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Abstract

Background: Group B streptococcus (GBS) is an important pathogen that is responsible for invasive infections,
including sepsis and meningitis. GBS serotyping is an essential means for the investigation of possible infection
outbreaks and can identify possible sources of infection. Although it is possible to determine GBS serotypes by
either immuno-serotyping or geno-serotyping, both traditional methods are time-consuming and labor-intensive. In
recent years, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has
been reported as an effective tool for the determination of GBS serotypes in a more rapid and accurate manner.
Thus, this work aims to investigate GBS serotypes by incorporating machine learning techniques with MALDI-TOF
MS to carry out the identification.

Results: In this study, a total of 787 GBS isolates, obtained from three research and teaching hospitals, were
analyzed by MALDI-TOF MS, and the serotype of the GBS was determined by a geno-serotyping experiment. The
peaks of mass-to-charge ratios were regarded as the attributes to characterize the various serotypes of GBS.
Machine learning algorithms, such as support vector machine (SVM) and random forest (RF), were then used to
construct predictive models for the five different serotypes (Types la, Ib, Ill, V, and VI). After optimization of feature
selection and model generation based on training datasets, the accuracies of the selected models attained
54.9-87.1% for various serotypes based on independent testing data. Specifically, for the major serotypes, namely
type Il and type VI, the accuracies were 73.9 and 70.4%, respectively.
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Conclusion: The proposed models have been adopted to implement a web-based tool (GBSTyper), which is now
freely accessible at http://csb.cse.yzu.edu.tw/GBSTyper/, for providing efficient and effective detection of GBS
serotypes based on a MALDI-TOF MS spectrum. Overall, this work has demonstrated that the combination of
MALDI-TOF MS and machine intelligence could provide a practical means of clinical pathogen testing.
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Background

Group B Streptococcus (GBS), also known as Streptococ-
cus agalactiae (S. agalactiae), is a gram-positive coccus
with a tendency to form chains, and is a beta-hemolytic,
catalase-negative, and facultative anaerobe. GBS is the
causal pathogen of a wide range of human diseases, in-
cluding neonatal sepsis, pneumonia, and meningitis [1-4].
In an outbreak of GBS infection or an investigation of
GBS infection etiology, strain typing methods including
serotyping, geno-serotyping, and multilocus sequence typ-
ing method (MLST) are essential for identifying the
source of infection and control of infection. GBS serotyp-
ing is conducted by latex agglutination (LA) methods
based on antibodies specific for capsular polysaccharides
(CPSs). There are several known serotypes of GBS such as
Ia, Ib, I, 111, V, and VI, etc. The serotypes are determined
by the distinct structure of the CPSs, which are also im-
portant virulence factors leading to human diseases [5-8].
However, if the expression of the CPSs is low, the LA
assay may not be successful in strain typing [9]. This re-
striction could be overcome by genotyping the CPS genes
using PCR [10]. Moreover, according to the fragments of
seven housekeeping genes, MLST is also a powerful tool
for studying the genetic lineages of GBS strains [11]. How-
ever, the strain typing methods are costly, time consum-
ing, and laborious. Clinical practitioners would spend
extra expense of several tens of USD and tens of hours to
days to obtain the strain typing results. It would not meet
the clinical needs where strain typing results are urgently
required in infection control or outbreak investigation.
Consequently, rapid strain typing cannot be fulfilled in
clinical practice.

To obtain strain typing results in a more rapid and
cost-effective manner, matrix-assisted laser desorption
ionization time-of-fly mass spectrometry (MALDI-TOF
MS) is a potential tool. Mass spectra are composed of
information regarding proteins composition and level.
The spectra can be generated by analytical measurement
of MALDI-TOF MS. MALDI-TOF MS is widely used in
bacterial identification based on the specific protein
spectrum in clinical microbiology laboratories [12]. The
advantages of this technology are rapid, precise, low
cost, and designed for high throughput of samples [13—
15]. As a result of these advantages, typing bacteria via

specific protein fingerprinting has raised considerable at-
tention. Additional file 1: Table S1 lists previously pub-
lished work about rapid identification of types of GBS.
One of these studies analyzed two highly virulent types
of GBS, ST1 and ST17, and disclosed that the m/z 6250
and m/z 7625 peaks are specific for the two highly viru-
lent types [16]. Another recent study identified m/z 6250
and m/z 6891 as the specific peaks for serotype VI and
III, respectively [17]. Both studies used the ClinPro
Tools™ software (Bruker) to perform statistical analyses
of mass spectra data from GBS isolates. Normalize all
mass spectra to their own total ion count (TIC) and
present in a 2-D cluster plot. It was observed that the
specific peaks for serotypes. However, a comprehensive
pattern for discriminating different types may not be ob-
tained by solely using statistical analysis, partially could
be attributed to unperfect reproducibility of MALDI-
TOF MS spectra, especially on peak level. A technical
review on using MALDI-TOF MS in microbiology re-
vealed that peak-level reproducibility of MALDI-TOF
MS spectra is around 90% [18]. Several factors, including
type of culture medium, cultivation time, protein extrac-
tion process, and inhomogeneities in matrix/analyte-
crystals could affect the reproducibility of spectrum [18].
Shifting or drifting of peaks on MALDI-TOF MS
spectrum is also a crucial source affecting reproducibility
[19, 20]. Peaks appeared in vicinity on MALDI-TOF MS
spectra may actually the same peptide ion [21]. However,
the peak shifting issue has not yet been well-addressed
in previous works. Our team reported that MALDI-TOF
MS could be used as the analytical tool for sub-species
typing of Staphylococcus aureus when using the binning
method to cope with the peak shifting issue [21]. In this
work, we aimed to evaluate if the binning method is
adequate in processing MALDI-TOF MS spectra for
geno-serotyping of GBS.

To provide more comprehensive and specific protein
patterns for identifying specific strain types, machine
learning (ML) is a promising method for analyzing
massive and complicated data, such as MALDI-TOF MS
spectra [21, 22]. ML is a method of conducting learning
from data. Various ML algorithms, including decision
tree (DT), and support vector machine (SVM) are robust
and widely used algorithms [21]. ML model could learn
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a specific pattern of data in the training set, and utilize
the specific pattern for classification in the testing set
[21]. Several studies have demonstrated success in using
ML for medical decision fields [21-25].

In this work, we collected hundreds of mass spectra
data of various serotypes of GBS. ML models were
trained and validated by a robust method to evaluate the
classification performance between different ML models.
Moreover, informative peak features for discrimination
among different serotypes were also selected out.
Through the ML models, GBS serotypes could be rapidly
detected and may guide adequate management of infec-
tious outbreaks based on existing MALDI-TOF MS data
only which exempt extra cost, time, and labor spent on

strain typing.

Result and discussion

Feature extraction by binning method

Based on the results of previous studies [21, 26], the ex-
tent of peak drifting or shifting is +5Da. Consequently,
bin size ranged from 1-10 Da was tried and evaluated in
this study. The template of features (or reference features)
could be defined by this method. In Table 1, the number
of features under various bin sizes are illustrated. The
number of features are larger than 1000 when the bin size
is set as 1 Da or 2 Da. In contrast, the number of features
can be significantly reduced to several hundred when the
bin size is 9Da or 10 Da. The massive information of
MALDI-TOF MS spectra can be condensed into a well-
defined combination of features using this approach.

The binning method was used to extract features from
MALDI-TOF MS spectra. In this study, we analyzed the
region from 2000 m/z to 20,000 m/z, which is the rec-
ommended range to be used in the clinical microbiology
laboratory [27]. The binning method was used here to
address the drift or shift phenomenon of peaks in MS

Table 1 Number of extracted features among 10 different bin
sizes in each model

Bin Number of peaks in each model

?gae) Type la Type Ib Type i Type V Type VI
1 1621 1621 1622 1621 1620
2 1013 1013 1012 1013 1012
3 779 780 779 779 779
4 644 644 642 643 644
5 576 576 575 576 576
6 493 493 493 493 493
7 468 469 468 469 469
8 428 430 429 429 427
9 398 398 398 397 397
10 380 381 380 380 380
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spectra. Moreover, the dimension of features can be con-
siderably reduced by using the binning method. Dimen-
sion reduction is crucial in applying ML algorithms,
especially when a relatively small dataset is used. The
optimal bin size was systemically evaluated in this study.
When the bin size is large, too many peaks would be
coalesced into a single bin and the processed data may not
be sufficient for classifying different serotypes. In contrast,
when bin size is narrow, performance of classification may
be compromised because of Hughes phenomenon [28].

Overview of the training data sets

To visualize the whole mass spectrum of GBS, we pre-
sented them in so-called pseudo gel views, which were gen-
erated from the pre-processed mass spectra. In the pseudo
gel views (Additional file 1: Figure S1) the intensities are
gray-scaled. The abscissa indicates the mass-to-charge ratio
(m/z), and the mass range of m/z is 2000—10,000 because
of the resolution of the picture. The ordinate indicates the
mass spectra. Additional file 1: Figure S1 is the pseudo gel
view of 324 mass spectra of GBS. The pseudo gel can be di-
vided into five blocks based on the serotypes, from top to
bottom followed by serotype Ia, Ib, II, III, V, and VI. Some
of the discriminative peaks could be observed by the naked
eye through this approach. For example, signals over m/z
6250 and m/z 6890 are frequently observed in serotype VI,
and signals over m/z 2960 and m/z 6890 are discriminative
peaks for serotype IIl. However, the disadvantages of the
pseudo gel are explicit, though it is a commonly used ap-
proach. First, the method fails to identify discriminative
peaks when the intensity of peaks is not high enough. Sec-
ond, observation by the naked eye depends on well-trained
staff and is a highly operator-dependent method, where re-
producibility may be compromised. Third, the difference of
MS spectra is subtle. Finding subtle differences from a
complicated MS spectrum is time-consuming and labor-
intensive. To conduct a more reliable analysis of MS
spectra and obtain a more robust result, introducing data
mining techniques, including ML methods, is a promising
and inevitable choice.

UHCA is a purely data-driven classification method.
This method could be used to illustrate the efficacy of the
binning method. In Fig. 1, the bin size is set to 1 Da, where
a total of 1622 features are used. GBS isolates with the
same serotypes are distributed diversely. Specifically, the
main serotypes (ie. serotype III and VI) were found to be
divided into several subgroups. In contrast, in Fig. 2, we
collected 105 important features from the predictive
models of five serotypes. The clusters of GBS serotypes
are relatively explicit. Through UHCA, the different sero-
types of GBS in the training dataset were illustrated to be
preliminarily grouped together when an adequate bin size
was selected for data preprocessing.
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Fig. 1 Flowchart of GBS serotype prediction in this work. The study can be divided into three parts: data collection, data analysis, and

* Alltraining data : 324

¢ Number of features : 1622
* Distance matrix : Euclidean
* Cluster method : Average

B Type V(41) I Type VI(74)

Feature selection by one rule (OneR) and Pearson
correlation coefficient (PCC)

Features were extracted by the binning method and
ranked by OneR and PCC. The forward selection
method was then used to explore the best combination
of features. Additional file 1: Figure S2 (a)~(j) show the

trends of accuracies of the predictive models with different
bin sizes, feature number, and ML algorithms when using
OneR for feature selection. By the systemic assessments,
the optimal bin size value and the best feature combi-
nations were determined. Briefly, the results showed that
accuracies of predictive models were optimized by setting

-

« Alltraining data : 324
¢ Number of features : 105
* Distance matrix : Euclidean

1 ¢ Cluster method : Average

Bl Type la (41) Type Ib(41) Hl Type I(16)

I Type VI(74)

H Type 111(111) Bl Type V(41)

Fig. 2 Example of binning method for feature extraction. At the upper part, we stacked three mass spectra as examples, and their ranges are
from m/z 2000 to m/z 2030. At the lower part, all mass spectra were divided by using ten different sizes of error regions from 1 Da to 10 Da. The
blue squares indicate that at least one peak from any data is in the range of the bin
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bin sizes as 9 Da, 7 Da, 9 Da, 1 Da, and 9 Da for serotype
Ia, Ib, III, V, and VI, respectively. PCC was used as the
other feature selection method. The trends of accuracies
of the predictive models with different bin sizes, features
number, and ML algorithms by using PCC were illustrated
in Additional file 1: Figure S3 (a)~(j). The results showed
that the accuracies of predictive models were optimized
by setting bin sizes as 9 Da, 3 Da, 6 Da, 9 Da, and 7 Da for
serotype Ia, Ib, III, V, and VI, respectively. Based on these
bin sizes, the most discriminative peaks (top 10) selected
by OneR and PCC were illustrated in Additional file 1:
Tables S3 and S4, respectively.

We also performed more than 5-fold cross validations
(10 to 30) to estimate the robustness of the prediction. To
evaluate the 5-fold and (10-30)-fold cross validations, we
ran the cross validations for each selected bin size/number
of features prediction. And, in order to conveniently
compare the results of cross validations with different
folds, we presented them as ROC curves. The results
revealed that the performance of five-fold and more than
five-fold cross validation is similar. Additional file 1:
Figure S4 (a)~(j) and S5 (a)~(j) show the ROC curves.

Evaluating the predictive models by cross-validation and
independent dataset

Predictive models of the five serotypes were trained and
validated using the optimal bin size and features deter-
mined in the step of feature selection. The performance
of the predictive models was evaluated by 5-fold cross
validation. The models with highest performance were
selected as the final models which were further validated
by independent testing dataset.

The predictive models with the highest performance
for each serotype are shown in the Tables 2 and 3, con-
taining the details of bin size, feature number, Sn, Sp,
Acc, and MCC. Briefly, the predictive models attained
higher performance using PCC as the feature selection
method than OneR. For most predictive models, the
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optimal bin size was 9 Da (Table 3), which is consistent
with the findings of previous studies reporting the extent
of peak drifting or shifting as +5 Da [21, 26]. Both algo-
rithms (i.e. random forest and SVM) showed similar
performance. The predictions of the models were fairly
balanced regarding the Sn, Sp, and MCC.

In the external validation using the independent dataset,
the performance of all the models declined. The decrease
in prediction performance could be caused by the small
sample size used in the study, especially for serotype Ia, Ib,
and V (Table 4). The prediction performance would be
compromised when the training data cannot offer rich
information of classification. In contrast, for the major se-
rotypes, namely serotypes III and VI, the performance of
predictive models declined less and remained balanced in
the external validation (Table 5). More samples should be
used for training more robust ML models in order to
apply them into clinical practice in the future.

Informative peaks in each predictive model

Additional file 1: Tables S5, S6, S7, S8, and S9 show the
distributions of discriminative features in each model.
The listed features were selected by PCC. Some of the
informative peaks found in this study, such as m/z 6251
[17], m/z 6891 [17], and m/z 7620 [16], were reported as
characteristic peaks for serotypes VI, Ib/IIL, and III, re-
spectively. Specifically, m/z 6251 was purified and
identified as CsbD like protein (gi: 445998854 and gi:
77413040) [17, 29]. The peak at m/z 6891 was identified
as UPF0337 protein gbs0600 belonging to the UPF0337
(CsbD) family [17]. The peak at m/z 7620 was reported
as the small subunit of exodeoxyribonuclease VII (Gi:
77409335) [29]. In this study, we focused on using ML
approach to classify various serotypes of GBS by re-
cognizing specific peaks composition (i.e., the pattern of
spectra). In the current stage, we have validated that the
ML approach is workable by robust validation methods,
including cross-validation and external validation. On

Table 2 Performance (five-fold cross validation) of the predictive models for each serotype when using OneR for feature selection.
SVM: Support Vector Machine; Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient

Serotype Feature selection Classifiers Bin size Number of features Sn Sp Acc MCC
la OneR Random Forest 9 42 95.1% 89.1% 90.9% 0.804
SVM 9 38 93.5% 91.9% 92.4% 0.828
Ib Random Forest 7 48 83.7% 81.0% 81.8% 0611
SVM 7 46 76.4% 74.3% 74.9% 0473
M1l Random Forest 9 28 90.1% 87.4% 88.3% 0.753
SVM 9 16 86.5% 85.5% 85.8% 0.700
V Random Forest 1 43 86.2% 85.9% 86.0% 0.690
SVM 1 43 81.3% 81.0% 81.1% 0.590
VI Random Forest 3 47 93.2% 91.6% 92.2% 0.837
SVM 9 13 91.2% 89.6% 90.2% 0.796
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Table 3 Performance (five-fold cross validation) of the predictive models for each serotype when using PCC for feature selection.
SVM: Support Vector Machine; Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient

Serotype Feature selection Classifiers Bin size Number of features Sn Sp Acc MCC
la PCC Random Forest 9 35 100.0% 96.1% 97.3% 0.939
SVM 9 28 100.0% 99.6% 99.8% 0.994
I'b Random Forest 3 38 100.0% 93.3% 95.3% 0.899
SVM 3 30 100.0% 99.3% 99.5% 0.988
i Random Forest 6 7 91.0% 90.2% 90.5% 0.795
SVM 6 7 91.0% 89.7% 90.2% 0.789
Vv Random Forest 9 46 100.0% 92.3% 94.6% 0.885
SVM 9 43 100.0% 99.6% 99.8% 0.994
Vi Random Forest 6 31 97.3% 91.6% 93.7% 0.872
SVM 7 18 94.6% 93.2% 93.7% 0.868

the basis of the peak composition, ML could be promis-
ing for determining essential peptides of drug resistance
by revealing the identities of the peaks in the future.

The peak at m/z 6891 was reported as a characteristic
feature for GBS serotypes Ib and III [17]. In contrast, in
this study, m/z 6891 was selected as the informative fea-
ture for all of the predictive models. The frequency of
occurrence of m/z 6891 was higher in serotypes Ia, Ib,
and III, but lower in serotypes V and VI (Additional
file 1: Tables S5, S6, S7, S8, and S9). Though the
frequency of occurrence of the selected peaks showed
considerable difference among the binary classes, the
peaks did not present only in one class. For example, the
peaks at m/z 7616~7624.9, m/z 6248~6256.9, and m/z
6887~6895.9 were all selected as the informative peaks
for both predictive models of serotype Ia and serotype
V, but the distribution of these three peaks was different
among serotype la and serotype V: the higher frequency
of occurrence of m/z 6887~6895.9 and lower frequency
of occurrence of m/z 7616~7624.9 and m/z 6248~6256.9
was characteristic for serotype Ia. In contrast, the higher
frequency of occurrence of m/z 6248~6256.9 and lower
frequency of occurrence of m/z 7616~7624.9 and m/z

6887~6895.9 was characteristic for serotype V. Briefly,
the whole pattern of multiple informative peaks but not
a single peak should be taken as the features in predic-
ting or classifying the serotypes.

Peak pairs of the binary predictive models

The fingerprint of multiple features is thought to pro-
vide more comprehensive information than a single fea-
ture [23]. However, the whole pattern of features is
difficult to be fully explained together. To address this
issue, the concept of a pair of essential features was pro-
posed and used in this study. A peak pair was generated
by iteratively pairing the top 10 essential peaks which
had been selected by PCC. The importance of these peak
pairs was examined by chi-square. The peak pair can
provide part of the features pattern, and the results are
relatively easily to interpret. The patterns of co-presence,
co-absence, and presence-absence of essential peaks can
be illustrated by this approach. Regarding the most pre-
dominant serotype (i.e., serotype III) (Table 6), m/z 6251
[17], m/z 6891 [17], and m/z 7620 [16] were reported as
characteristic peaks and also found as informative fea-
tures in this study. Three pairs could be generated by

Table 4 Characteristics of the training data sets of each serotype after oversampling

Models of serotypes Type of data Original data Post oversampling Total
la la 41 123 407
Non-la 284 284
Ib Ib 41 123 407
Non-lb 284 284
Il Il m 111 325
Non-lll 214 214
\ \ 41 123 407
Non-V 284 284
\Y \Y 74 148 399
Non-VI 251 251
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Table 5 Performance of the predictive models for each serotype by using independent testing data. PCC was used as the feature
selection method. SVM: Support Vector Machine; Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews Correlation Coefficient

Serotype Bin size of Peaks Number of features Classifiers Sn Sp Acc MCC
la 9 28 Random Forest 66.0% 61.4% 61.9% 0.168
SVM 19.1% 94.9% 87.1% 0172
I'b 3 30 Random Forest 55.6% 54.8% 54.9% 0.071
SVM 54.0% 38.9% 41.0% -0.050
1] 6 7 Random Forest 73.0% 74.1% 73.9% 0405
SYM 68.0% 71.3% 70.6% 0336
Vv 9 43 Random Forest 63.6% 40.6% 43.4% 0.028
SVM 5.5% 94.1% 83.4% —-0.007
Vi 7 18 Random Forest 70.4% 70.3% 70.4% 0.381
SVM 67.6% 64.4% 65.4% 0.297

these three peaks, namely pair 1 (m/z 7620 & m/z 6893),
pair 2 (m/z 7620 & m/z 6250), and pair 10 (m/z 6893 &
m/z 6250) (Fig. 3c). Some interesting patterns of the
peak pairs can facilitate classifying serotyping rapidly.
For example, regarding pair 2, when only m/z 6250 is
present and m/z 7620 is absent, a GBS isolate can be
predicted as non-serotype III with high probability.
Additionally, regarding pair 10, a GBS isolate can be pre-
dicted as serotype III with high confidence when m/z
6893 is present and m/z 6250 is absent. Furthermore,
besides facilitating rapid prediction and classification,
the patterns of peak pairs may also provide some va-
luable hints for further investigation in the future. For
example, the distinct pattern of the peak pair of serotype
III revealed that the presence of m/z 6893 and absence
of m/z 6250 may imply a specific relationship between
m/z 6893 and m/z 6250. Peaks of m/z 6893 and m/z
6250 represent UPF0337 protein gbs0600 [17] and CsbD

Table 6 Data statistics of the training data set and independent
testing data set among each serotype of GBS (serotype la, Ib, I,
I, 1V, V, VI, VII, and unknown serotypes)

Serotypes Number of Mass Spectra (%)
Training Data Set Independent Testing Data Set
la 41 (12.6%) 47 (10.2%)
Ib 41 (12.6%) 63 (13.6%)
Il 16 (4.9%) 44 (9.5%)
Il 111 (34.2%) 100 (21.6%)
v - 5(1.1%)
\ 41 (12.6%) 55 (11.9%)
Vi 74 (22.8%) 143 (31.0%)
VI 1(0.3%) 2 (0.4%)
VIl - 1(0.2%)
unknown - 2 (0.4%)
Total 325 (100%) 462 (100%)

a: Percentage of each serotype in two kinds of data sets

like protein [29], respectively. Both these proteins are
similar to the CsbD protein, which is thought to be a
stress response protein and may contribute to the viru-
lence of GBS [30]. It was reported that the difference be-
tween m/z 6893 and m/z 6250 is seven amino acids [17].
The peak at m/z 6893 found for most GBS serotype III
may be the result of the m/z 6250 serotype modified
though the infection process of prophage Lambda SA03
[17]. In conclusion, the specific patterns of peak pairs
not only provide keys for rapid classification, they also
reveal many hints which may be related to the virulence
or evolution of pathogens.

Web tool implementation

To enhance application of the ML models to clinical
practice, we constructed a web tool named GBSTyper.
The specific functions of the website are to provide: 1)
descriptive statistics and visualization of the input data;
2) informative combinations of features for different
GBS serotypes; and 3) prediction of GBS serotype using
multiple ML predictive models. Academic researchers
and clinical practitioners can use the web tool to enhance
either their studies or rapid strain typing in the investi-
gation of an outbreak. Figure 4 illustrates the web tool.

Conclusion

This study described a tool for rapid classification of
GBS serotypes based on MALDI-TOF MS spectra. The
binning method and PCC were used for processing the
MALDI-TOF MS spectra data. Informative peaks, and
peak pairs were found through this approach. These es-
sential peaks and specific relationship of peaks (i.e. peak
pairs) may provide hints for further investigation. For
clinical practice, the predictive ML models of serotypes
were constructed and validated by an independent test-
ing dataset. GBS serotypes could be rapidly predicted by
the models at a low cost. Moreover, a web-based tool
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Fig. 3 Example of a way to find the main peak. Following Fig. 2, we took the bin size 5 Da (from m/z 2010 to m/z 2014.999) for an example
.
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Fig. 4 Example of peak pair. When the p-value was less than or equal to 0.05, this peak pair was statistically significant

was built to enhance the application of the results
(http://csb.cse.yzu.edu.tw/GBSTyper/).

Methods

The study can be divided into three parts: data collec-
tion, data analysis, and prediction analysis. Data collec-
tion: training data set samples were obtained from the
bacterial bank in one teaching hospital in northern
Taiwan. Independent testing data set samples were ob-
tained from the bacterial bank of the other two teaching
hospitals in middle and southern Taiwan. MALDI-TOF
MS was used to obtain the mass spectra, and the sam-
ples were typed by geno-serotyping. Data analysis: we
used the binning method to extract features from the
original mass spectra. Feature selection was conducted
by two different feature selection algorithms to identify
the important features of each serotype. Prediction ana-
lysis: We designed predictive models using the selected
features of each serotype by two ML algorithms. The
models were tested and evaluated by five-fold cross-
validation. Finally, we used the independent testing data
set for external validation of the models. The overall
study flow is presented in Fig. 5.

MALDI-TOF MS experiments

All the GBS isolates used in this study were collected as
part of routine procedures in the clinical microbiology
laboratories of the tertiary centers. Patient identities
were removed before storage in bacterial banks. All the
isolates were stored in bacterial banks until being used

for further analyses. Only characteristics of GBS were re-
corded, informed consent or ethical approval was not
necessary for the study [31]. The isolates were stored at
—70°C until use. The fresh GBS colonies that grew on
BBL™ Trypticase™ Soy Agar with 5% Sheep Blood (TSA
II) (Becton Dickinson, MD, USA) for 24 h were picked
and smeared onto a MALDI target plate in thin films. A
1ul aliquot of the a-cyano-4-hydroxycinnamic acid
(CHCA) matrix solution [saturated, 50% acetonitrile
(CAN)/ 2.5% trifluoroacetic acid (TFA)] was overlaid on
the sample spot of the MALDI-target plate. The sample-
matrix was dried at room temperature before analyzing
by mass spectrometry to obtain the data. The mass spec-
tra were acquired in the mass range of 2000 to 20,000
m/z in linear mode by MALDI-TOF (Bruker Daltonik
GmbH, Leipzig, Germany). The 240 laser shots of each
sample were collected and companied with test standard
(BTS) (part no. 255343, Bruker Daltonik GmbH, Leipzig,
Germany) as calibration and control with a linear posi-
tive model to analyze each time. The results of the mass
spectrum were aligned to the database and the scores
were calculated using MALDI Biotyper 3.1 software
(Bruker Daltonik GmbH, Bremen, Germany). Scores of
more than 2 underwent peak signal analysis.

Prior to a further analysis of peak values, the MS raw
data should be transformed into a Microsoft excel file by
the embedded function of FlexAnalysis 3.3 (Bruker Dal-
tonik GmbH, Bremen, Germany). In this work, the ori-
ginal MS signals were smoothed by Savitzky-Golay
algorithm and their baselines were subtracted by the top
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are counted. The red words in the table are the numbers of

hat method. Meanwhile, some thresholds that were
adopted to extract reasonable peaks were set as follows:
signal-to-noise ratio was two, relative intensity and mini-
mum intensity were both zeros, the maximal number of
peaks was 200, peak width was six, and the height was
80%. After performing FlexAnalysis 3.3 along with the spe-
cified parameters, the Microsoft excel file, including two
columns of ions m/z and intensity values, was obtained.

Preparation of training and independent testing datasets
A total of 325 GBS training mass spectra data sets were
collected by Linkou Chang Gung Memorial Hospital, of
which 225 were isolated from blood of newborns (n =
127) and non-pregnant adults (n=98) from 2003 to
2014. The other 100 GBS isolates were obtained from
vaginal specimens of pregnant women (35-37 weeks)
from 2016. The total number of complete data sets
included in this study is given in Table 6.

In addition, a total of 462 GBS mass spectra were used
as the independent testing data set. Among them, 104
data sets were obtained from 98 patients from June 2007
to October 2010. Ninety-five invasive strains were iso-
lated from blood of children (n =11) and non-pregnant
adults (n=78) and 9 colonizing strains from the vagina
of pregnant women at China Medical University Hos-
pital in central Taiwan. The remaining 358 data sets
were obtained by Linkou Chang Gung Memorial

Hospital. The number of complete data set included in
this study is given in Table 6.

Single colonies recovered from BBL™ Trypticase™ Soy
Agar with 5% Sheep Blood (TSA II) were used for geno-
serotyping. Briefly, total bacterial DNA was purified and a
set of multiplex PCR was conducted. The PCR products
were analyzed by electrophoresis and the characteristic
bands pattern on the electrophoresis gel would designate
specific serotype for the bacterial isolate. We followed the
methods described in previous works [32, 33].

For the data sets of certain serotypes (e.g. serotype II
and VII) that were relatively small, predictive models
were not constructed. To construct models for classify-
ing the five different serotypes of GBS, the one-against-
all strategy, constructing five binary models for the five
serotypes, was adopted in this study. For constructing
predictive models for serotypes Ia, Ib, V, and VI, the
oversampling method was used to increase the number
of the minor class to address the imbalance issue for
these serotypes. Oversampling minority class samples three
times was adopted for preparing training datasets of sero-
type Ia, Ib, and V; for training datasets of serotype VI, the
minority class samples were oversampled twice (Table 4).

Feature extraction
The binning method (or bucketing method) was used for
constructing the templates of the serotypes in this study.
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A peak shift or drift in MALDI-TOF MS spectra has been
observed in several studies [21, 34], which means a
specific peptide may not always appear at the same mass-
to-charge (m/z) values of a MS spectrum. A method of
building a serotype-specific template is useful for extract-
ing and defining certain combinations of features from
MALDI-TOF MS spectra [21]. A well-defined combin-
ation of features (i.e. a template) is crucial for operating
techniques of ML. The binning method is one of the most
commonly used preprocess techniques in MS data ana-
lysis. The main goal of the method is to preserve the infor-
mation of the raw data, while reducing the dimensions to
facilitate subsequent processing and mining phases [35].
Figure 6 shows three mass spectra as an example at the
upper part, ranging from m/z 2000 to m/z 2030. At the
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lower part, all mass spectra were divided by ten different
sizes of bins (from 1 Da to 10 Da) to evaluate the optimal
value of bin size. If there are blue squares in the bins, it
means that there is at least one peak in the range of the
bin. Adjacent peaks would be coalesced into a single bin.
Features extraction (peaks finding) could be accomplished
using this method. Moreover, the representative m/z value
of a bin was determined for defining a single feature of the
template. An example is illustrated in Fig. 7. We took a
bin from Fig. 6, and its size is 5 Da ranging from m/z 2010
to m/z 2014.999. All peaks in the range of each data are
recorded in the table. If it is 0, it means there is no peak.
In this study, only the information of peak presence, or
absence, was employed while the peak intensity informa-
tion was omitted [21].

el

100
. I
M 1l .01,
100
=
= 2 I
‘=
ER 11,
= 100
50
o I ||||
BaSze S5O SSgZ285SBZSZO
PR SEESES88E888888 8

Data2
Data3
 l I " ]
1 v O ~ oo (=3 S == o m T =l - oo (= O =
————— — e — o™ o ™~ o [ e} o™ o™ o o m
= [ ] | S e = [ = 25 = | s o [ o T, = = [ = TR = | [ ]
o [ I o | (o BN o ] o™ N 9 N €N [ F o | o™ e TN [ I o |

Peak (m'z)
- e

¥ At least one peak from any data is in the range of the bin.
Fig. 6 Data distribution of training data set by unsupervised hierarchical cluster analysis (UHCA) with bin size 1 Da
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In the same bin (bin size = 5 Da)
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e
2012.946
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2012.457 2013.221 0

=(2010.654 +2011.666 + 2012.946 +2010.457 + 2011.732+ 2012.933 +2010.145 +

Fig. 7 Data distribution of training data set by UHCA with features selected from the five models

Pairwise peaks analysis

After features were extracted from 2kDa to 20kDa by
the binning method, the top ten features in the ranking
list of the Pearson correlation coefficient (PCC) were
used. The ten peaks were randomly paired. That is, each
peak pair contains two peaks, and a total of seventy-two
combinations. There were four possible relationships for
each pairwise peaks (both peaks present, both peaks ab-
sent, and only one peak present). Chi-square was used
to evaluate the relationship between the peak pairs and
each serotype. When the p-value was less than or equal
to 0.05, the peak pair was considered a statistically sig-
nificant characteristic for the serotype. Figure 8 shows
an example of a peak pair. Assume that Peak 1 and Peak
2 are two of the top ten features of the data set ranked
by PCC. The table in the figure is the amount of data
that counts the four relationships of the peak pair.

Feature selection methods

We used two different algorithms, One Rule (OneR) Fea-
ture Evaluation and PCC, to pick out meaningful features
for GBS typing. Both algorithms can be used to assess the
importance of the features. All the features were scored
and sorted according to the OneR or PCC algorithm, and
forward selection was used for evaluation of the perform-
ance of a specific combination of features. The perform-
ance evaluation was conducted in WEKA, by five-fold
cross-validation. WEKA was used as the main analyzing
tool in this study [36]. It is a software for data exploration
written in Java, developed at the University of Waikato,
New Zealand. It is a set of software that provided various
tools for data mining and machine learning, including
data pre-processing tools, classification tools, etc., can
also be presented in visual form.

OneR is a rule-based strategy to evaluate the classify-
ing ability for each attribute. In this investigation, each
attribute was regarded as a single rule for classifying be-
tween, for instance, type III samples and non-type III
samples. OneR was learned as a one-level decision tree
to generates a set of rules that test one particular attri-
bute [37]. There were mainly three steps contained in
the OneR investigation of each attribute:

1. Two branches for the attribute’s values (1 and 0)

2. Each branch will be assigned a class label (ex. Type
I or non-type Ill) with highest frequency

3. Calculation of error rate for each branch: proportion
of samples that don’t belong to the assigned class of
their corresponding branch

After the calculation of error rate against all attributes, all
of them were ranked according to the error rate in ascend-
ing order. The attribute containing lowest error rate repre-
sents a best classifying ability. Figure 9 shows an example
that there are two different and independent features:
peakl, and peak2 would affect the result (type III & non-
type III). All features were analyzed by this feature selection
method. For each feature, there are two conditions: 1 (pres-
ence) or 0 (absence). The rule for peakl is decided based
on the relationship between presence/absence of peakl and
the serotypes. As demonstrated in Fig. 9, presence of peakl
is highly related to non-type III serotypes; in contrast, ab-
sence of peakl is highly correlated to type III serotype. The
importance of the features would be ranked according
to the performance following the rules.

PCC is a metric used to detect the linear dependence
(correlation) between two variables X and Y by generating
a value between — 1 and + 1:
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Fig. 8 Data distribution of discriminative peak pairs for each serotype. The peaks were selected and ranked by PCC. a Type I, (b) Type Ib, (c)
Type Ill, (d) Type V, and (e) Type VI. The distribution of data for each pair of the training data set in each model is shown. The term ‘none’ in the
legend indicates that both peaks are absent. The terms ‘peakl’ and ‘peak2’ represented that only the peak above VS appeared or the lower peak
appeared. The term 'both’ represented the simultaneous appearance of two peaks. Overall, there was a significant difference of each pair based
on different combinations in the positive and negative data set
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Fig. 9 Prediction page of the GBS Website
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cov(X,Y)
X,Y)= =
pXTY) =——

E[(X=px) (Y -pty)]
Ox0y

in which cov(X,Y) is the covariance between X and Y,
and o,/0, is the standard deviation of X/Y. For instance,
the type III samples are labeled as + 1 while those non-
type III samples are labeled as - 1. To calculate the PCC
value for a given attribute (peak), the samples with/with-
out this attribute shall be labeled as 1/0. In the investiga-
tion of correlation between a given attribute and the
sample distribution, a higher PCC value indicates that
the evaluated attribute has a higher correlation to the
distribution of positive and negative samples.

Unsupervised hierarchical cluster analysis (UHCA)

In this study, UHCA was carried out using the Euclidean
distances obtained between mass spectra. For UHCA,
several of the most relevant peaks taken from the mass
range of m/z 2000-20,000 were used. The average
linkage was employed as the clustering method [38].
UHCA was performed with R software.

Support vector machine

This study was involved in the one-against-all multi-
class classification among five GBS serotypes. For
instance, the type III samples (positive training data) and
non-type III samples (negative training data) were
labeled with + 1 and - 1, respectively. The training data-
set is X = {x’, ¢'} where ¢’ = + 1 if x* € positive dataset and
c!=-1 if ' € negative dataset. This work wants to
identify w and wq such that

wixt + wp= + 1forc® = +1andw?x’ + wy<-1forc
-1

which can be rewritten as
¢ (wha' +wo)> +1.

This problem could be induced to find out an optimal
separating hyperplane that can maximize the margin
between two classes [39]. The distance of x to the
discriminating hyperplane is

| wlal + wy |
lwll

and we would like the distance to be higher than a
specific value A:

c(wlal + wp)

>h,Vtandc'e{+1,-1}.
llwll { }

The support vector machine (SVM) was an advanced
algorithm used to identify a hyperplane between two
classes with maximum margin based on n-dimensional
vector space [39]. With an attempt to maximize #,
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however, an unlimited number of possible values
could be elucidated by tuning w. Hence, the Allwll was
defined as one and try to minimize [lwll by using following
solution [40]:

1
min ||wl|* subject toc' (W' x' + wp) 2 + 1,V¢

In this work, SVM could be adopted to determine a
hyperplane for discriminating between positive and
negative instances with maximal margin in a vector
space containing n dimensions (size of attribute set).
The mass-to-charge ratio values of spectra were repre-
sented as a numeric vector in an n-dimensional vector
space, which are the input values for SVM. A famous
SVM public resource, called LIBSVM [41], was down-
loaded and installed in our computing server for an
iterative training of multiple SVMs in accordance with
various feature sets. In the machine learning problem, it
has been demonstrated that if the best discriminant is
nonlinear, instead of enabling a nonlinear modeling, we
could map all n-dimensional vectors to new vector space
with higher dimension m, where m > n, based on using
nonlinear kernel functions. As demonstrated in previous
methods [42-45], the radial basis function (RBF) was
typically chosen as the specified kernel function on
learning of SVM models. The RBF function was given as
follows:

¢ ”xt_x”z
K(x',x) = expq -

2s2

where x° is the center and s is the radius, which should
be provided by programmer. When using LIBSVM, cost
(¢) and gamma (r) are two supporting parameters used
to optimize the radius of kernel function and softness of
hyperplane, respectively. To achieve the feasible values
of gamma (r) and cost (c) in model learning, an
optimization program, written in Python, was provided
by LIBSVM.

Random forest

Random forest (RF) is a sort of ensemble model that in-
volves the aggregation of multiple decision tree classi-
fiers. Based on the integration of multiple decision trees
within a RF model, each tree was generated from a sub-
set of k attributes randomly selecting from training data-
set with a total of m attributes, where k is less than m.
In this way, we can obtain multiple decision-making
results. Typically, the majority voting method is adopted
to integrate the results to make a final decision, based
on the class label with the most votes. The performance
of a RF decision-making system is associated with the
dimension of random vector, which is the number of
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attributes (k) used in each decision tree. The value of k
is typically defined as

k= log,m+1

where m is the total number of attributes in training
dataset [46]. In this study, a package of random forest,
which has been integrated into Weka toolkit [47], was
utilized to construct RF classifiers based on various attri-
bute sets.

Five-fold cross validation and performance evaluation
Model training was built based on the input training
data set, and two ML algorithms (i.e., SVM and RF) were
used to generate the predictive models. Cross-validation
was used to access both the variability of a data set and
the reliability of any model trained using that data [48].
Cross-validation randomly splits the training data set
into a number of partitions or folds. The module begins
with setting aside the data in one part of folds for
validation, and uses the remaining folds to train a model.
To choose the best final model of each serotype, five-
fold cross-validation was carried out for each of the
different feature combinations to evaluate the predictive
performances. The training data set was divided into five
approximately equal sized subgroups. The ratio of the
testing set and training set was 1:4 and the cross-
validation process was repeated five times. The five
validation results were combined to generate a single
estimation.

To improve the reliability of performance, we used in-
dependent testing data set to test the optimal models
with the best performance in cross-validation evaluation.
The following measures were used for evaluating the
performance of the predictive models, including sensitiv-
ity (Sn), specificity (Sp), accuracy (Acc), and Matthews
correlation coefficient (MCC):

TP
§ = 2
Sn = Tp T EN (2)

N
Sp = TN + FP (3)
TP + TN
Acc = 4
T TPIIN+EP+IN (4)
Mce - (TP+TN)-(EN+EP)

/(TP + EN)x(TN + EP)«(TP + EP)*(IN + EN)

(5)

where TP, TN, FP, and FN represented the number of
true positives, true negatives, false positives, and false
negatives, respectively.
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