
RESEARCH Open Access

Semi-supervised prediction of protein
interaction sites from unlabeled sample
information
Ye Wang1†, Changqing Mei1†, Yuming Zhou1, Yan Wang1, Chunhou Zheng2, Xiao Zhen3, Yan Xiong4, Peng Chen5*,
Jun Zhang6 and Bing Wang1,2*

From 2018 International Conference on Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical Inform-
atics (ICBI) 2018 conference
Wuhan and Shanghai, China. 15-18 August 2018, 3-4 November 2018

Abstract

Background: The recognition of protein interaction sites is of great significance in many biological processes,
signaling pathways and drug designs. However, most sites on protein sequences cannot be defined as interface or
non-interface sites because only a small part of protein interactions had been identified, which will cause the lack
of prediction accuracy and generalization ability of predictors in protein interaction sites prediction. Therefore, it is
necessary to effectively improve prediction performance of protein interaction sites using large amounts of
unlabeled data together with small amounts of labeled data and background knowledge today.

Results: In this work, three semi-supervised support vector machine–based methods are proposed to improve the
performance in the protein interaction sites prediction, in which the information of unlabeled protein sites can be
involved. Herein, five features related with the evolutionary conservation of amino acids are extracted from HSSP
database and Consurf Sever, i.e., residue spatial sequence spectrum, residue sequence information entropy and
relative entropy, residue sequence conserved weight and residual Base evolution rate, to represent the residues
within the protein sequence. Then three predictors are built for identifying the interface residues from protein
surface using three types of semi-supervised support vector machine algorithms.

Conclusion: The experimental results demonstrated that the semi-supervised approaches can effectively improve
prediction performance of protein interaction sites when unlabeled information is involved into the predictors and
one of them can achieve the best prediction performance, i.e., the accuracy of 70.7%, the sensitivity of 62.67% and
the specificity of 78.72%, respectively. With comparison to the existing studies, the semi-supervised models show
the improvement of the predication performance.
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machine
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Background
Protein-protein interactions (PPIs) are involved in various
life activities, such as metabolism and signal transduction,
gene transcription, protein translation, modification and
localization, and are also closely related to disease pro-
duction [1–9]. However, PPI varies from cell to cell and
from time to time, which poses a challenge to the studies
of them.
Due to the rapid development of machine learning

methods, many classical methods, such as Bayesian, sup-
port vector machine (SVM), and artificial neural net-
works, have been used to predict protein interaction
sites [10–19]. Sprinzak et al. used the correlated
sequence-signatures as identifiers for the interacting
protein which can significantly reduce the search space
and implement a directional experiment interactive
screen and achieved high quality experimental results
[5]. Bock et al. proposed a phylogenetic bootstrapping
algorithm which suggests traversal of a phenogram,
interleaving rounds of computation and experiment, to
develop a knowledge base of protein interactions in
genetically-similar organisms [6]. Enright et al. devel-
oped the hydrophobic free energy functions with the fu-
sion detection based on sequence analysis and trained a
SVM learning system to recognize and predict interac-
tions based solely on primary structure and associated
physicochemical properties, and the overall performance
of the classifier has been significantly improved [20].
Chen et al. proposed a radial basis function neural net-
works optimized by the particle swarm optimization al-
gorithm to predict protein interaction sites [2]. Wang
et al. presented a SVM based algorithm to identify
protein-protein interactions sites on the residues level by
incorporating residues spatial sequence profile and evo-
lution rate [21]. Wang et al. in another work imple-
mented a dataset reconstruction strategy by using
manifold learning under a hypothesis that the inter-
action and non-interaction sites have different inherent
structure manifolds [13, 22]. Although these methods
have driven advances in PPI research, there is still a prob-
lem that a lot of interactions cannot be tagged from exper-
iments, and only a small part of labeled samples can be
used for model training in the prediction of PPI sites,
which will make it difficult for the well-trained learning
systems to have strong generalization ability [23].
Therefore, this paper proposed three semi-supervised

machine learning-based computational models to ad-
dress the problem that the information of a large num-
ber of unlabeled samples can be utilized effectively to
improve the performance of protein interaction site pre-
diction when only a few of labeled samples can be avail-
able. Firstly, five evolutionary conserved features of
amino acids based on multiple sequence alignments are
extracted, i.e., the spatial sequence spectrum of residues,

sequence information entropy, relative entropy, conserva-
tive weight and residue evolution rate. Then three semi-
supervised learning methods are proposed, i.e., the self-
balancing semi-supervised support vector machine based
on multi-core learning (Means3vm-mkl), the iterative-
based label average self-training semi-supervised support
vector machine (Means3vm-iter) and the safe semi-
supervised support vector machine (S4VM), to build the
prediction model for identification of protein interaction
sites [24–26]. The experimental results demonstrated the
superiority of our proposed methods, such as the predic-
tion accuracy of 0.707 for S4VM model, with comparison
to the existing supervised and other approaches.

Results
In this work, three semi-supervised SVM algorithms, i.e.,
Means3vm-mkl, Means3vm-mkl, and S4VM, have been
applied for the prediction of protein interaction sites
from protein sequences. Compared to the traditional su-
pervised SVM, semi-supervised models can effectively
use the information from both of labeled and unlabeled
samples. A popular software of support vector classifica-
tion, Libsvm, is adopted in this work, where the empiric-
ally optimal parameters are used, such as C1 is 1, C2

equals 0.1, and the maximum number of generations is
50. To validate the effectiveness of the proposed models,
a 5-fold cross-validation technique, and an original resi-
due data set with 91 protein chains are used to evaluate
the prediction performance of the proposed models.
Herein, 2299 interface residues drawn from the defin-
ition of interaction sites can be used for the construction
of the three semi-supervised SVM models.
It can be seen from Fig. 1 that the proposed three semi-

supervised methods can classify the protein interaction and
non-interaction sites on protein sequences. Means3vm-iter
predictor can get good prediction measures, i.e., 0.636 of
accuracy, 0.589 of F-measure, 0.67 of precision, 0.745 of
specificity, 0.526 of sensitivity, and 0.278 of MCC, from the
original protein residue data set D. Compared to
Means3vm-iter method, the Means3vm-mkl based-model
shows better prediction performance, where the accuracy
rate and F-measure are increased by 3%. The reason is that
multi-core learning can utilizes the feature mapping cap-
abilities of each basic kernel, and the data is better
expressed in the combined feature space constructed by
multiple feature spaces, which can significantly improve the
classification accuracy. But the process of multi-core
learning is complex, and the time required is relatively lon-
ger than the method based on iterative optimization.
Means3vm-iter transforms the optimization problem into a
quadratic programming which and is, thus, easily and
quickly solved by standard programs, although it may fall
into local minimum, and the classification accuracy is
slightly lower than the Means3vm-mkl based-model.
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It also can be found that the S4VM method can achieve
the best prediction performance among the three semi-
supervised models in all of the seven predictor measures,
i.e., 0.707 of accuracy, 0.787 of specificity, 0.627 of sensi-
tivity, 0.746 of precision, 0.681 of F measure and 0.419 of
MCC. The overall prediction performance of S4VM is im-
proved by more than 4% compared to Means3vm-iter and
Means3vm-mkl methods. S4VM attempts to consider all
possible low-density boundaries to effectively prevent per-
formance degradation, and therefore it can deduce the

false negative rate and false positive rate in prediction,
which can be confirmed by the relatively high values of
0.787 and 0.627 for specificity and sensitivity, respectively.
To assess the generalization ability of prediction

models, a five cross-validation strategy is adopted within
the predictors’ construction. For each performance indi-
cator, the differences between its value in each run and
mean value in all of five cross-validation times are calcu-
lated. It can be observed from Fig. 2 that the three semi-
supervised algorithms-based predictors are robust, and

Fig. 1 Classification performance evaluation of three Semi-supervised methods on datasets

Fig. 2 Prediction performance measures in 5 repetitions of cross-validation
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most of their fluctuation range is less than 0.03, which indi-
cates that the proposed models have excellent generalization
ability when new samples are introduced. Among them, the
biggest difference of accuracy is Means3vm-iter model
which has value of 0.015, precision in S4VM model with
0.043, sensitivity in Means3vm-iter model with 0.021, F-
measure in Means3vm-iter model with 0.02, MCC in S4VM
model with 0.036 and only Means3vm-mkl has a specificity
of 0.048. Among the three predictors, S4VM performs best,
and the mean value of difference is only 0.005 for accuracy,
0.032 for precision, 0.006 for sensitivity, 0.007 for specificity,
0.01 for F-measure and 0.021 for MCC.

Discussion
It can be found that the three semi-supervised models
proposed in this work can predict protein-protein inter-
action sites based on the features. To further evaluate the
effectiveness of these models, the results of some previous
works had been used to compare prediction performance.

Prediction performance comparison between supervised
and semi-supervised SVM
Most studies adopted supervised machine learning algo-
rithms to predict interaction sites from protein se-
quences or structures in previous works, and some of
them have to use data sampling technologies to balance
the number of positives and negatives to void the predic-
tion bias [27–30]. Instead of semi-supervised methods
where all of samples in model training are labeled, semi-
supervised machine learning approaches are trying to
learning from labeled and unlabeled samples, which can
effectively make use more information for learning,

which is very significant for the studies of protein inter-
action where many of them are still unknown.
To evaluate the value of unlabeled sample information

in protein interface residues, the traditional supervised
SVM algorithm is also directly used to make predictions
of protein interaction sites, and its result is shown in
Fig. 3. Based on the same dataset, it can be seen that the
predictive performance of supervised SVM-based pre-
dictor is much lower than that of semi-supervised based
one, and the accuracy is only 0.586, which is 0.12 lower
than that of S4VM. On other measures, the proposed
semi-supervised models also outperform the supervised
predictor, i.e., the F-measure is only 0.56, MCC is
only0.23, precision is only 0.598, sensitivity is only 0.529
and specificity is only 0.643.These results suggest that
unlabeled sample information, when used in conjunction
with a small data set of labeled data, can get much im-
provement in learning accuracy, which is important for
the current situation that many protein interactions are
not identified by experiments.

Comparison with other approaches
In this work, five features related to amino acid conser-
vation are extracted from protein sequence for identifi-
cation of protein interface residues from protein surface.
To validate the effectiveness of the extracted features in
discrimination between interface and non-interface resi-
dues, the comparison with a previous study based on the
same data set by Li and Kuo has been taken. Compared
to the evolutionary conservation features used in this
work, they predicted protein interaction sites using five
sequence features. Figure 4 shows that both evolutionary
and sequence features can successfully identify protein

Fig. 3 Comparison of experimental results between SVM and S4VM
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interaction sites, but evolutionarily conserved features
show stronger classification capacity than that of se-
quence features. It can be found that our proposed
method can produce more accurate prediction than se-
quence features-based model did, i.e., 0.124 higher in ac-
curacy, 0.03 in sensitivity, 0.279 in specificity, 0.272 in F-
measure and 0.326 in MCC. Especially, the value of pre-
cision measure has a 0.435 higher than that in Li and
Kuo’s work, which means the false positive rate of pre-
diction deduced dramatically, and the features in this
work are really sound in discrimination between protein
interaction and non-interaction sites.

Visualization of experimental results
To further validate the predictions achieved by our pro-
posed semi-supervised model, a test on one chain of
protein complex 1A4Y was taken as an example. We use
the molecular visualization tool - Pymol to show our
predictions. Figure 5 shows the protein chain 1A4Y_A
data set and the results obtained under three semi-
supervised models. In D, E, and F, there are 218 balls
that represent the surface residues involved in the pre-
diction. Green balls, red balls, yellow balls and blue balls
represent the number of TP, TN, FP and FN, respect-
ively. The numbers in details on the complex 1A4Y can
be found in Table 1. Our approach improves overall pre-
dictive performance and reduces false positives, and
S4VM methods perform well. Only 5.2% of the interface
residue in the S4VM method was not predicted.

Conclusion
This paper proposed a semi-supervised learning strategy
for protein interaction site prediction. Firstly, a non-

redundancy dataset with 91 protein chains were selected,
and five evolutionary conserved features were extracted for
the vectorization of each amino acid residue from the com-
mon databases and servers. Then three semi-supervised
learning methods, Means3vm-mkl, Means3vm-iter and
S4VM are proposed to identity interaction sites from sur-
faces of protein complexes. The experimental results show
that the Means3vm-mkl and S4VM methods have excellent
classification results a five-fold cross-validation is used, and
the accuracy is 0.662 and 0.707, respectively. The S4VM
method can achieve the best overall performance, such as
the highest value 0.419 for MCC and 0.681 for F-measured
value. By comparison with supervised model and other
studies, this work produced much improvement in protein
interaction sites prediction, which suggests that the effect-
iveness of the proposed semi-supervised strategies in dis-
crimination of protein interaction and non-interaction sites.
Furthermore, the experimental results demonstrated that
residues in protein surface, even its interface label cannot
be tagged yet, contain a lot of information of protein inter-
actions, which is important for understanding cellular activ-
ity and drug design.

Methods
Dataset
The dataset used in this work are come from a previous
work investigated by Ansari and Helms et al., where 170
pairs of transient protein interactions has been collected
[31]. Protein chains of less than 50 residues and some
outdated small family protein chains are discarded to
make the data more representative. If there is a plurality
of interacting partners for the same chain, the partner
chain with most interfacial residues is represented. The

Fig. 4 Compared with the former’s evaluation performance
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BLASTCLUST program was used to exclude protein
chains with sequence similarity greater than 30%, and
finally 91 non-redundant protein chains has been
remained for this study, which can be found in Table 2
[15, 32, 33].
The definitions of the residues are same as what Fari-

selli et al. did in their work [30]. Surface residues are de-
fined if the relative accessible surface area residue is
bigger than 16% of the maximum accessible surface area
for each type of amino acid. Among the surface residues,
a residue can be defined as interface residues if the dis-
tance between its alpha carbon atom and that of any res-
idues in the interaction chain is less than 1.2 nm,
otherwise it will be categorized as non-interface residues.
Based on the above definitions, the original residue data
set D is composed of 2299 interface residues and 8131
non-interface residues which are obtained from the 91
protein chains used in this work.

Feature extraction
There are many properties of amino acids had been used
for protein interactions or interaction sites prediction,
among them evolutionary conservation analyses have
been widely applied to characterize functionally/struc-
turally important residues because these amino acids in
a protein sequence are conserved through selective evo-
lutionary pressure [20, 34–36]. In this work, five evolu-
tionary conservation relevant features are extracted for
protein interaction sites prediction, where residue spatial
sequence, sequence information entropy, relative en-
tropy and residue sequence weight are extracted from
the HSSP database, and evolutionary rate residues are
extracted from Consurf Serve.
The spatial sequence profile of amino acid residues, a

feature widely used in protein related studies, represents
the frequency of various amino acids at a given residue
position in the primary structure of proteins. Protein
residue sequence entropy is based on Shannon’s infor-
mation theory to estimate the conservation score of se-
quence variability. Relative entropy is the normalized
sequence information entropy. The conserved weight of
the residue sequence is a calculation of position conser-
vativeness of the protein sequence. The evolution rate of
residues can be traded off from a statistical point of
view, considering the linkages generated by the system
in the stochastic process of sequence and evolution and

Fig. 5 Experimental visualization results. a represents the protein chain 1A4Y_A(a and b) is its spherical representation. c is the 1A4Y protein
chain after extraction of surface residues. d, e and f show the predicted results of Means3vm-mkl, Means3vm-iter and S4VM, and the green balls,
red balls, yellow balls and blue balls represent the number of TP, TN, FP and FN, respectively

Table 1 The number of predictions in TP, TN, FP and FN

Samples Results

TP TN FP FN

Means3vm-iter 218 57 82 28 51

Means3vm-mkl 60 84 26 48

S4VM 68 87 23 40
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the maximum likelihood estimate of the evolution rate
can be accessed using the Rate4Site algorithm to calcu-
late the conservation of each amino acid position [37].
For each residue, 20 dimensions for protein sequence
profile and one dimension for each of other four features
can be extracted in this work.
As many previous studies did, a slide-window strategy

is also adopted in this work to consider the interface in-
formation, which is formed by the target residues cen-
tered with 10 spatially closest ones. Therefore, each
target residue can be represented by a 264-dimensional
vector and used for subsequent prediction construction.

Semi-supervised models
In semi-supervised learning, the labeled sample set is {x1,
…, xl}{x1,…, xl}, and the unlabeled sample set is {xl + 1,
…, xl + u}, where l and u are the number of labeled and
unlabeled samples, respectively, yi = {+1, −1}. The labels
of labeled and unlabeled sample set can noted as Il = {1,
…, l}, and Iu = {l + 1, l + 2,…, l + u}. As one of the most
popular semi-supervised learning methods, Semi-
supervised support vector machines (S3VM) attempts to
standardize and adjust decision boundaries by exploring
unlabeled data based on clustering assumptions, whose
illustration can be found in Fig. 6 [26, 38]. The
meanS3VM, a fast S3VM algorithm, estimates the cat-
egory average of the unlabeled data, so that the classifi-
cation performance is very similar to the supervised
SVM. The core idea of meanS3VM algorithm is to
maximize the interval between the class averages of the
two categories of samples, and thus the goal is to find
the decision function f(x) =w′∅ (x) + b to minimize.

min
d∈Δ

min
w;b;ρ;ξ

1
2

wk k2 þ c1
Xl

i¼1
ξ i−c2ρ ð1Þ

s:t:yi w
0
∅ xið Þ þ b

� �
≥1−ξ i; ξ i≥0; i ¼ 1;…; l;

1
uþ

w
0 Xlþu

j¼lþ1

d j−l∅ x j
� � !

þ b≥ρ

1
u−

w
0 Xlþu

j¼lþ1

1−d j−l
� �

∅ x j
� � !

þ b≤−ρ

X
i∈Iu

sgn w
0
∅ xið Þ þ b

� �
¼ r

Herein, the last constraint is an equilibrium constraint
that avoids assigning all unlabeled samples to the same
category, r is a user-defined parameter, and Δ ¼ fdjdi∈f
0; 1g;Pu

i¼1 di ¼ uþg , uþ ¼ rþu
2 , u− ¼ −rþu

2 . Since the bi-
linear constrains between w and b, this formula is non-
convex, and the two algorithms can be used to solve it.
The first one is based on multiple kernels learning
(MeanS3VM_mkl), while the second one is based on al-
ternating optimization (MeanS3VM_iter) [24].

1) MeanS3VM_mkl

Mathematically, the goal of S3VM can be solved with
the dual form:

mind∈Δmaxα∈Aα
0~l−

1
2

α•~yð Þ0Kd α•~yð Þ ð2Þ

which can be expressed in the form of a multicore
learning optimization problem:

minμ∈Mmaxα∈Aα
0~I−

1
2

α•~yð Þ0 Σt:dt∈ΔμtK
dt

� �
α•~yð Þ ð3Þ

where M = {μ| ∑ut = 1, ut ≥ 0 },

α ¼ α1;…; αlþ2½ �0ϵRlþ2

~I ¼ I1;…; It ; 0; 0½ �0∈Rlþ2

Table 2 The protein chains used in this work

1AY7_A 1B6C_A 1B7Y_B 1AZS_B 1B7Y_A 1AVG_H 1AZS_C 1B6C_B

1UDI_E 1UGH_E 1ZBD_A 1UEA_A 1UUZ_A 1TCO_A 3TGI_I 1WQ1_G

1HLU_P 1IRA_Y 1KKL_A 1HWH_B 1JSU_C 1HLU_A 1IRA_X 1ITB_A

1BDJ_B 1BMQ_A 1BRB_I 1BGX_T 1BP3_A 1BDJ_A 1BI7_A 1BMQ_B

1QBK_B 1SMP_A 7CEI_A 1QBK_C 1STF_E 1PYT_B 1SGP_E 1SMP_I

1FLT_Y 1GLA_F 1HJA_C 1GFW_A 4SGB_I 1FLT_V 1GFW_B 1GLA_G

1ABR_A 1AHW_C 1ATN_D 1ABR_B 1AK4_D 1A4Y_A 1ACB_I 1AK4_A

1BVK_A 1CA0_B 1D4V_B 1BVK_C 1D4V_A 1BRS_A 1BVN_P 1CXZ_B

2KAI_B 2SIC_I 3SGB_I 2PCC_A 2TEC_E 1ZBD_B 2PCC_B 2SNI_I

1DAN_U 1E9H_B 1FAP_B 1DFJ_E 1ETH_A 1DAN_L 1E96_A 1EFU_B

1L0Y_A 1NOC_B 1PYT_A 1L0Y_B 1PDK_B 1KKL_H 1MAH_A 1PDK_A

1GUA_B 1STF_I 1UEA_B
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~y ¼ y1;…; yt ; 1;−1½ �0∈Rlþ2

A ¼ fα j
Xlþ2

i¼1

αieyi ¼ 0;
Xlþ2

i¼1

αi ¼ c2; 0≤αi≤c1;

∀i ¼ 1;…; l; 0≤αl þ 1; αl þ 2≤c2g
The nuclear matrix Kd ∈ R(l + 2) ∗ (l + 2), the element is

Kd
ij ¼ ð∅d

i Þ
0 ð∅d

i Þ.

∅d
i ¼

1
uþ

Xlþu

j¼lþ1

d j−l∅ xið Þi ¼ l þ 1

∅ xið Þi ¼ 1;…; l

1
u−

Xlþu

− j¼lþ1

1−d j−l
� �

∅ xið Þ i ¼ l þ 2

8>>>>>><
>>>>>>:

ð4Þ

Since all dt ∈ Δ are to be minimized and there will be a
large number of reasonable dt, the cut plane algorithm is
adopted to solve the above problem and find the optimal
label d vector of the unlabeled samples, whose details
can be found in references [17, 24].

2) Means3vm-iter

Another way to solve the problem of MeanS3VM is to
alternate optimization, which can be abbreviated as:

max
d∈Δ;ρ

ρ ð5Þ

s:t:
1
uþ

w
0 Xlþu

j¼lþ1

d j−l∅ x j
� � !

þ b≥ρ

1
u−

w
0 Xlþu

j¼lþ1

1−d j−l
� �

∅ x j
� � !

þ b≤−ρ

In the optimization process, if f(xi) > f(xj), ∀i, j ∈ Iu,
then di − 1 ≥ dj − 1, which has been proved [11]. Assigning
labels to unlabeled samples based on predicted values
using this theorem, which can ensure that the label d
vector obtained each time is better than the previous
one [17, 24].

S4VM
Given a large amount of unlabeled samples in data set,
there may be multiple “intervals” of low-density bound-
aries, and it is difficult to determine which one is the
best. Although these low-density boundaries and the
number of labeled samples are limited, due to the large
differences, there will be a large loss if the selection is
wrong, resulting in performance degradation, even worse
than using only labeled samples, which limits the use of
semi-supervised learning methods in certain key areas.
S4VM has been improved on traditional S3VM. The

difference between S4VM and S3VM is that S3VM tries
to focus on the best low-density boundary, while S4VM
focuses on multiple possible low-density boundaries.
The main idea is to optimize without giving many differ-
ent “interval” boundaries. Class division of labeled sam-
ples. This maximizes the performance improvement of
the support vector machine over the worst case labeled
samples. The specific practices are as follows:

hð f ; ŷÞ is the objective function to be optimized by
S3VM.

h f ; ŷð Þ ¼ fk kH
2

þ C1

Xl

i¼1
l yi; f xið Þð Þ

þ C2

Xu

j¼1
l by j; f bx j

� �� �
ð6Þ

The goal is to find multiple low-density boundary lines

f f tgTt¼1 with “intervals” and the corresponding category

division fbytgTt¼1 so that the following functions are
minimized.

min

f t ;cyt∈βn oT

t¼1

XT

t¼1
h f t ; bytð Þ þMΩ bytf gTt¼1

� �
ð7Þ

where T is the number of dividing lines, and Ω is a
penalty function that measures the differentiation of the
dividing line. Various functions can be used in the im-
plementation. M is a large constant used to ensure the
difference. Obviously, minimizing (7) can ensure the dif-
ference of the boundary line and the large interval.

Fig. 6 Illustration of different classification boundaries of SVM which
considers only labeled data, and S3VM which considers labeled and
unlabeled data, where green balls denote positives, red ones are
negatives, and blue ones are unlabeled samples
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Without loss of generality, we assume that f is a linear
function, f(x) = w′∅ (x) + b. The optimization problem
that needs to be solved is expressed as.

min

wt ; dbt ;yt∈βn oT

t¼1

XT

t¼1

1
2

wtk k2 þ c1
Xl

i¼1
ξ i þ c2

Xu

j¼1
bξ j

� �
þMΩ bytf gTt¼1

� �

ð8Þ

s:t:yi w
0
t∅ xið Þ þ bt

� �
≥1−ξ i; ξ i≥0

cyt; j w
0
t∅ bx j
� �þ bt

� �
≥1−bξ j; bξ j≥0

∀i ¼ 1;…; l;∀ j ¼ 1;…; u; ∀t ¼ 1;…;T

Then use an efficient sampling search strategy to solve
(8). First, through the local search, find multiple large
margin low-density separators. The k-means clustering
algorithm is then used to identify representative splitters
with a large variety of diversity [16].

Evaluation criteria
In addition to the accuracy, precision, sensitivity, and
specificity which often used to evaluate predicted per-
formance, F-measure and Mathew’s Correlation Coeffi-
cient (MCC) values are introduced. F-measure is a
weighted harmonic average of recalls and precision,
often used to evaluate classification models, and MCC is
an effective measure in imbalanced data classification.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð11Þ

Sensitivity ¼ TP
TP þ FN

ð12Þ

Precision ¼ TP
TP þ FP

ð13Þ

Specificity ¼ TN
FP þ TN

ð14Þ

F−measure ¼ 2� Precision� Sensitivity
Precisionþ Sensitivity

ð15Þ

MCC ¼ TP � TN−FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp

ð16Þ

where TP, FP, TN and FN represent the number of
true positives (correctly predicted interface residues), the
number of false positives (incorrectly predicted interface
residues), the number of true negatives (correctly pre-
dicted non- interface residues) and the number of false
negatives (incorrectly predicted non- interface residues),
respectively.

Abbreviations
HSSP: Homology-derived Secondary Structure of Proteins; MCC: Mathew’s
Correlation Coefficient; PPI: Protein-protein interaction; S3VM: Semi-
supervised support vector machine; S4VM: Safe semi-supervised support vec-
tor machine

Acknowledgments
None.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 25, 2019: Proceedings of the 2018 International Conference on
Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical
Informatics (ICBI) 2018 conference: bioinformatics. The full contents of the
supplement are available online at https://
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-
supplement-25.

Authors’ contributions
YW (YeWang) and CM conceived of the study; XZ, YW (Yan Wang), YZ, JZ and YX
participated in the experiment design; YW (Ye Wang), PC and BW carried it out
and drafted the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China (Nos. 61472282, 61672035 and 61872004), Key Program for Educational
Commission of Anhui Province of China (No. KJ2019ZD05, KJ2017A041), Co-
Innovation Center for Information Supply & Assurance Technology in AHU
(ADXXBZ201705), Anhui Province Funds for Excellent Youth Scholars in Col-
leges (gxyqZD2016068), and Anhui Scientific Research Foundation for
Returned Scholars.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Electrical and Information Engineering, Anhui University of
Technology, Maanshan 243002, Anhui, China. 2Co-Innovation Center for
Information Supply & Assurance Technology, Anhui University, Hefei 230601,
Anhui, China. 3School of Computer Science and Technology, Anhui
University of Technology, Maanshan 243002, Anhui, China. 4School of
Computer Science and Technology, University of Science & Technology,
Hefei 230026, Anhui, China. 5Institute of Health Sciences, Anhui University,
Hefei 230601, Anhui, China. 6College of Electrical Engineering and
Automation, Anhui University, Hefei 230601, Anhui, China.

Published: 24 December 2019

References
1. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF,

Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. Towards a proteome-
scale map of the human protein-protein interaction network. Nature. 2005;
437(7062):1173–8.

2. Chen Y, Xu J, Yang B, Zhao Y, He W. A novel method for prediction of
protein interaction sites based on integrated RBF neural networks. Comput
Biol Med. 2012;42(4):402–7.

3. Liu Q, Chen P, Wang B, Zhang J. Li J: dbMPIKT: a database of kinetic
and thermodynamic mutant protein interactions. BMC Bioinformatics.
2018;19(1):455.

4. Ji Z, Wang B, Yan K, Dong L, Meng G, Shi L. A linear programming
computational framework integrates phosphor-proteomics and prior
knowledge to predict drug efficacy. BMC Syst Biol. 2017;11(Suppl 7):127.

5. Zhu M, Song X, Chen P, Wang W. Wang B: dbHDPLS: a database of human
disease-related protein-ligand structures. Comput Biol Chem. 2019;78:353–8.

Wang et al. BMC Bioinformatics 2019, 20(Suppl 25):699 Page 9 of 10



6. Yang C, Ge SG. Zheng CH: ndmaSNF: cancer subtype discovery based on
integrative framework assisted by network diffusion model. Oncotarget.
2017;8(51):89021–32.

7. Ge SG, Xia J, Sha W, Zheng CH. Cancer subtype discovery based on
integrative model of multigenomic data. IEEE/ACM Trans Comput Biol
Bioinform. 2017;14(5):1115–21.

8. Chen P, Han K, Li X, Huang DS. Predicting key long-range interaction sites
by B-factors. Protein Pept lett. 2008;15(5):478–83.

9. Shen Z, Bao W, Huang DS. Recurrent neural network for predicting
transcription factor binding sites. Sci Rep. 2018;8(1):15270.

10. Pan XY, Zhang YN, Shen HB. Large-scale prediction of human protein-
protein interactions from amino acid sequence based on latent topic
features. J Proteome Res. 2010;9(10):4992–5001.

11. Xia JF, Wang SL, Lei YK. Computational methods for the prediction of
protein-protein interactions. Protein Pept Lett. 2010;17(9):1069.

12. Zhang YN, Pan XY, Huang Y, Shen HB. Adaptive compressive learning for
prediction of protein-protein interactions from primary sequence. J Theor
Biol. 2011;283(1):44–52.

13. Wang B, Huang DS, Jiang C. A new strategy for protein interface
identification using manifold learning method. IEEE Trans Nanobioscience.
2014;13(2):118–23.

14. Jiang J, Wang N, Chen P, Zheng C, Wang B. Prediction of Protein Hotspots
from Whole Protein Sequences by a Random Projection Ensemble System.
Int J Mol Sci. 2017;18(7):1453.

15. Wang B, Chen P, Wang P, Zhao G, Zhang X. Radial basis function neural
network ensemble for predicting protein-protein interaction sites in
heterocomplexes. Protein Pept Lett. 2010;17(9):1111–6.

16. Ji ZW, Wang B, Yan K, Dong LG, Meng GM, Shi L. A linear programming
computational framework integrates phosphor-proteomics and prior
knowledge to predict drug efficacy. BMC Syst Biol. 2017;11(S 7):127.

17. Hu SS, Chen P, Wang B, Li J. Protein binding hot spots prediction from
sequence only by a new ensemble learning method. Amino Acids. 2017;
49(10):1773–85.

18. Zhu L, Deng SP, You ZH, Huang DS. Identifying spurious interactions in the
protein-protein interaction networks using local similarity preserving
embedding. Ieee Acm T Comput Bi. 2017;14(2):345–52.

19. Zhu L, You ZH, Huang DS, Wang B. LSE: A Novel Robust Geometric
Approach for Modeling Protein-Protein Interaction Networks. PLoS One.
2013;8(4):e58368.

20. Liu Q, Chen P, Wang B, Zhang J, Li J. Hot spot prediction in protein-protein
interactions by an ensemble system. BMC Syst Biol. 2018;12(Suppl 9):132.

21. Wang B, Chen P, Huang D-S, Li J-J, Lok T-M, Lyu MR. Predicting protein
interaction sites from residue spatial sequence profile and evolution rate.
FEBS Lett. 2006;580(2):380–4.

22. Wang B, Huang DS. Dataset reconstruction for protein interface
identification using manifold learning method. In: IEEE International
Conference on Bioinformatics and Biomedicine; 2014. p. 398–403.

23. Zhu L, Deng SP, You ZH, Huang DS. Identifying spurious interactions in the
protein-protein interaction networks using local similarity preserving
embedding. IEEE/ACM Trans Comput Biol Bioinform. 2017;14(2):345–52.

24. Li Y-F, Kwok JT, Zhou Z-H. Semi-supervised learning using label mean. In:
International Conference on Machine Learning; 2009. p. 633–40.

25. Li Y-F, Zhou Z-H. S4VM: Safe Semi-Supervised Support Vector Machine. In:
Computing Research Repository; 2010. abs/1005.1001.

26. Bennett K, Demiriz A. Semi-supervised support vector machines. Adv Neural
Inf Proces Syst. 1999;11:368–74.

27. Iqbal M, Freitas AA, Johnson CG. A Hybrid Rule-Induction/Likelihood-Ratio
Based Approach for Predicting Protein-Protein Interactions; 2009.

28. Liu L, Cai Y, Lu W, Feng K, Peng C, Niu B. Prediction of protein–protein
interactions based on PseAA composition and hybrid feature selection.
Biochem Biophys Res Commun. 2009;380(2):318–22.

29. Oh M, Joo KJ. Protein-binding site prediction based on three-
dimensional protein modeling. Proteins Structure Function &
Bioinformatics. 2009;77(S9):152.

30. Fariselli P, Pazos F, Valencia A, Casadio R. Prediction of proteinâ protein
interaction sites in heterocomplexes with neural networks&nbsp. FEBS J.
2010;269(5):1356–61.

31. Ansari S, Helms V. Statistical analysis of predominantly transient protein–
protein interfaces. Proteins Struct Funct Bioinform. 2010;61(2):344–55.

32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10.

33. Chen P, Hu SS, Zhang J, Gao X, Li JY, Xia JF, Wang B. A sequence-based
dynamic ensemble learning system for protein ligand-binding site
prediction. Ieee Acm T Comput Bi. 2016;13(5):901–12.

34. Choi YS, Han SK, Kim J, Yang JS, Jeon J, Ryu SH, Kim S. ConPlex: a server for
the evolutionary conservation analysis of protein complex structures.
Nucleic Acids Res. 2010;38(Web Server issue):W450–6.

35. Wei PJ, Zhang D, Li HT, Xia J, Zheng CH, Wei PJ, Zhang D, Li HT, Xia J,
Zheng CH. DriverFinder: a gene length-based network method to identify
Cancer driver genes. Complexity. 2017;2017(99):1–10.

36. Wei PJ, Zhang D, Xia J, Zheng CH. LNDriver: identifying driver genes by
integrating mutation and expression data based on gene-gene interaction
network. Bmc Bioinformatics. 2016;17(Suppl 17):467.

37. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N.
ConSurf: identification of functional regions in proteins by surface-mapping
of phylogenetic information. Bioinformatics. 2003;19(1):163–4.

38. Zhang X, Tian Y, Cheng R, Jin Y. A Decision Variable Clustering Based
Evolutionary Algorithm for Large-scale Many-objective Optimization. IEEE
Trans Evol Comput. 2018;22(1):97–112.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wang et al. BMC Bioinformatics 2019, 20(Suppl 25):699 Page 10 of 10


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Discussion
	Prediction performance comparison between supervised and semi-supervised SVM
	Comparison with other approaches
	Visualization of experimental results

	Conclusion
	Methods
	Dataset
	Feature extraction
	Semi-supervised models
	S4VM
	Evaluation criteria
	Abbreviations

	Acknowledgments
	About this supplement
	Authors’ contributions
	Funding
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

