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Abstract

Background: Viral infectious diseases are the serious threat for human health. The receptor-binding is the first step
for the viral infection of hosts. To more effectively treat human viral infectious diseases, the hidden virus-receptor
interactions must be discovered. However, current computational methods for predicting virus-receptor interactions
are limited.

Result: In this study, we propose a new computational method (IILLS) to predict virus-receptor interactions based on
Initial Interaction scores method via the neighbors and the Laplacian regularized Least Square algorithm. IILLS
integrates the known virus-receptor interactions and amino acid sequences of receptors. The similarity of viruses is
calculated by the Gaussian Interaction Profile (GIP) kernel. On the other hand, we also compute the receptor GIP
similarity and the receptor sequence similarity. Then the sequence similarity is used as the final similarity of receptors
according to the prediction results. The 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) are
used to assess the prediction performance of our method. We also compare our method with other three competing
methods (BRWH, LapRLS, CMF).

Conlusion: The experiment results show that IILLS achieves the AUC values of 0.8675 and 0.9061 with the 10-fold
cross validation and leave-one-out cross validation (LOOCV), respectively, which illustrates that IILLS is superior to the
competing methods. In addition, the case studies also further indicate that the IILLS method is effective for the
virus-receptor interaction prediction.

Keywords: Virus-receptor interaction, Similarity, Semi-supervised learning, Laplacian regularized least squares
classifier, Gaussian interaction profile (GIP) kernel

Background
Viruses are the most abundant biological entities on the
planet and widely distributed in organs of living organ-
isms and environments [1, 2]. In particular, they are
an important part of the human microbiome which is
closely related with human health and diseases [3]. Actu-
ally, hundreds of human diseases were resulted from

*Correspondence: duangh@csu.edu.cn
1School of Computer Science and Engineering, Central South University, 932
South Lushan Rd, 410083 ChangSha, China
Full list of author information is available at the end of the article

viruses [4], such as Ebola virus (EBOV) [5], Zika virus
[6], American Machupo virus (MACV), Guanarito virus
(GTOV), Sabia virus (SABV), Junin virus (JUNV), and
so on [7]. In marine environments, viruses can kill up
to 40% of the standing stock of prokaryotes daily [8].
In addition, the cellular and physiological changes in
the host cells can be caused by virus infections, such
as altering genomic sequences and dysfunctioning their
hosts [9, 10].
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When viruses contact the surface of host cells, the virus
process starts [11]. In general, the receptor-binding is con-
sidered as the first step for the viral infection of host cells
[12]. The specificity and affinity are the main factors that
viruses can use diverse types of molecules to attach to
and enter into cells [13]. With the development of high-
throughput technologies, many studies indicate that some
molecules including proteins are the receptor of viruses
[14], such as carbohydrates and lipids [15]. Furthermore,
the virus-receptor interaction is also an dynamic process,
as it can evolve over the course of an infection while
virus variants with distinct receptor-binding specificity
and tropism can appear [13]. In order to help under-
stand the interaction mechanism between viruses and
receptors, a database (called viralReceptor) with mam-
malian virus-receptor interactions has been constructed
by Zhang et.al [16]. ViralReceptor consists of 128 viral
species or sub-species, 119 receptors of mammalian and
268 interaction pairs between them. In addition, the struc-
tural and functional analysis of receptors also further
provide the theoretic basis to discover new virus-receptor
interactions, which include protein domains, higher level
of N-glycosylation, higher ratio of self-interaction, and so
on [16].

In this study, we propose a computational method
(IILLS) based on Initial Interaction scores method via the
neighbors and Laplacian regularized Least Square algo-
rithm (a semi-supervised learning method), to predict
virus-receptor interactions. IILLS integrates the known
virus-receptor interactions and amino acid sequences of
receptors to compute similarities of viruses and recep-
tors. Then IILLS uses the Laplacian regularized Least
Square algorithm and initial interaction scores based on
the neighbors to construct the computational model. We
conduct the 10-fold cross validation (10CV) and leave one
out cross validation (LOOCV) to assess the prediction
performance of IILLS and compare it with other three
methods. The prediction performance of IILLS is best in
terms of AUC (the area under of ROC curve) as its AUC
values are 0.8675 and 0.9061 with 10CV and LOOCV,
respectively. The evaluation results of case study also
show that IILLS is an effective virus-receptor prediction
method.

We also provide IILLS, via a web server, to predict virus-
receptor interactions. The input of this web server is a
receptor amino acid sequence or a txt file with multiple
sequences in the FASTA format. The prediction result will
be displayed after submission when uploading a sequence.
However, the prediction results of the txt file of sequences
is sent by the email with link page. Therefore, when
uploading a sequence file, an email address should be
provided. In addition, a job ID is assigned after one sub-
mission. According to job ID, the user can also obtain the
prediction result from web server.

Methods
Materials
We download the known mammalian virus-receptor
interactions from viralReceptor database. Then we further
extract human virus-receptor interactions as the bench-
mark dataset. It includes 104 virus species or sub-species,
74 receptors and 211 interaction pairs between viruses
and receptors. The detail node degree distributions of
viruses and receptors in this standard virus-receptor
interaction network are also described in Figs. 1 and 2.
The degree of a node is the number of edges which have
this node as an endvertex in the virus-receptor interac-
tion network. Each color represents the proportion of
viruses (receptors) which have the same node degree. In
Fig. 1, the node degrees of 104 virus range from 1 to
8, respectively. Their distribution proportion are 56.7%,
19.2%, 8.7%, 6.7%, 1.9%, 3.8%, 1.0% and 1.9%, respectively.
In Fig. 2, each color represents the proportion of recep-
tors with the same node degree. For example, the red color
represents that 8.1% of all receptors have the node degree
of 4.

Similarity of viruses
Based on the assumption that similar viruses exhibit simi-
lar interaction profiles with receptors [17–20], we used the
Gaussian Interaction Profile (GIP) similarity to measure
the virus similarity. Let V = {v1, v2, ..., vNv} be the set of Nv
viruses, P = {p1, p2, ..., pNp} be the set of Np receptors, and
Y ∈ RNv×Np be the adjacency matrix of the bipartite graph
to describe known virus and receptor associations. When
the virus vi and receptor pj have a known interaction, the
value of yij is 1 and otherwise 0. The GIP similarity of
viruses v1 and v2 can be computed as follows:

Fig. 1 The proportion of viruses’ node degree (Total =104)
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Fig. 2 The proportion of receptors’ node degree (Total =74)

Sv(v1, v2) = Gv(v1, v2) = exp
(−γv||yv1 − yv2||2

)
, (1)

γv = γ ,
v/

(
1

Nv

Nv∑

i=1
||yvi||2

)

, (2)

in which yv1 = {y11, y12, ..., y1Np} and yv2 =
{y21, y22, ..., y2Np} are the interaction profiles of virus v1
and virus v2, respectively. The parameter γv is used to
regulate the kernel bandwidth. We can set the value
of bandwidth parameter γ

,
v by the cross validation. In

this study, the parameter γ
,
v is set to be 1 according to

previous successful studies [17, 21, 22] and the influence
analysis of prediction performance of parameter γ

,
v by

the 10-fold cross validation.

Similarity of receptors
In this study, we take two methods to measure the recep-
tor similarity, which include the GIP similarity and the
amino acid sequence similarity. The GIP similarity of
receptors is also computed by the known interactions of
receptors. Specifically, for receptors p1 and p2, their GIP
similarity can be calculated as follows:

Gp(p1, p2) = exp
(−γp||yp1 − yp2||2

)
, (3)

γp = γ ,
p/

⎛

⎝ 1
Np

Np∑

i=1
||ypi||2

⎞

⎠ , (4)

in which yp1 = {y11, y21, ..., yNv1}T is the interaction pro-
file of receptor p1 while yp2 = {y12, y22, ..., yNv2}T is
the interaction profile of receptor p2. Furthermore, the
parameter γp is also used to control the kernel bandwidth
and the parameter γ

,
p is also set to be 1.

In addition, we compute the sequence similarity
between receptors. First, we download the amino acid
sequences of receptors from the KEGG GENE database
[23]. The receptor sequence similarity is computed by
their normalized Smith-Waterman score [24, 25]. For
receptors p1 and p2, the sequence similarity can be calcu-
lated as follows:

Gs(p1, p2) = SW (p1, p2)/
√

SW (p1, p1)
√

SW (p2, p2), (5)

in which SW (p1, p2) is the original Smith-Waterman score
between receptor p1 and receptor p2.

Based on the GIP similarity and the sequence similarity
of receptors, we construct the final similarity of receptors
Sp as follows:

Sp = α ∗ Gp + (1 − α) ∗ Gs, 0 ≤ α ≤ 1.0 (6)

where α is the weight parameter.

Initialized interaction profiles for new viruses and receptors
The quality of known virus-receptors has important
impact on the performance of prediction method. In this
study, we want to set the initialized interaction scores for
viruses (receptors) which have no known interaction with
receptors (viruses). Inspired by the KNN method, we take
the interaction profiles of all neighbors into consideration,
which have known interactions. For example, the initial
interaction profile between a new virus vi and receptor pj
can be calculated as follows:

y(vi, pj) =

Nv∑

l=1
S(il)

v ylj

Nv∑

l=1
S(il)

v

(7)

in which S(il)
v is the GIP similarity between viruses vi and

vl.
Similarly, we also apply the same model to calculate the

interaction profiles of new receptor. Specifically, the initial
interaction profile between virus vi and a new receptor pj
can be calculated as follows:

y(vi, pj) =

Np∑

l=1
S(jl)

p yil

Np∑

l=1
S(jl)

p

(8)

in which S(jl)
p is the final similarity between receptors pj

and pl.

Laplacian regularized least square for virus-receptor
interaction prediction
Inspired by successful applications of Laplacian regular-
ized Least Square (LapRLS) model in predicting drug-
target interactions [26–28], we adopt the LapRLS model
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Fig. 3 The ROC curves of four methods in 10CV

to predict virus-receptor interactions. After obtaining the
similarity matrices, we construct the normalized Lapla-
cian matrices for viruses and receptors as follows:

Lv = (Dv)−1/2(Dv − Sv)(Dv)−1/2, (9)

Lp = (Dp)−1/2(Dp − Sp)(Dp)−1/2, (10)
where the matrix Dv is the diagonal matrix whose ele-
ment Dv(i, i) is calculated by the sum of row i of
the virus similarity matrix Sv. Similarly, the matrix

Fig. 4 The ROC curves of four methods in LOOCV
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Dp is calculated based on the receptor similarity
matrix Sp.

For viruses and receptors, prediction matrixes Fv and
Fp are respectively calculated from the LapRLS model by
minimizing the cost functions as follows:

F∗
v = arg min

Fv

[
||Y − Fv||2F + βvtr

(
FT

v LvFv
)]

, (11)

F∗
p = arg min

Fp

[
||Y − Fp||2F + βptr

(
FT

p LpFp
)]

, (12)

in which tr(.) is the trace of a matrix, Y is the adjacency
matrix of the known virus-receptor interactions, Lv and
Lp are the normalized Laplacian matrices of virus simi-
larity and receptor similarity, and ||.||F is the Frobenius
norm. βv and βp are the trade-off parameters and are set to
be 1. According to previous studies [29], the computation
model can be solved by:

F∗
v = Sv(Sv + βvLvSv)−1Y , (13)

F∗
p = Sp(Sp + βpLpSp)−1Y T , (14)

Finally, we obtain the virus-receptor interaction predic-
tion matrix F∗ by the mean of results of viruses and
receptors:

F∗ =
(

F∗
v + (F∗

p)
T
)

/2. (15)

Results
Performance evaluation
In order to assess the prediction performance of IILLS, we
conduct the 10CV and LOOCV. The AUC is the metric
to evaluate the prediction performance. We compare our
method with other three methods: BRWH [30] , LapRLS
[26] and CMF [31].

Comparison with other methods
Figure 3 shows the prediction performance of four meth-
ods in 10CV. Compared with other methods (BRWH:
0.7959, LapRLS: 0.7577, CMF: 0.7128), IILLS achieves
the best prediction performance with the AUC value of
0.8675.

Figure 4 also shows that IILLS is superior to other
methods in terms of AUC values (IILLS: 0.9061, BRWH:

Table 1 The 10CV prediction performances of various parameter
values of α ranging from 0 to 1.0 with the increment of 0.1, the
best result is in the bold face

α 0 0.1 0.2 0.3 0.4

AUC 0.8675 0.8611 0.8544 0.8500 0.8475

0.5 0.6 0.7 0.8 0.9 1.0

0.8464 0.8425 0.8417 0.8376 0.8327 0.8242

0.8105, LapRLS: 0.7713, CMF: 0.7421). These experiment
results illustrate that IILLS can obtain the better predic-
tion performance.

Analyzing receptor similarity
In this study, we also analyze the receptor similarity based
on the GIP similarity and sequence similarity in terms
of the influences of prediction performance of parame-
ter α in our method. We conduct 10CV and LOOCV to
compute the prediction performance.

Table 1 shows the 10CV prediction performances of var-
ious parameter values of α ranging from 0 to 1.0 with the
increment of 0.1. We can see from Table 1 that our method
obtains the best prediction performance in 10CV when
only using sequence similarity (α = 0). The AUC value of
our method has a slightly descending trend when α ranges
from 0 to 1.0.

Table 2 shows the LOOCV prediction performances of
various parameter values of α ranging from 0 to 1.0 with
the increment of 0.1. We can see from Table 2 that our
method also obtains the best prediction performance in
LOOCV when only using sequence similarity (α = 0).
The AUC value of our method has also a slightly descend-
ing trend when α ranges from 0 to 1.0. Therefore, we set
the α to be 0 in this study.

In addition, we also provide the ROC of our method on
different values of parameter α in three cases. The first
only uses the sequence similarity of receptors (α = 0).
The second only uses the GIP similarity of receptors (α =
1.0). The third is with the mean of GIP similarity and
sequence similarity of receptors (α = 0.5).

Figures 5 and 6 show the prediction performances
of IILLS under three different receptor similarities
in 10CV and LOOCV, respectively. We can also see
from Figs. 5 and 6 that IILLS achieves the best pre-
diction performance when only using the sequence
similarity.

Parameter analysis for γ
,
v

In this section, we analyze parameters γ
,
v. In addition,

by considering the effect of parameter γ
,
v is similar to

the effect of parameter γ
,
p, we set γ

,
p = γ

,
v. When only

using the sequence similarity, Table 3 shows the 10CV
prediction performances of value set (0.25, 0.5, 1, 2, 4) of
parameter γ

,
v. We can see from Table 3 that our method

Table 2 The LOOCV prediction performances of various
parameter values of α ranging from 0 to 1.0 with the increment
of 0.1, the best result is in the bold face

α 0 0.1 0.2 0.3 0.4

AUC 0.9061 0.8975 0.8935 0.8905 0.8885

0.5 0.6 0.7 0.8 0.9 1.0

0.8865 0.8846 0.8828 0.8806 0.8779 0.8724
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Fig. 5 The ROC curves of IILLS under three different receptor similarities in 10CV

obtains best prediction performance in 10CV when γ
,
v is

set to be 2. The AUC value under setting γ
,
v = 2 is slightly

better than the AUC value when γ
,
v = 1. Therefore, we

also simply set the γ
,
v = 1 as the default value based on

the previous successful studies and experiment results of
10CV.

Case studies
In order to further evaluate the prediction performance
of IILLS in applications, we analyze the prediction abil-
ity of our method in discovering new virus-receptor
interactions. The extracted human virus-receptor interac-
tions are used as the benchmark datasets.

Fig. 6 The ROC curves of IILLS under three different receptor similarities in LOOCV
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Table 3 The 10CV prediction performances of various parameter
values of γ

,
v , the best result is in the bold face

γ
,
v 0.25 0.5 1 2 4

AUC 0.8550 0.8608 0.8675 0.8700 0.8434

Table 4 shows the validation results of top 10 virus-
receptor interactions which are predicted by IILLS. We
can see from Table 4 that 5 of 10 predicted associations are
validated by previous studies. C-type lectin domain family
4 member M (CLEC4M, also called L-SIGN or CD209L) is
equipped with a carbohydrate recognition domain (CRD)
that mediates the recognition of fucose and high-mannose
glycans in a Ca2+-dependent manner, these carbohy-
drate structures can be found in multiple pathogens, such
as Lassa virus, Ebola virus, among others [32, 33]. The
CD209 is also the receptor of known SARS-CoV, human
coronaviruses and 229E, although the disease caused by
SARS-CoV differs from the diseases caused by the known
human coronaviruses and 229E [34]. L-SIGN (also called
DC-SIGN) is related to CLEC4M and is a C-type lectin
involved in both innate and adaptive immunity, they are
known to bind to multiple pathogens and function as cel-
lular receptors for various viruses, such as Dengue virus
[35]. Rift Valley fever virus (RVFV) goes through L-SIGN
to infect cells expressing the lectin ectopically [32, 36].
The phleboviruses, such as Uukuniemi virus (UUKV), can
exploit L-SIGN for infection [32, 36].

Discussion
With the development of high-through sequencing tech-
nology and microbiology, many studies have evidenced
that microbes have key impacts on health body and
human diseases. Furthermore, the viruses are an impor-
tant part of the human microbiomes, and are also the

direct origin of infectious diseases, such as Sabia virus and
so on. The receptor-binding is the first step for viral infec-
tion of host cells. Therefore, in order to systematically
understand the mechanisms between virus and receptor
and improve the diagnosis and treatment of infectious dis-
eases, it need develop effective methods to identify new
virus-receptor interactions.

Conclusion
In this study, we develop a computational method (IILLS)
to predict virus-receptor interactions of human with
known virus-receptor interactions and the amino acid
sequence of receptors. Firstly, IILLS computes the virus
similarity by GIP kernel. Then we also calculate the
receptor GIP kernel similarity and the receptor sequence
similarity. The final receptor similarity is constructed
by the sequence similarity based on the experiment
results. IILLS uses the Laplacian regularized Least Square
(LapRLS) model to predict the potential virus-disease
interactions. It further improves the prediction perfor-
mance by adding an initial interaction scores process
for new viruses and receptors. In terms of AUC with
10CV and LOOCV, IILLS can achieves better prediction
performance than other three competing methods. The
case studies also show that IILLS can effectively predict
virus-receptor interactions, and also help control the virus
infectious diseases in the future.

However, there still exist some limitations in IILLS. On
the one hand, the virus similarity is calculated by the
GIP kernel with known virus-receptor interactions. We
should consider more relevant biological network infor-
mation, such as sequence information. In addition, other
integration methods of receptor similarity also should
be considered in the future. Finally, other latest matrix
factorization methods also should be considered, such

Table 4 The validated result of top 10 predicted virus-receptor interactions

Rank Virus Receptor References

1 Lymphocytic choriomeningitis
mammarenavirus (LCMV)

C-type lectin domain family 4 member
M(CLEC4M, L-SIGN)

Unknown

2 Lassa mammarenavirus C-type lectin domain family 4 member M Garcia-Vallejo et al, (2015) and Sakuntabhai et al.,
(2005)

3 Human coronavirus 229E
(229E)

CD209 molecule (CD209) Lo et al., (2006)

4 Dengue virus C-type lectin domain family 4 member M Li et al., (2012)

5 Rift Valley fever virus C-type lectin domain family 4 member M Lger et al., (2016), and Sakuntabhai et al., (2005)

6 Uukuniemi virus C-type lectin domain family 4 member M Lger et al., (2016), and Sakuntabhai et al., (2005)

7 Human immunodeficiency
virus 2

C-type lectin domain family 4 member M Unknown

8 Human alphaherpesvirus 1 integrin subunit beta 3 (beta 3 integrin) Unknown

9 Coxsackievirus A9 (CAV9) integrin subunit beta 1 Unknown

10 Human betaherpesvirus 5 integrin subunit beta 6 Unknown
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as DNRLMF-MDA [37], DRRS [38], SIMCLDA[39] and
BNNR [40]. Therefore, we would like to develop a more
effective method for predicting virus-receptor interac-
tions by addressing the above limitations in the future.
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Normalized Smith-Waterman score
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6. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc
M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, et al. Zika virus
associated with microcephaly. New England J Med. 2016;374(10):951–8.

7. Moraz M-L, Kunz S. Pathogenesis of arenavirus hemorrhagic fevers.
Expert Rev Anti-Infect Ther. 2011;9(1):49–59.

8. Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev
Microbiol. 2007;5(10):801.

9. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J,
Wu L, et al. Alterations of the human gut microbiome in liver cirrhosis.
Nature. 2014;513(7516):59.

10. Cadwell K. The virome in host health and disease. Immunity. 2015;42(5):
805–13.

11. Boulant S, Stanifer M, Lozach P-Y. Dynamics of virus-receptor interactions
in virus binding, signaling, and endocytosis. Viruses. 2015;7(6):2794–815.

12. Baranowski E, Ruiz-Jarabo CM, Domingo E. Evolution of cell recognition
by viruses. Science. 2001;292(5519):1102–5.

13. Casasnovas JM. Virus-receptor interactions and receptor-mediated virus
entry into host cells. Subcell Biochem. 2013;68:441–66.

14. Li F. Structure, function, and evolution of coronavirus spike proteins. Ann
Rev Virol. 2016;3:237–61.

15. Peng W, de Vries RP, Grant OC, Thompson AJ, McBride R, Tsogtbaatar B,
Lee PS, Razi N, Wilson IA, Woods RJ, et al. Recent h3n2 viruses have
evolved specificity for extended, branched human-type receptors,
conferring potential for increased avidity. Cell Host Microbe. 2017;21(1):
23–34.

16. Zhang Z, Zhu Z, Chen W, Cai Z, Xu B, Tan Z, Wu A, Ge X, Guo X, Tan Z,
et al. Cell membrane proteins with high n-glycosylation, high expression
and multiple interaction partners are preferred by mammalian viruses as
receptors. Bioinformatics. 2018;35(5):723–8.

17. Laarhoven TV, Nabuurs SB, Marchiori E. Gaussian interaction profile
kernels for predicting drugÿtarget interaction. Bioinformatics. 2011;27(21):
3036–43.

18. Yan C, Guihua D, Wu FX, Pan Y, Wang J. Brwmda:predicting
microbe-disease associations based on similarities and bi-random walk
on disease and microbe networks. IEEE/ACM Trans Comput Biol
Bioinform. 2019. https://doi.org/10.1109/TCBB.2019.2907626.

19. Yan C, Wang J, Wu F-X. Dwnn-rls: regularized least squares method for
predicting circrna-disease associations. BMC Bioinformatics. 2018;19(19):
520.

20. Yan C, Duan G, Wu F, Pan Y, Wang J. Mchmda: Predicting
microbe-disease associations based on similarities and low-rank matrix
completion. IEEE/ACM Trans Comput Biol Bioinform. 2019. https://doi.
org/10.1109/TCBB.2019.2926716.

21. Lan W, Wang J, Li M, Liu J, Wu F-X, Pan Y. Predicting microrna-disease
associations based on improved microrna and disease similarities.
IEEE/ACM Trans Comput Biol Bioinform. 2018;15(6):1774–82.

22. Lan W, Li M, Zhao K, Liu J, Wu F-X, Pan Y, Wang J. Ldap: a web server for
lncrna-disease association prediction. Bioinformatics. 2016;33(3):458–60.

23. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S,
Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics:
new developments in kegg. Nucleic Acids Res. 2006;34(suppl_1):354–7.

24. Smith TF, Waterman MS, et al. Identification of common molecular
subsequences. J Mol Biol. 1981;147(1):195–7.

25. Jiang H, Wang J, Li M, Lan W, Wu F, Pan Y. mirtrs: A recommendation
algorithm for predicting mirna targets. IEEE/ACM Trans Comput Biol
Bioinform. 2018. https://doi.org/10.1109/TCBB.2018.2873299.

26. Xia Z, Wu L-Y, Zhou X, Wong ST. Semi-supervised drug-protein
interaction prediction from heterogeneous biological spaces. BMC Syst
Biol. 2010;4:6. BioMed Central.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-23
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-23
http://bioinformatics.csu.edu.cn/IILLS
http://bioinformatics.csu.edu.cn/IILLS
https://doi.org/10.1109/TCBB.2019.2907626
https://doi.org/10.1109/TCBB.2019.2926716
https://doi.org/10.1109/TCBB.2019.2926716
https://doi.org/10.1109/TCBB.2018.2873299


Yan et al. BMC Bioinformatics 2019, 20(Suppl 23):651 Page 9 of 9

27. Yuan Q, Gao J, Wu D, Zhang S, Mamitsuka H, Zhu S. Druge-rank:
improving drug–target interaction prediction of new candidate drugs or
targets by ensemble learning to rank. Bioinformatics. 2016;32(12):18–27.

28. Yan C, Wang J, Lan W, Wu F-X, Pan Y. Sdtrls: Predicting drug-target
interactions for complex diseases based on chemical substructures.
Complexity. 2017;2017(Article ID 2713280):10.

29. Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. J Mach
Learn Res. 2006;7(Nov):2399–434.

30. Luo H, Wang J, Li M, Luo J, Peng X, Wu F-X, Pan Y. Drug repositioning
based on comprehensive similarity measures and bi-random walk
algorithm. Bioinformatics. 2016;32(17):2664–71.

31. Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization
with multiple similarities for predicting drug-target interactions. In:
Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM; 2013. p. 1025–33. https://
doi.org/10.1145/2487575.2487670.

32. Sakuntabhai A, Turbpaiboon C, Casadémont I, Chuansumrit A,
Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K,
Tangthawornchaikul N, Vasanawathana S, et al. A variant in the cd209
promoter is associated with severity of dengue disease. Nat Genet.
2005;37(5):507.

33. Garcia-Vallejo JJ, van Kooyk Y. Dc-sign: the strange case of dr. jekyll and
mr. hyde. Immunity. 2015;42(6):983–5.

34. Lo AW, Tang NL, To K-F. How the sars coronavirus causes disease: host or
organism?. J Pathol J Pathol Soc Great B Irel. 2006;208(2):142–51.

35. Li H, Wang J-X, Wu D-D, Wang H-W, Tang NL-S, Zhang Y-P. The origin
and evolution of variable number tandem repeat of clec4m gene in the
global human population. PLoS ONE. 2012;7(1):30268.

36. Léger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach
P-Y. Differential use of the c-type lectins l-sign and dc-sign for
phlebovirus endocytosis. Traffic. 2016;17(6):639–56.

37. Yan C, Wang J, Ni P, Lan W, Wu F, Pan Y. Dnrlmf-mda: Predicting
microrna-disease associations based on similarities of micrornas and
diseases. IEEE/ACM Trans Comput Biol Bioinform. 2019;16(1):233–43.

38. Luo H, Li M, Wang S, Liu Q, Li Y, Wang J. Computational drug
repositioning using low-rank matrix approximation and randomized
algorithms. Bioinformatics. 2018;34(11):1904–12.

39. Lu C, Yang M, Luo F, Wu F-X, Li M, Pan Y, Li Y, Wang J. Prediction of
lncrna–disease associations based on inductive matrix completion.
Bioinformatics. 2018;34(19):3357–64.

40. Yang M, Luo H, Li Y, Wang J. Drug repositioning based on bounded
nuclear norm regularization. Bioinformatics. 2019;35(14):455–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/2487575.2487670
https://doi.org/10.1145/2487575.2487670

	Abstract
	Background
	Result
	Conlusion
	Keywords

	Background
	Methods
	Materials
	Similarity of viruses
	Similarity of receptors
	Initialized interaction profiles for new viruses and receptors
	Laplacian regularized least square for virus-receptor interaction prediction

	Results
	Performance evaluation
	Comparison with other methods
	Analyzing receptor similarity
	Parameter analysis for ,v
	Case studies

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

