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Abstract

Background: Imbalanced datasets are commonly encountered in bioinformatics classification problems, that is, the
number of negative samples is much larger than that of positive samples. Particularly, the data imbalance phenomena
will make us underestimate the performance of the minority class of positive samples. Therefore, how to balance the
bioinformatic data becomes a very challenging and difficult problem.

Results: In this study, we propose a new data sampling approach, called pseudo-negative sampling, which can be
effectively applied to handle the case that: negative samples greatly dominate positive samples. Specifically, we
design a supervised learning method based on a max-relevance min-redundancy criterion beyond Pearson
correlation coefficient (MMPCC), which is used to choose pseudo-negative samples from the negative samples and
view them as positive samples. In addition, MMPCC uses an incremental searching technique to select optimal
pseudo-negative samples to reduce the computation cost. Consequently, the discovered pseudo-negative samples
have strong relevance to positive samples and less redundancy to negative ones.

Conclusions: To validate the performance of our method, we conduct experiments base on four UCI datasets and
three real bioinformatics datasets. According to the experimental results, we clearly observe the performance of
MMPCC is better than other sampling methods in terms of Sensitivity, Specificity, Accuracy and the Mathew’s
Correlation Coefficient. This reveals that the pseudo-negative samples are particularly helpful to solve the imbalance
dataset problem. Moreover, the gain of Sensitivity from the minority samples with pseudo-negative samples grows
with the improvement of prediction accuracy on all dataset.
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Background
The work is motivated by the real-world requirement in
bioinformatic data processing: it is very common that neg-
ative samples greatly dominate positive samples, and this
phenomena is called data imbalance problem. In general,
we cannot achieve genetic data mining with limited pos-
itive samples. So, we think that: whether we could use
positive samples by mixing pseudo-negative data (which
is classified to be negative data, but they are similar to
positive samples with the maximum relevance and they
have the minimum redundancy with negative samples)
to predict the categories of samples. Because of the lack
of enough positive samples, the biologist cannot perform
experiments. Consequently, some positive samples cannot
be identified or categorised as negative samples which can
be viewed defined as pseudo-negative samples. So how
to select these pseudo-negative samples will be an alter-
native method to solve the imbalanced data problem in
bioinformatics.

In the post-genome era, with the wide application of
various high-throughput technologies, biological data has
rapidly increased [1, 2]. Machine learning technology can
be applied to discovery important information for under-
stand complex biological processes from large-scale bio-
logical data [3–9]. However, imbalanced data is a very
common phenomenon in the real dataset (where the pos-
itive sample is the minority class). Many bioinformatics
applications require class imbalance learning, such as
gene expression data [10, 11], protein-DNA binding data
[12, 13], N6-methylation sites in mRNAs [14], splice sites
prediction [15], prediction of microRNAs [16], prediction
of protein interaction [17–21] , transcription factor bind-
ing sites prediction [22, 23] and so on. In this scenario,
the performance of the minority classes can be greatly
underestimated [24].

To the best of our knowledge, researchers have pro-
posed some strategies to degrade the influence of imbal-
ance data. These existing methods can be classified into
data-level approaches and algorithmic-level approaches
[25, 26]. In regard of data-level approaches, re-sampling
techniques are employed to balance the sample space w.r.t.
an imbalanced dataset in order to alleviate the negative
effect of the skewed distribution of samples in the learn-
ing process. Resampling methods are very commonly-
used approach because they are independent of classifiers.
Resampling techniques can be classified into three cat-
egories depending on the method used to balance the
proportion of positive and negative samples: (1) over-
sampling: eliminating the negative effect of skewed distri-
bution by generating new samples of minority class. Two
widely-used approaches to generate minority samples are
Random Over-Sampling (ROS) which randomly duplicate
the minority samples, and SMOTE. (2) Under-sampling:
balance the data by discard the samples from the majority

class. The simplest yet most effective method is Random
Under-Sampling (RUS) which involved the random elim-
ination of majority class examples [27]. RUS deals with
the class imbalance problems in an effectively fashion. (3)
Hybrid methods: these are a combination of the over-
sampling and under-sampling method. The commonly-
used algorithmic-level approach is cost-sensitive learning
method which assigns higher costs to the minority class
[28, 29].

However, RUS often loses some important classification
information and ROS is time-consuming and often results
in the phenomenon of overfitting. So, it is essential to pro-
pose advanced data sampling approaches to maintain the
structure of groups and generate new data according to its
underlying distribution.

To overcome the problems caused by the imbal-
anced bioinformatic data, we first propose the pseudo-
negative sampling approach based on Max-relevance and
Min-redundancy Pearson correlation coefficient (called
MMPCC). In the MMPCC approach, Pearson correlation
coefficients are used to measure the similarity between
positive and negative samples and the coefficients are
learned from positive and negative samples based on
the max-relevance and min-redundancy criteria. The
new algorithm can discover the pseudo-negative samples
which may be viewed as positive samples, but their labels
are negative. This proposed sampling approach aims at
alleviating the imbalanced ratio. The experiments are
applied on two UCI data and three real-life bioinformatics
data.

Contribution: The original contributions of this study
can be summarized as follows.

1) We propose a concept of pseudo-negative samples
and present a pseudo-negative sampling method which is
based on the max-relevance and min-redundancy Pear-
son correlation coefficient in supervised learning. In
particular, both positive and negative samples are taken
into full consideration in order to find optimal pseudo-
negative samples.

2) We use an incremental searching method for cal-
culating the coefficient of positive and negative samples,
which can avoid the high computational cost in selecting
the subsets of pseudo-negative samples.

3) We conduct extensive experiments and the results
demonstrate the advantage of the MMPCC method for
handling the imbalanced bioinformatic data.

Methods
Pseudo-negative sampling method
Although pseudo-negative samples are viewed to be neg-
ative, but they are similar to positive samples with the
maximum relevance and they have the minimum redun-
dancy with negative samples. The key idea of pseudo-
negative sampling approach is to select a subset from the
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negative samples and classify them into positive class by
the method of max-relevance and min-redundancy on
Pearson correlation coefficient in the phase of training.
The formal definition of pseudo-negative samples is given
as follows.
Definition 1 (Pseudo-negative samples). Given a pos-
itive data set S+={(x+

1 , y+
1 ), (x+

2 , y+
2 ), ..., (x+

m, y+
m)}, a

negative data set S−={(x−
1 , y−

1 ), (x−
2 , y−

2 ), ..., (x−
n , y−

n )},
then a pseudo-negative data set is represented by
S∗={(x∗

1, y∗
1), (x∗

2, y∗
2), ..., (x∗

l , y∗
l )}, where m is the total num-

ber of positive data, n is the total number of negative data,
m � n, and l is the number of pseudo-negative samples.

The purpose of our method is to identify the pseudo-
negative sample set S∗ (which might contain l samples)
based on S+ and S−, where l < m.

One of the famous sequential search methods is the
incremental sample search algorithm, and we employ it
in the study. To achieve the incremental sample search-
ing, the pseudo-negative sample set starts from S∗

0 = ∅,
and a quantitative criterion Q(S∗

i ) is used to measure the
similarity of samples in S∗

i .
In each round of searching, a sample S∗′ would be added

in the sample set S∗
k .

S∗
k = S∗

k−1 ∪ S∗′ (1)

where

S∗′ = argmax Q(S∗
k)

S∗
k−1∩S∗′=∅

(2)

Q(S∗
i ) plays an important role in the sample selection,

which can be defined with different requirements. The
validation accuracy is utilized to evaluate the new sam-
ple subsets. In this study, the metric of Eq. 3 is utilized
to evaluate the similarity of samples in S∗

k−1 and S∗′, and
the corresponding quantitative criterion is given by the
following equation:

Q(S∗
i ) = A

(
S∗

k−1 ∪ S∗′) (3)

where S∗′ is a potential pseudo-negative sample and S∗
k−1

is the pseudo-negative sample set, and A represents the
validation accuracy.

In this study, we employ the Pearson correlation coef-
ficient between samples in order to select a new sample.
Q(S∗

i ) can be transformed to be the following equation:

Q(S∗
i ) = P

(
S∗

k−1 ∪ S∗′) (4)

The details of calculating the Pearson correlation coeffi-
cient are given in the following.

Max-relevance and min-redundancy on pearson
correlation coefficient
Pearson correlation coefficient (PCC) [30] is defined on
the covariance matrix, which is a method to evaluate
the strength of the relationship between two vectors. In

general, the coefficient between two vectors αi and αj is
defined as follows:

P(αi, αj) = cov(αi, αj)√
var(αi) × var(αj)

(5)

According to the max-relevance, PCC beyond negative
sample and positive sample are formalized as follows:

D(S−
i , S+

j ) = P(S−
i , S+

j ) (6)

where S−
i ∈ S−, i ∈ N , S+

j ∈ S+ and j ∈ M agreeing with
the max-relevance criterion. The most relevant feature set
can be obtained by maximizing D(S−

i , S+
j ).

Smax = argmax D(S−
i , S+

j ) (7)

Based on the min-redundancy criterion, the samples
could be selected by the following equation:

R = 1
|S∗|2

∑
P(S−

i , S∗
k) (8)

where S−
i ∈ S− and S∗

k ∈ S∗,

Smin = argmin {R} (9)

In terms of incremental search method, an operator
�(D, R) is defined in Equation 10 in order to optimize
the max-relevance and min-redundancy information. The
best selected sample S∗′ is given as follows:

� = D − R (10)

S∗′ = argmax �(D, R) (11)
Assume we have the sample subsets S∗

k−1 which have k-1
samples. In the next step of searching, the kth sample is
obtained from the sample subsets {S− − S∗

k−1}. Then, S∗
k

can be calculated by Eq. 12 based on �(D, R).

S∗
k = argmax

⎡

⎣P(S−
i , S+

j ) − 1
k − 1

∑

S∗
k∈S∗

k−1

P(S−
i , S∗

k)

⎤

⎦

(12)

where S−
i ∈ {S− − S∗

k−1} and S+
j ∈ S+.

The proposed pseudo-negative sampling algorithm
Based on the aforementioned preliminaries, we propose
a pseudo-negative sampling algorithm based on the max-
relevance and min-redundancy on Pearson correlation
coefficient, which is called MMPCC. The detail of the
MMPCC algorithm is presented in Algorithm 1 and the
flow chart is shown in Fig. 1.

As described in Algorithm 1, the selected pseudo-
negative samples can be updated step by step. Firstly,
the max-relevance between the negative sample and the
positive sample is calculated by Equation 7 in order to
choose candidate pseudo-negative samples. Then, the
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Fig. 1 A flow chart of MMPCC algorithm

new selected sample will be identified based on the min-
redundancy of samples in the selected pseudo-negative
subsets by Equation 9. Lastly, the new sample will be
identified to be pseudo-negative sample by Equation 12.

It is worthwhile to note that l is specified by experts in
order to determine how many pseudo-negative samples
should be inserted into the positive sample set.

The computational complexity of MMPCC, MAXR and
MINR includes two parts: the computation of similar-
ity matrices and the computation of sample ranking. The
operator ψMAXR can be obtained via Equation 7, the oper-
ator ψMINR can be calculated by Equation 9 and the
MMPCC model be figured out by Equation 12.

As for MAXR, the computation of Pearson correlation
coefficient of all pairwise negative data and positive data
requires the complexity of O(n∗m∗f ), where n is the num-
ber of negative data, m is the number of positive data and
f is the number of attributes of each data. As for MINR,
the computation complexity is O(n ∗ l ∗ f ), where l is the
number of pseudo-negative samples. Therefore, the com-
putation complexity of MMPCC is the sum of MAXR and
MINR, that is, O(n ∗ m ∗ f + n ∗ l ∗ f ).

Algorithm 1 Pseudo-negative sampling by Max-relevance
and Min-redundancy on Pearson Correlation Coefficient
Input: a positive dataset
S+={(x1, y1), (x2, y2), ..., (xm, ym)}, a negative dataset
S−={(x1, y1), (x2, y2), ..., (xn, yn)}
Output: a pseudo-negative dataset S∗

l , l is the number of
pseudo-negative samples.

1: Initialize the target sample subsets S∗
0=∅ and the

available sample subsets S−
α = S− − S∗

l .
2: for k=1 to l do
3: for each S−

j in S−
α and each S+

i in Sn do
4: search for the new sample S∗

k according to:
5: S∗

k =argmax[ P(S−
i , S+

j ) − 1
k−1

∑
P(S−

i , S−
j )]

6: end for
7: update S∗

l = S∗
l ∪ S∗

k and S−
α = S−

α − S∗
k ;

8: end for
9: return pseudo-negative dataset S∗

l ;

Classification methods
Random forests
The classifier of Random forests [31, 32] is an ensemble
learning method, which works by constructing a mul-
titude of decision trees at training time and outputting
the class that is the mode of the classes (classification)
or mean prediction (regression) of the individual trees.
Random decision forests correct for decision trees’ habit
of overfitting to their training set.

Neural networks
A neural network [33] is composed of several simple
"neurons", and the output of a neuron will be the input
of another. The connections of the biological neuron are
modeled as weights. A positive weight reflects an exci-
tatory connection, while negative values mean inhibitory
connections. All inputs are modified by a weight and
summed. This activity is referred as a linear combination.
Finally, an activation function controls the amplitude of
the output. For example, an acceptable range of output is
usually between 0 and 1, or it could be -1 and 1.

AdaBoost
AdaBoost, short for "Adaptive Boosting", which is a gen-
eral ensemble method [34]. It focuses on classification
problems and aims to convert a set of weak classifiers into
a strong one. The final equation for classification can be
represented by:

F(x) = sign(

M∑

m=1
θmfm(x)) (13)
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where fm represent the mth weak classifier and θm is the
corresponding weight. It is exactly the weighted combina-
tion of M weak classifiers.

Discriminant analysis
Discriminant analysis(DA) is one of the classification
methods. The basic idea is that: two or more clusters or
populations are priori known and one or more observa-
tions are classified into one of the known populations
according to the measure characteristics [35]. Let X is a
q-dimensional vector representing an observation from
one of several possible classes. If the category is unknown,
X can be classified using the discriminant analysis
approach. Alternatively, it can be used to characterize the
difference between classes via a discriminant function.

Datasets
In order to evaluate the prediction performance of
MMPCC on pseudo-negative sampling, we compare it
with the state-of-the-art prediction methods. In experi-
ments, we use four UCI Repository datasets [36] and three
real bioinformatic datasets. Table 1 introduces the detail
of the datasets.

From Table 1, we can see that the number of attributes
of each dataset is 9, 3, 10, 49, 180, 180 and 25, respec-
tively. We use all attributes of each dataset in MMPCC.
In MMPCC, the Pearson correlation coefficient is used
to calculate the similarity between negative and positive
samples in Equation 7, and is also applied in Equation 10
and Equation 12. Additionally, the coefficient between two
vectors αi and αj in Equation 5 is obtained by all attributes
of each dataset.

In Table 1, Positive represents the number of positive
samples, Negative represents the number of negative sam-
ples, and Ratio = Negative Numbers / Positive Numbers.

More specifically, the first UCI datasets, Contraceptive
Method Choice (CMC) contains 333 minority samples
and 1140 majority samples, and the number of attributes
is 9. The second UCI datasets, Haberman’s Survival Data,
contains 81 minority samples and 225 majority samples,
and the number of attribute is 3. The third dataset Solar
Flare records the number of solar flares. Each attribute

Table 1 Description of datasets

Dataset Positive Negative Attributes Ratio

CMC 333 1140 9 3.4

Haberman 81 225 3 2.7

Solar Flare 69 1320 10 19.1

Oil 41 896 49 21.9

PDNA-543 9549 134995 180 14.1

PDNA-316 5609 67109 180 11.9

SNP 183 2891 25 15.7

calculates the number of a certain type of Solar Flare
within 24 hours. Each instance represents the number of
all types of flares in an active region on the sun. The data
contains 69 minority classes and 1320 majority classes,
with 10 attributes. The fourth datasets Oil contains 41
minority classes and 896 majority classes, including 49
attributes.

The first bioinformatic datasets, SNP data [37], included
183 positive samples and 2891 negative samples, and
the number of attributes is 25. The second bioinfor-
matic datasets, PDNA-543 [38], consists of 543 protein
sequences, which are all related into the PDB (Protein
Data Bank) before October 10, 2014. There are 9,549
DNA-binding residues as positive samples and 134,995
non-binding residues as negative samples in PDNA-543.
The third bioinformatic datasets, PDNA-316, is con-
structed by Si et al [39], which has 316 DNA-binding
protein chains and 5,609 binding residues and 67,109
non-binding residues.

Evaluation metrics
In this study, four metrics are used to evaluate the perfor-
mance of different classifiers, including Sensitivity (Sen),
Specificity (Spe), Accuracy (Acc)and the Mathew’s Corre-
lation Coefficient (MCC). They are calculated according
to the following equations:

Sen = TP
TP + FN

(14)

Spe = TN
TN + FP

(15)

Acc = TP + TN
TP + FN + TN + FP

(16)

MCC =
TP • TN − FN • FP√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

(17)

where TP is the number of true positives TN is the num-
ber of true negatives, FP is the number of false positives,
FN is the number of false negatives, P is the number of
positives, and N is the number of negatives.

Sensitivity indicates how well the test predicts the true
positives, Specificity measures how well the test predicts
the true negatives, Accuracy is expected to measure how
well the test predicts both true positives and negatives,
and MCC considers true and false positives and negatives.
So, the higher the values of these evaluation metrics, the
better the results.
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Results
The purpose of the evaluation is to examine the effec-
tiveness of our proposed MMPCC method on selecting
the pseudo-negative samples. Four sets of experiments
are conducted. Experiment 1 compares the different
percentage of pseudo-negative sampling on two UCI
datasets. Experiment 2 compares the different percent-
age of pseudo-negative sampling on three bioinformatic
datasets. Experiment 3 compares MMPCC with the
max-relevance and the min-redundancy methods on the
PDNA-316 dataset, which aims to evaluate the relation
between the relevance and the redundancy. For simplicity,
the max-relevance method is represented by MAXR and
the min-redundancy method is represented by MINR.
Experiment 4 compares MMPCC with other sampling
methods on the bioinformatic datasets.

In experiments, five-fold cross-validation is used to
train the dataset. In order to give comprehensive results,
Discriminant Analysis, AdaBoost, Random Forest and
Neural Networks are employed for classification. We use
DA, Adaboost, RF and NN to represent these four classi-
fiers in the experiments, respectively.

Experiment 1: experiments on UCI datasets
This set of experiments examines the contribution of dif-
ferent percentage of pseudo-negative sampling on the UCI
datasets [36]. The results are shown in Table 2 and Table 3.
As mentioned previously, we use the metrics of Sen, Spe,
Acc and MCC.

Table 2 presents the performance of different classifiers
on the CMC dataset, where the percentage of pseudo-
negative samples changes from 0% to around 50%. 0%
means the dataset is not used pseudo-negative sam-
pling. We can see that the performance is improved with
larger percentage of pseudo-negative samples, where the
Random Forest method achieve 28.19%, 39.22%, 43.94%,
50.87%, 56.45% and 62% for Sen when the percentage of
pseudo-negative samples is fixed to 0%, 10%, 20%, 30%,
40% and 50%, respectively. In addition, the Acc value is
78.2%, 78.75%, 78.41%, 78.48%, 79.57% and 79.63% and the
MCC value is 0.27, 0.369, 0.404, 0.448, 0.505 and 0.532.
The performance of different evaluation metrics show a
trend of increasing with a higher percentage of pseudo-
negative samples, which agrees with the real-world situ-
ation that: if we add more positive samples, the classifier
will have better performance.

Furthermore, the Neural networks method achieves
27.01%, 40.92%, 47.28%, 53.39%, 54.94% and 61.02% for
Sen when the percentage of pseudo-negative samples is
fixed to 0%, 10%, 20%, 30%, 40% and 50%, respectively.
Moreover, the MCC value is 0.161, 0.302, 0.368, 0.439,
0.439 and 0.505. For Discriminant analysis method, the
Sen values are increased by 9.38%, 17.6%, 37.35%, 52.46%,
59.46% and 66.78% and the MCC values are increased

Table 2 Performance comparison of classifiers under different
percentage of pseudo-negative samples on the CMC data

Percentage Classifier Sen(%) Spe(%) Acc(%) MCC

0

DA 9.38 97.81 77.8 0.156

AdaBoost 21.37 94.48 77.94 0.226

RF 28.19 92.8 78.2 0.27

NN 27.01 87.09 73.52 0.161

10

DA 17.6 94.85 75.7 0.198

AdaBoost 25.76 93.58 76.78 0.266

RF 39.22 91.77 78.75 0.369

NN 40.92 86.98 75.55 0.302

20

DA 37.35 91.71 76.94 0.351

AdaBoost 40.03 91.24 77.33 0.36

RF 43.94 91.24 78.41 0.404

NN 47.28 87.22 76.38 0.368

30

DA 52.46 88.34 77.8 0.438

AdaBoost 50.89 88.83 77.67 0.431

RF 50.87 89.98 78.48 0.448

NN 53.39 87.86 77.73 0.439

40

DA 59.46 87.21 78.43 0.485

AdaBoost 56.01 87.61 77.61 0.461

RF 56.45 90.27 79.57 0.505

NN 54.94 86.68 76.64 0.439

50

DA 66.78 85.42 79.08 0.530

AdaBoost 64.01 87.37 79.42 0.531

RF 62 88.71 79.63 0.532

NN 61.02 87.38 78.42 0.505

by 0.156, 0.198, 0.351, 0.438, 0.485 and 0.530 on differ-
ent percentage of pseudo-negative samples, respectively.
Similarly, the performance of the AdaBoost classifier
obtain improvement on Sen and MCC, which demon-
strates the effectiveness of the proposed pseudo-negative
sampling method.

Table 3 shows similar results on different metrics
as Table 2, which verify that pseudo-negative sampling
is very useful in classify the imbalance data and can
obtain good performance of classification. Furthermore,
the results indicates that pseudo-negative samples can be
viewed as positive samples and be used to classify objects.
For the instability of MMPCC, the results are often not
unique in Table 3. There are three reasons about this issue:
Firstly, four classification methods were employed, DA,
RF, NN and AdaBoost in this study. Different machine
learning method has different character, so the exper-
iment results have little instability. Secondly, the value
of Sensitivity and Specificity has little instability, but the
value of MCC is more stable in most of experiments. As
the Sensitivity and Specificity are the singular assessment
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Table 3 Performance comparison of classifiers under different
percentage of pseudo-negative samples on the Haberman data

Percentage Classifier Sen(%) Spe(%) Acc(%) MCC

0

DA 17.33 95.42 74.79 0.212

AdaBoost 29.19 90.89 74.71 0.266

RF 34.2 82.84 70.07 0.197

NN 27.98 87.28 71.68 0.202

10

DA 21.77 93.96 72.96 0.236

AdaBoost 32.72 86.12 70.58 0.214

RF 33.38 83.91 69.38 0.197

NN 30.37 82.01 67.04 0.144

20

DA 30.51 94.41 74.2 0.340

AdaBoost 46.68 87.54 74.26 0.370

RF 45.01 81.32 69.59 0.272

NN 37.42 82.97 68.57 0.222

30

DA 31.73 95.1 73.32 0.36

AdaBoost 51.81 87.15 75.65 0.422

RF 51.06 79.6 70 0.311

NN 42.39 84.54 70.36 0.291

40

DA 37.13 94.38 72.93 0.404

AdaBoost 50.73 86.1 72.87 0.396

RF 56.81 78.38 69.95 0.359

NN 53.63 81 70.6 0.35

50

DA 38.61 93.83 71.74 0.405

AdaBoost 61.46 82.26 73.81 0.447

RF 60.75 78.22 70.95 0.395

NN 52.41 79.81 68.56 0.339

metrics, MCC considers true and false positives and neg-
atives and is generally regarded as a balanced measure.
MCC can be used even if the class size is very different.
Finally, the performance of different evaluation metrics
shows a trend of increasing with a higher percentage of
pseudo-negative samples.

Experiment 2: experiments on real-Life bioinformatic
datasets
In this section, we demonstrate the effectiveness of the
proposed method, MMPCC, on the real bioinformatic
datasets, including PDNA-543 [38], PDNA-316 [39] and
SNP data [37]. The results are given in Fig. 1, Fig. 2 and
Fig. 3.

Position Specific Scoring Matrix (PSSM) was used to
extract the features from protein sequences of PDNA-
543 and PDNA-316. PSSM is a very important type of
evolutionary feature, which is obtained by running the
PSI-BLAST program to search the SwissProt database via
three iteration, with 10−3 as the E-value cutoff for multiple
sequence alignment. In PSSM, there are 20 scores for each

Fig. 2 Performance comparison of RF and NN classifiers on PDNA-543
data under different percentage of pseudo-negative samples

sequence position and each score implies the conservation
degree of a specific residue type on that position. For each
data instance, all the scaled scores in PSSM are used as its
evolution features. In this study, we use the window size
with 9 residues, and then obtain a vector of normalized
PSSM scores whose dimensions of features are 9×20=180.

Figure 2 shows the classification performance on
PDNA-543 dataset under different percentage of pseudo-
negative samples, where RF-Sen and NN-Sen represent
the Sensitivity value of RF and NN classifiers and RF-MCC
and NN-MCC represent the MCC value of RF and NN
classifiers.

The Sen and MCC metric of NN increase with the per-
centage of pseudo-negative samples changing from 0% to
50%. When the percentage of pseudo-negative samples
changes from 0% to 30%, the Sen and MCC of RF algo-
rithm keep unchanged. However, when the percentage of
pseudo-negative samples is above 30%, there is a clear
trend that RF has better performance as the percentage of
pseudo-negative samples grows.

Fig. 3 Performance comparison of RF and NN classifiers on PDNA-316
data under different percentage of pseudo-negative samples
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Figure 3 illustrates the classification performance on
the PDNA-316 dataset under different percentage of
pseudo-negative samples. The performance of RF is bet-
ter than NN when the percentage is 0% and %10 in
terms of Sen and MCC. When the percentage is above
20%, the performance of NN increases drastically and is
better than RF, which shows that adding more pseudo-
negative samples could help greatly improve the perfor-
mance of classification. However, the performance of RF
is almost unchanged. This is because the pseudo-negative
samples has little effect on the RF algorithm in this
dataset.

Figure 4 shows the classification performance for data
SNP on different percentage of pseudo-negative samples.
The Sen of NN grows rapidly among different percentages
of pseudo-negative samples and the MCC of NN gradually
increases when the percentage changes from 0% to 30%,
and then the fluctuate is small from 40% to 50%. We can
find that the Sen and MCC of RF grows as the percentage
of pseudo-negative samples gradually increases.

Generally speaking, this set of experiments illustrated
that the pseudo-negative samples are very important and
can be used to improve the effectiveness of classification.

Experiment 3: comparison of mMPCC, mAXR and mINR on
the pDNA-316 datasets
In this section, we employ the five-fold cross-validation
to estimate the prediction performance of the pro-
posed MMPCC method on four metrics. We compared
MMPCC with other sampling methods including MAXR
(max-relevance method based on Equation 7) and MINR
(the min-redundancy method based on Equation 9) [30].
In experiments, the PDNA-316 dataset is employed to
evaluate the effectiveness of MMPCC. The comparison
results are shown in Fig. 5.

Fig. 4 Performance comparison of RF and NN classifiers on SNP data
under different percentage of pseudo-negative samples

According to Fig. 5, it is straightforward to find that
MMPCC outperforms the MAXR and MINR method in
terms of Sen, Spe, Acc and MCC in the RF and NN
classifiers. From Fig. 5(a), the pseudo-negative samples
have a big influence on the Sen value. The Sen value of
MMPCC is significantly better than MAXR and MINR,
when NN is used as a classifier. For the RF classifier,
MAXR is the best one when more pseudo-negative sam-
ples are added. By Fig. 5(b), with the increases of the
percentage of pseudo-negative samples, the Spe value
of MMPCC is very stable on RF and NN. This can be
explained by the reason that some pseudo-negative sam-
ples are still negative ones. In addition, the Sen value can
be improved with the cost of degradation of Spe value.
Figure 5(c) demonstrates that the MMPCC method is the
most stable method on Acc in the RF classifier. Figure 5(d)
shows that the MCC value of MMPCC significantly out-
performs the MAXR and the MINR methods. The perfor-
mance of MAXR is better than MINR. The experimental
results indicate that MMPCC attempts to utilize more
representative samples and find the pseudo-negative sam-
ples (which can be viewed as positive samples) from the
majority negative samples.

Experiment 4: comparison of mMPCC and classical
sampling methods on bioinformatic datasets
In order to verify the advantage of our method, we
also compare the prediction performance of MMPCC
with other classical over-sampling method, i.e., SMOTE
method [40], on the PDNA-316 dataset.

SMOTE is an over-sampling approach in which the
minority class is over-sampled by creating “synthetic”
examples rather than by over-sampling with replacement.
The minority class is over-sampled by taking each minor-
ity class sample and introducing synthetic examples along
the line segments joining any of the k minority class near-
est neighbors. Depending on the amount of over-sampling
required, neighbors from the k nearest neighbors are ran-
domly chosen. In order to compare the performance of the
algorithm, we use the default value 5 nearest neighbors the
same as the reference [40]. The results of comparison per-
formance are shown in Table 4. Because neural network
can learn and model the relationships between inputs and
outputs that are nonlinear and complex, and make gen-
eralizations and inferences. The runtime performance of
random forest is quite good, and they are commonly-used
to deal with the unbalanced and missing data.

According to Table 4, we can observe that MMPCC
outperforms the SMOTE method in terms of all evalua-
tion metrics. Taking MCC as an example, the MMPCC
value in the NN classifier under different percentages of
pseudo-negative samples are 0.312, 0.405, 0.464, 0.513
and 0.543, respectively, and the improvements are 0.152,
0.205, 0.248, 0.27 and 0.277, respectively compared to
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Fig. 5 Comparison of algorithm MMPCC, MAXR and MINR on RF and NN classifiers for Sen, Spe, Acc and MCC performances

Table 4 Performance comparison between MMPCC and SMOTE
under different percentage of pseudo-negative samples

Percentage(%) Methods Classifiers Sen(%) Spe(%) Acc(%) MCC

10

MMPCC
RF 17.13 99.44 92.46 0.333

NN 17.05 99.23 92.25 0.312

SMOTE
RF 16.01 98.27 91.34 0.235

NN 5.2 99.69 91.68 0.16

20

MMPCC
RF 17.28 99.45 91.84 0.337

NN 24.6 99.22 92.31 0.405

SMOTE
RF 17.07 98.14 90.75 0.246

NN 8.05 99.49 91.16 0.2

30

MMPCC
RF 18.18 99.44 91.29 0.351

NN 30.38 99.16 92.27 0.464

SMOTE
RF 17.69 97.95 90.08 0.25

NN 10.16 99.23 90.5 0.216

40

MMPCC
RF 19.09 99.43 90.75 0.363

NN 35.94 99.08 92.26 0.513

SMOTE
RF 18.54 97.8 89.5 0.258

NN 12.07 99.14 90.02 0.243

50

MMPCC
RF 19.56 99.39 90.16 0.367

NN 38.82 99.13 92.15 0.543

SMOTE
RF 18.5 97.72 88.9 0.258

NN 14.05 99.01 89.55 0.266

the SMOTE method. For other three evaluation metrics,
the MMPCC method outperforms the SMOTE sampling
method as well. As for RF classifier, Table 4 shows that
the performance of MMPCC is better than that of the
SMOTE method. As shown in Table 4, with the increase
of percentage, the MCC value of the MMPCC in the RF
classifier are 0.333, 0.337, 0.351, 0.363 and 0.367, respec-
tively, and the improvements are 0.098, 0.091, 0.101, 0.105
and 0.109, respectively over the SMOTE method. This is
due to the fact that a number of duplicated or artificial
samples were introduced by over-sampling techniques for
large-scale imbalanced data. But for MMPCC, there is no
man-made duplicated data. In terms of the MMPCC sam-
pling method, the pseudo-negative sampling technique
helps identify more useful samples from the negative class
which is often neglected, so it performs better than the
SMOTE sampling method.

Experiment 5: experiments on highly imbalance ratio
datasets
In order to validate the performance of the proposed
method on highly imbalance Ratio datasets, the compar-
ative evaluation on two UCI datasets, Solar Flare and Oil,
are performed. The dataset Solar Flare contains 69 minor-
ity classes and 1320 majority classes; with 10 attributes,
and the Ratio is 19.1. The Oil dataset contains 41 minority
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Table 5 Classification results of the Solar Flare dataset with
highly imbalance Ratio

Percentage Classifier Sen(%) Spe(%) Acc(%) MCC

0
RF 1.43 99.02 94.24 0.01

NN 7.25 96.90 92.51 0.05

10
RF 4.00 99.16 94.02 0.06

NN 8.01 96.73 91.94 0.06

20
RF 13.53 99.39 94.31 0.23

NN 20.88 97.63 93.09 0.24

30
RF 25.03 99.08 94.39 0.39

NN 32.03 97.08 92.95 0.33

40
RF 20.68 98.92 93.59 0.32

NN 28.33 96.44 91.79 0.28

50
RF 32.57 98.84 93.95 0.44

NN 35.48 97.05 92.51 0.38

classes and 896 majority classes, including 49 attributes,
and the Ratio is 21.9.

Table 5 demonstrates the classification results of the
Solar Flare dataset with highly imbalance Ratio. Over-
all, the performance is increased with a larger percentage
of pseudo-negative samples.For example, the random for-
est method obtain 1.43%, 4.00%, 13.53%, 25.03%, 20.68%
and 32.57% for Sen as the percentage of pseudo-negative
samples is fixed to 0%, 10%, 20%, 30%, 40% and 50%,
respectively. Moreover, the MCC value is 0.01, 0.06, 0.23,
0.39, 0.32 and 0.44. For the neural networks method,
the Sen values are increased from 7.25%, 8.01%, 20.88%,
32.03%, 28.33% to 35.48% and the MCC values are
increased from 0.05, 0.06, 0.24, 0.33, 0.28 to 0.38 on dif-
ferent percentage of pseudo-negative samples. We can
conclude that the performances of different evaluation
metrics show a significant improvement with a higher per-
centage of pseudo-negative samples, even in the situation
of highly imbalance Ratio.

Table 6 Classification results of the Oil dataset with highly
imbalance Ratio

Percentage Classifier Sen(%) Spe(%) Acc(%) MCC

0
RF 14.50 99.68 96.07 0.27

NN 52.18 98.90 96.83 0.58

10
RF 19.60 99.55 95.74 0.32

NN 51.95 98.54 96.37 0.54

20
RF 33.53 98.98 95.60 0.43

NN 41.26 98.65 95.72 0.48

30
RF 39.83 98.99 95.65 0.50

NN 45.83 98.29 95.32 0.51

40
RF 50.36 99.31 96.26 0.63

NN 54.96 97.83 95.08 0.55

50
RF 49.76 98.75 95.52 0.59

NN 48.09 97.84 94.58 0.51

Table 6 demonstrates the classification results of the Oil
dataset with highly imbalance Ratio. From the Table 6, the
random forest method achieves 14.50%, 19.60%, 33.53%,
39.83%, 50.36% and 49.76% for Sen when the percentage
of pseudo-negative samples is fixed to 0%, 10%, 20%, 30%,
40% and 50%, respectively. In addition, the MCC value is
0.27, 0.32, 0.43, 0.50, 0.63 and 0.59. For the neural net-
works method, the Sen values are increased from 52.18%,
51.95%, 41.26%, 45.83%, 54.96% to 48.09% and the MCC
values are increased from 0.58, 0.54, 0.48, 0.51, 0.55 to
0.51 with different percentage of pseudo-negative sam-
ples. It indicates that the proposed method is prone to
improve the discrimination of minority class while retains
the considerable stability.

Furthermore, Fig. 6 shows the classification perfor-
mance on the Solar Flare dataset under different percent-
age of pseudo-negative samples. From Fig. 6(a), the Sen
metric of neural network increase with the percentage of
pseudo-negative samples changing from 0% to 50%. Even

Fig. 6 Classification results of the Solar Flare dataset with highly imbalance Ratio for Sen and MCC performances
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Fig. 7 Classification results of the Oil dataset with highly imbalance Ratio for Sen and MCC performances

there is little fluctuation from 40% to 50%. It maybe the
distribution of original dataset is unclear. In the future,
we will consider how to choose the percentage of pseudo-
negative samples automatically. For MCC performance,
similar phenomenon can be obtained from Fig. 6(b).

Figure 7 shows the tendency of Oil dataset with highly
imbalance Ratio in neural network and random forest
classification. We can see that Sen and MCC of random
forest gradually increase when the percentage changes
from 0% to 50% in Fig. 7(a). However, the value of Sen and
MCC of neural network has some fluctuate from 0% to
50%. It indicated that random forest is more stability of the
proposed method for this dataset. Similar trends of MCC
performance can be obtained from Fig. 7(b).

Discussion
Here we designed a supervised learning method based on
max-relevance and min-redundant criterion beyond Pear-
son correlation coefficient and tested on four UCI datasets
and three real bioinformatics datasets. Our results indi-
cated that MMPCC is better than other sampling methods
in terms of several evaluation metrics. The performance
of different evaluation metrics shows a trend of increas-
ing with a higher percentage of pseudo-negative samples.
On the other hand, different machine learning method
has different character, so the experiment results have lit-
tle instability. We also observed that MMPCC method can
have good performance even in the situation of highly
imbalance Ratio. This reveals that pseudo-negative sam-
ples are good at solving the imbalance dataset problem.

Conclusions
In this study, we propose a new sampling method, which
is called pseudo-negative sampling, to handle the imbal-
anced classification problem based on Pearson correla-
tion coefficient which integrates the max-relevant and
min-redundant. In addition, an incremental searching
method is used to find the target sample with little cost of
computation. The experimental results demonstrate the

superior performance of our method compared to other
algorithms for imbalanced classification problems.

In future, we will apply the proposed MMPCC
algorithm in more real-world bioinformatic applications
with large-scale imbalanced data. We will investigate the
possibility of extending the MMPCC method to handle
multiple-classification problem. Furthermore, we will use
the state-of-the-art machine learning methods [41–46] to
handle the imbalanced classification problem.
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