 0.9555
Fl-score  0.8896 0.8450 0.8420 0.8680 0.8234 Fl-score 08859  0.8264 08466  0.8550  0.8237

7 ACC 0.9276 0.9013 0.9255 0.9000 0.9032 310,511 ACC 09284 08946 09020 08763 09129
AUC 0.9710 0.9557 0.9717 09551 0.9636 AUC 0.9695 09529 09443 09526 09625
Fl1-score  0.8870 0.8205 0.8584 0.8763 0.8104 Fl-score 0.8877 0.8288 0.8327 08480 0.8363

The entry in boldface represents the best performance on one dataset with respect
of Units_r

The entry in boldface represents the best performance on one dataset with respect
of Ifc
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more computation it needs. So in the following experi-
ments, we set /. = 2, while the numbers of the hidden units
are 5 and 1. The final full connectivity layer is integrated
into the LSTM model to yield the predictions of pests and
diseases.

Performance of LSTM

As discussed in above, the parameters of the used LSTM
is listed in Table 8. After building the basic framework
of the LSTM network, the other parameters have to be
adjusted to expect the model achieving higher perfor-
mance, i.e., dropout = 0.1. Compared with traditional
machine learning methods, LSTM network can directly
update network parameters for new data without having
to restart feature selection and rebuild networks. It also
can update the network parameters in real time according
to the current input data, and can be applied to pre-
dict the occurrences of other kinds of pests. We hope
our model could be applied in different cotton pests and
diseases, so other pests and diseases records, such as jas-
sid, whitely, and the common leaf blight of cotton, are
input into the model to show its prediction power. The
sizes of records are shown in Table 9. The performance
comparison on different kinds of datasets with LSTM net-
work is listed in Table 10. Figures 6 and 7 illustrate the
confusion matrix and ROC curves on the three kinds of
pests (bollworm, whitefly and jassid) datasets and leaf
blight dataset, respectively. From the Table 10 and Fig. 6,
our model not only performs well in pests prediction, but
also in disease, which exhibits good generalization ability.
At the same time, Fig. 7 also shows that our model also has
a good representation in the accuracy of classification. All
the results indicate that the LSTM network is suitable for
the prediction of cotton pests and diseases, which also lays
a theoretical foundation for practical application in the
future.

Prediction comparison with other methods

The bollworm dataset pl was adopted to implement
the prediction comparison of our proposed method with
other classical machine learning methods KNN [34], SVM
[35] and Random Forest [36]. The models were trained
on the training datasets and the optimal prameters were

Table 8 The list of parameters for LSTM network and other
compared methods

Methods Parameters

LSTM 1=1; 1=2[511; units_r=5

SVM type='LinearSVC; C =10

KNN weights='distance’; n_neighbors=3;

algorithm="ball_tree’;p =2

Random Forest n_estimators=100
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Table 9 The sizes of datasets for the four kinds of pests and
diseases

Bollworm ~ Whitefly ~ Jassid  Leaf Blight
Pests and diseases 1776 450 730 523
No pests and diseases 5307 1059 1244 1401
Total 7083 1509 1974 1924

selected for evaluating the models on the test datasets. For
LSTM network, the parameters of units_r, [, and lfc were
setas 5, 1 and 2, respectively; for KNN, weights = ‘distance,
n_neighbors = 3, algorithm = ‘ball_tree’ and p = 2; for SVM,
LinearSVC was adopted and C = 10; for Random Forest,
n_estimators was set as 100. The detailed discussion on
these parameters are not shown in this paper. Moreover,
the list of parameters for the models is shown in Table 8.

Figure 8 shows the prediction results. The boldface
items in the table represent the best performance, i.e.,
the largest area average ACC, AUC and F1-score. It can
be seen from the results that LSTM network achieves
the best prediction performance, KNN and Random For-
est are the second, and SVM is the worst. Moreover,
the LSTM gets good results, AUC scored 0.97 (two sig-
nificant figures retained) and ACC achieved 0.92, while,
this is difficult to do with traditional machine learning
methods. From the results, it may be due to the lin-
ear relationship between the weather factors we collected
and the occurrence of cotton pests, ie., in winter, the
higher humidity and temperature, the better the overwin-
tering of eggs and the outbreak of pests damage in the
coming year, while KNN is superior to nonlinear mod-
els such as SVM in dealing with linear problems. How-
ever, in addition to a certain linear relationship between
weather and pest occurrence, there still have a strong reg-
ularity in time. These time rhythm cannot be extracted
using feature engineering. RNN has made great break-
throughs in dealing with time series problem, There-
fore, the optimal model to solve the problem depends
on the internal structure of the problem data, and it
is impossible to evaluate the advantages of each model
separately.

Discussion
From this work, there are certain relationship between
weather factors and the occurrence of cotton pests

Table 10 Predictions on different kinds of pests and diseases
with LSTM network

Metrics Bollworm Whitefly Jassid Leaf Blight
ACC 0.9207 0.9244 0.9354 0.9557
AUC 0.9659 0.9687 09776 0.9868
F1-score 0.8749 0.9243 09161 0.9204
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and diseases. In autumn and winter, suitable temper-
ature, humidity, low rainfall, low wind speed, suitable
sunshine time and low evaporation are more likely to
cause cotton pests and diseases (as show in Table 1).
Furthermore, the factors affecting cotton pests and dis-
eases in different regions are more extensive, such
as warm temperature (A2), low wind speed (F1), and
low rainfall (E1). Perhaps cotton grown in different
areas is affected by more complex factors during its
growth.

The occurrence of cotton pests and diseases is not only
related to climatic factors, but also closely related to other
factors, i.e., the growth of cotton, the growth cycle and
evolution of pests, etc. Moreover, we dropped the pest
value feature to train different models, and we found that
the law of the occurrence of pests and diseases is also
an important feature of model learning, while our model
only considering weather factors and historical pest data.
Although the proposed model yielded good predictions
on different datasets, it seems that it could be greatly
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improved and it is worth of collecting more effective
features to further optimize the network. Furthermore,
it is more interesting and meaningful to concern about
the pest hazard level of crops in reality. It is a prob-
lem of multi-classification and even regression prediction.
Therefore, in the future work, we will try to build more
datasets with more factor features, including weather fac-
tors, the occurrence cycle of pests and diseases and so on.
In addition, we will try to use the LSTM network as well
as other deep learning methods to predict the hazard level
of pests and diseases. It enables people to prevent crop
diseases and insect pests in a timely manner.

The historical pest values plays an important role
in model establishment. Although most of this paper
discussed the impact of weather factors on pests and
diseases, we cannot ignore the fact that pests and dis-
eases have their own regularity. For example, cotton pests
often occur continuously for more than a decade. Based
on the existing model, we compared the historical pest
values as a feature of model training and the absence of
historical data. The results are shown in Tables 10 and 11,
respectively. To make the results clearer, we have drawn
a bar chart of the AUC scores for the different mod-
els as show in Fig. 9. The bar graph shows that models



Xiao et al. BMC Bioinformatics 2019, 20(Suppl 25):688

Page 13 of 15

0.9

0.8

0.6

Scores

0.5

0.4

ACC

Fig. 8 Performance comparison on dataset "p1" with different methods

HLSTM
B KNN
Random Forest
SVM
AUC F1-Score
Metrics

with historical pest and disease data have higher AUC
scores. In addition, although the results show that both the
machine learning models and the LSTM network perform
better after adding historical pest values, the performance
improvement of LSTM is more significant, which also re
ects the advantages of LSTM in extracting time series
information.

Conclusions

In this paper, we proposed an LSTM-based classifier that
can predict the occurrence of future cotton pests and
diseases based on historical data including weather fac-
tors and pests data, which is an important thing for the
future prevention and control of cotton pests and diseases
and the development of agriculture. The neural network
is a black box model, it does not need complex feature
engineering, and we don’t know which features might be

Table 11 Performance of different models without adding
historical pest values on dataset p1

Metrics LSTM KNN Random Forest SVM

ACC 0.8393 0.8135 0.8423 0.7485
AUC 0.8994 0.7515 0.7845 0.5453
F1-score 0.6920 0.6338 0.6861 0.2009

useful for model training. Association rule mining simply
counts the weather conditions that affect the occurrence
of cotton pests and diseases. Although we do not need to
add these features into LSTM network for training in a
complex combination, based on these rules, we have more
confidence to establish a weather-pest model. This is the
first time that we have used LSTM to solve the problem
of pest prediction. The proposed model mainly consists of
two major parts, the LSTM layers and the fully connected
layers. The former is to model the time series data, and
the latter is to map the output of LSTM layer to a final
prediction.

We explore the optimal setting of this architecture by
experiments and report the prediction results of boll-
worm pests to confirm the effectiveness of the proposed
method. In addition, we also investigate the model on
different types of cotton pests and diseases records, i.e.,
jassid, whitrly and leafblight, and achieve good predic-
tions. Moreover, some traditional machine learning meth-
ods, i.e.,, KNN, SVM and Random Forest, are implemented
to show the prediction comparison with LSTM model.
Results show that LSTM network has certain advan-
tages in processing time-dependent problem, and show
the importance of model selection. Although our model
outperformed other methods, probably, the features that
the datasets contained are insufficient to achieve more
accurate predictions.
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