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Abstract

Background: In recent years, biomedical ontologies have become important for describing existing biological
knowledge in the form of knowledge graphs. Data mining approaches that work with knowledge graphs have been
proposed, but they are based on vector representations that do not capture the full underlying semantics. An
alternative is to use machine learning approaches that explore semantic similarity. However, since ontologies can
model multiple perspectives, semantic similarity computations for a given learning task need to be fine-tuned to
account for this. Obtaining the best combination of semantic similarity aspects for each learning task is not trivial and
typically depends on expert knowledge.

Results: We have developed a novel approach, evoKGsim, that applies Genetic Programming over a set of semantic
similarity features, each based on a semantic aspect of the data, to obtain the best combination for a given supervised
learning task. The approach was evaluated on several benchmark datasets for protein-protein interaction prediction
using the Gene Ontology as the knowledge graph to support semantic similarity, and it outperformed competing
strategies, includingmanually selected combinations of semantic aspects emulating expert knowledge. evoKGsimwas
also able to learn species-agnostic models with different combinations of species for training and testing, effectively
addressing the limitations of predicting protein-protein interactions for species with fewer known interactions.

Conclusions: evoKGsim can overcome one of the limitations in knowledge graph-based semantic similarity
applications: the need to expertly select which aspects should be taken into account for a given application. Applying
this methodology to protein-protein interaction prediction proved successful, paving the way to broader applications.

Keywords: Knowledge graph, Ontology, Semantic similarity, Machine learning, Genetic programming, Gene
ontology, Protein-protein interaction prediction

Background
Knowledge discovery in complex domains can be a chal-
lenge for data mining methods, which are typically limited
to agnostic views of the data, without being able to gain
access to its context and meaning. It is widely recognized
that the performance of dataminingmethods can improve
significantly when additional relations among the data
objects are taken into account, a strategy employed in rela-
tional data mining and Inductive Logic Programming [1].
In the last decade, the explosion in complexity

and heterogeneity of biomedical data has motivated
a new panorama of semantic data, where millions of
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semantically-described biological entities are available in
knowledge graphs (KGs), through links between ontolo-
gies and data [2]. In computer science, an ontology is a
formal and explicit specification of a conceptualization in
which each term (or concept) is precisely defined and the
relationships between terms are parameterized or con-
strained [3]. Ontologies can be used to represent entities
(or instances) in a KG. KGs describe real world entities
and their interrelations, through links to ontology con-
cepts describing them, organized in a graph [4]. Gene
Ontology (GO) [5] is a very successful biomedical ontol-
ogy that describes protein function. GO and its associated
annotations that link proteins to GO terms make up a
KG. Figure 1 shows a small example graph of that KG.
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Fig. 1 A subgraph of the GO KG illustrating the relationships between proteins. The red nodes are the biological entities (proteins) and the black
nodes are the ontology concepts (GO terms)

Semantic representations of data entities based on KGs
that can be explored by data mining approaches provide
a unique opportunity to enhance knowledge discovery
processes.
In recent years, some approaches combining methods

from data mining and knowledge discovery with KGs have
been proposed [6]. One of the biggest challenges faced
by these approaches is how to transform data coming
from KGs into a suitable representation that can be pro-
cessed by data mining algorithms. Most of the existing
approaches build a propositional feature vector represen-
tation of the data (i.e., each instance is represented as a
vector of features), which allows the subsequent applica-
tion of most existent data mining algorithms.
The tools FeGeLOD [7] and RapidMiner [8] generate

data mining features based on the exploration of spe-
cific or generic relations in the graph. Vries et al. [9]
use RDF (resource description framework) graph kernels
based on intersection graphs and intersection trees to cal-
culate the instances’ feature vectors. More recently, a set
of approaches have been developed that can characterize
KGs through “embeddings”. In graph embeddings [6], the
KG is transformed into sequences of entities, which can
be considered as corpus’ sentences. Then, based on the
corpus, vector representations are generated using neu-
ral language models. Ristoski et al. [10] propose RDF2Vec
that uses language modeling approaches for unsupervised
feature extraction from sequences of words and adapts
them to RDF graphs.

Machine learning approaches that use vectors of fea-
tures extracted from KGs have also been applied in
biomedicine and life science domains. In [11], supervised
classifiers predict protein-protein interactions (PPIs)
using a set of features to represent a protein pair. In this
approach, a protein pair is treated as a bag of words,
where the GO terms annotating (i.e., describing) the two
proteins represent the words. The feature value of each
word is calculated using the concept of information con-
tent. Smaili et al. [12] propose Onto2Vec that also uses
language modeling approaches to generate vector repre-
sentations of biological entities in ontologies by combin-
ing formal ontology axioms and annotation axioms from
the ontology. Onto2Vec is then applied to PPI predic-
tion on different datasets and the identification of protein
families. Maetschke et al. [13] use GO-driven algorithms
with inducers for protein interaction inference, combining
machine learning and KG techniques.
However, the approaches based on vector representa-

tions may fail to capture the full underlying semantics.
For instance, graph embeddings and graph kernels mostly
explore the local structure of KGs. An alternative strat-
egy, and since measuring similarity is fundamental to
many machine learning algorithms, is to use the KGs to
measure the semantic similarity (SS) [14] between enti-
ties in the graph. SS is the computation of the similarity
between entities based on their meaning as described in
an ontology. For instance, if two biological entities are
annotated within the same ontology, we can compare
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them by comparing the terms with which they are
annotated [14].
There are many bioinformatics applications that bene-

fit from using semantic similarity measures (SSMs) over
biomedical KGs to compare proteins based on what they
do, rather than using sequence similarity, namely: PPI
prediction [13, 15–20], prediction of disease-associated
genes [15, 21–25], validation of function prediction [26],
network prediction [27], prediction of cellular localiza-
tion [28], and automatic annotation validation [29]. Jain
and Bader [17] propose an improved algorithm that uses
the SS between GO terms annotated to proteins to dis-
tinguish true from false protein interactions. Liu et al.
[15] propose a method that incorporates enrichment of
GO terms by a gene pair in computing the SS, and
apply that method to prediction of sequence homolo-
gies, PPIs, and disease-associated genes. Other ontologies
have also been used, including the Human Phenotype
Ontology [30]. Here, Khöler et al. use SS over phenotypes
to diagnose genetic diseases [31], and Hoendorf et al.
employ phenotype SS similarity to discover disease related
genes [32].
However, a challenge remains. Ontologies aim at mod-

eling a given domain, but within a single domain there
can be multiple perspectives, and the SS can be com-
puted taking different aspects into consideration. Let’s
take as an example the GO: it describes protein function
according to three different perspectives or aspects: bio-
logical process, cellular component and molecular func-
tion. Therefore, we can compute the SS between two
proteins in terms of their annotations within a single
aspect, or combining multiple aspects. Different learn-
ing tasks may need different perspectives of the KG, and
selecting the best aspects or combination of aspects to
support a given learning task is not trivial. Usually, the
selection of the combination of SS aspects is based on
a researchers’ intuition and experience. For instance, if
the learning task is the prediction of interaction between
proteins, it is expected that similarity in biological pro-
cess or cellular component are stronger indicators for
protein interaction than similarity in molecular func-
tion. Therefore, a combination in which biological pro-
cess and cellular component aspects have more weight
will probably be the choice of researchers. Both Jain and
Bader [17] and Maetschke et al. [13] have found this to
be true.
However, not all tasks have such a clear choice of com-

bination. For instance, if the learning task is the prediction
of disease-associated genes, how to combine molecular
function with the remaining two aspects is not straightfor-
ward. Automating the selection of the best combination of
KG aspects to support specific tasks would simplify and
generalize the application of these techniques, rendering
it more independent of expert knowledge.

In this work, we propose a novel methodology,
evoKGsim, that uses Genetic Programming (GP) [33] over
a set of semantic similarities, each computed over a dif-
ferent semantic aspect of the underlying data, to arrive
at the best combination between the different aspects to
support different supervised learning tasks. GP is cho-
sen for its ability to search large solution spaces by means
of evolving a population of free-form readable models
through crossover and mutation. Unlike most search and
optimization methods, which try to optimize the values
of variables, GP tries to optimize a combination of vari-
ables and operators/functions, which is suitable for find-
ing the best combinations of semantic similarity scores.
This methodology is applied to PPI prediction and eval-
uated in benchmark datasets. We focus on this problem
since the relationships between the different semantic
aspects and potential classification performance are well
established.

Results
A key aspect of our evaluation approach is to compare
evoKGsim, that is able to evolve a combination of seman-
tic aspects, to static combinations established a priori.
This allows us to compare our methodology to a scenario
where semantic aspects are selected and combined by
experts before the prediction task.We have used five static
combinations as baselines: the biological process (BP),
molecular function (MF), and cellular component (CC)
single aspects, and the average (Avg) andmaximum (Max)
of the single aspect scores. Furthermore, we also com-
pare evoKGsim to combinations selected by an exhaustive
search method and decision tree models.
To establish the performance of the static baselines, the

prediction of PPI is formulated as a classification prob-
lem where a SS score for a protein pair exceeding a certain
threshold (SS cutoff ) indicates a positive interaction. The
SS threshold is chosen after evaluating the weighted aver-
age of F-measures (WAF) at different threshold intervals
and selecting the maximum. This emulates the best choice
that a human expert could theoretically select.
Regarding exhaustive search combinations, we per-

formed a grid search approach over the weights of each
semantic aspect as well as the threshold for classification,
where weights were used in a linear combination.
To provide a comparison of our methodology results

against the results of another classification method not
based on evolutionary algorithms, we employed decision
trees using the SS of the three semantic aspects as input
features.
By comparing the performance of these alternative

approaches to the performance of evoKGsim, we aim
at investigating the ability of GP to learn combinations
of semantic aspects that are able to support improved
classification performance.
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Static combinations
Prior to performing the comparative evaluation, we inves-
tigated the behavior of the different SS approaches
employed, coupled with the different baselines.
Figures 2 and 3 show the WAF of classification at

different cutoffs with three SSMs for the DIP-HS and
STRING-EC PPI datasets, respectively.While Fig. 2 is rep-
resentative of the behavior found for the other datasets,
Fig. 3 shows a different behavior, where the F-measure is
less penalized at higher cutoffs, particularly for the Max
and CC results. The proteins in this dataset have fewer BP
annotations, whichmay help explain the improved perfor-
mance of CC. Additional file 1 shows the results for the
remaining datasets.

Comparing the charts for different SSMs, we observe
that, for each set of curves, the maximum F-measure is
achieved at different ranges of SS cutoff. For SimGIC
(Fig. 2a), ResnikMax (Fig. 2b) and ResnikBMA (Fig. 2c) the
ranges are approximately [ 0.1 − 0.3], [ 0.6 − 0.8] and
[ 0.3 − 0.5], respectively. For most datasets, each SSM
shows a consistent behavior with curves having simi-
lar shapes. Furthermore, we verify that the maximum
observed F-measure is achieved when ResnikMax is used.
Static combinations were evaluated using stratified 10-

fold cross-validation. The training set is used to select the
best classification threshold which is then applied to the
test set. Table 1 presents the median WAF achieved in
each baseline.

Fig. 2WAF Curves for DIP-HS PPI dataset. WAF evaluations with static combinations of semantic aspects (CC, BP, MF, Avg and Max) at different
cutoffs are shown. The evaluation is performed using three SSMs: a SimGIC, b ResnikMax and c ResnikBMA
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Fig. 3WAF Curves for STRING-EC PPI dataset. WAF evaluations with static combinations of semantic aspects (CC, BP, MF, Avg and Max) at different
cutoffs are shown. The evaluation is performed using three SSMs: a SimGIC, b ResnikMax and c ResnikBMA

Exhaustive search combinations and decision tree models
The exhaustive search method is based on a grid search
over a set of possible values for the SS threshold (values in
the range from 0 to 1 with a step of 0.05) and a set of pos-
sible values for SS score weights (values in the range from
0 to 1 with a step of 0.1), using the WAF of classification
on training set as the optimization criterion. The compo-
nents of the candidate solutions are then a SS threshold
and three weights used to calculate the weighted average
of the three SS scores. The number of potential solutions
was established to be roughly equal to the number of
candidate solutions evaluated by GP.
The decision tree models were obtained using the Deci-

sion Tree package of scikit-learn 0.20.2 [34] with default
parameters.

Exhaustive search combinations and decision tree mod-
els were evaluated using 10-fold cross-validation. The
median WAF for all datasets is presented in Table 1.

Comparative evaluation
Table 1 shows the median WAF of stratified 10-fold
cross-validation for the static combinations, the exhaus-
tive search combinations, the decision tree models and
evoKGsim, using different SSMs.
The statistical significance of the experimental results

was determined using pairwise non-parametric Kruskal-
Wallis tests [35] at p < 0.01. All statistical analyses
were performed using the Python library SciPy 1.3.1 [36].
Table S3 of Additional file 1 shows the p-values for the
Kruskal-Wallis test for comparisons between evoKGsim
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Table 1 Median of WAFs with alternative methodologies and with evoKGsim for the different PPI datasets

Dataset SSM Single and static combinations Exhaustive search Decision evoKGsim

(#interactions) BP CC MF Avg Max Combinations Trees

STRING-EC SimGIC 0.648 0.822 0.670 0.825 0.814 0.825 0.804 0.826

(2245) ResnikMax 0.670 0.819 0.641 0.806 0.826 0.817 0.884 0.864

ResnikBMA 0.661 0.828 0.642 0.831 0.848 0.832 0.837 0.849

STRING-DM SimGIC 0.891 0.880 0.791 0.890 0.891 0.927 0.855 0.936

(550) ResnikMax 0.910 0.899 0.799 0.927 0.927 0.936 0.917 0.937

ResnikBMA 0.928 0.871 0.794 0.936 0.918 0.963 0.927 0.945

BIND-SC SimGIC 0.849 0.831 0.715 0.854 0.840 0.868 0.830 0.876

(1366) ResnikMax 0.883 0.845 0.775 0.904 0.908 0.923 0.890 0.923

ResnikBMA 0.864 0.842 0.754 0.901 0.868 0.908 0.872 0.901

DIP/MIPS-SC SimGIC 0.811 0.776 0.690 0.803 0.779 0.818 0.754 0.825

(13807) ResnikMax 0.845 0.798 0.703 0.835 0.838 0.854 0.840 0.849

ResnikBMA 0.820 0.788 0.698 0.835 0.822 0.842 0.780 0.843

STRING-SC SimGIC 0.802 0.764 0.684 0.804 0.780 0.814 0.766 0.817

(30384) ResnikMax 0.825 0.788 0.682 0.834 0.826 0.839 0.843 0.843

ResnikBMA 0.818 0.784 0.678 0.837 0.817 0.837 0.793 0.838

DIP-HS SimGIC 0.840 0.746 0.698 0.823 0.768 0.857 0.799 0.861

(2739) ResnikMax 0.892 0.829 0.770 0.885 0.867 0.914 0.894 0.894

ResnikBMA 0.874 0.773 0.754 0.876 0.811 0.872 0.867 0.881

STRING-HS SimGIC 0.824 0.769 0.700 0.813 0.786 0.823 0.774 0.830

(6912) ResnikMax 0.848 0.763 0.723 0.850 0.811 0.868 0.850 0.867

ResnikBMA 0.851 0.792 0.725 0.861 0.815 0.870 0.816 0.876

GRID/HPRD-unbal-HS SimGIC 0.686 0.652 0.621 0.685 0.664 0.701 0.621 0.694

(31320) ResnikMax 0.718 0.674 0.655 0.729 0.702 0.734 0.703 0.734

ResnikBMA 0.717 0.678 0.646 0.737 0.697 0.742 0.662 0.742

GRID/HPRD-bal-HS SimGIC 0.647 0.630 0.618 0.672 0.647 0.674 0.590 0.673

(31349) ResnikMax 0.656 0.602 0.590 0.648 0.636 0.664 0.636 0.654

ResnikBMA 0.652 0.640 0.597 0.673 0.659 0.674 0.604 0.677

In bold, the best result for each dataset-SSM pair. The median WAF achieved for each baseline is underlined when evoKGsim significantly outperforms the baseline (using
α = 0.01)

and all the other alternative methodologies over the
nine PPI datasets. In Table 1, for each dataset-SSM pair,
the median WAF achieved for each alternative method-
ology is underlined when the performance differences
between evoKGsim and that methodology are statistically
significant.

evoKGsim for intra-species prediction
The previous results suggest that having fewer instances
can hinder the ability of GP to learn a suitable com-
bination of aspects. Therefore, and since two of the
species have several datasets, we tested evoKGsim using
combined sets for each of these species. This allows us

to investigate whether a species-oriented model based
on more instances can improve on the performance
of individual datasets. The human combined set con-
tains the data from 4 datasets (STRING-HS, DIP-HS,
GRID/HPRD-bal-HS, GRID/HPRD-unbal-HS), with a
total of 54219 protein pairs. The yeast combined set con-
tains the data from three datasets (STRING-SC, BIND-
SC, and DIP/MIPS-SC), with a total of 42330 protein
pairs. Some pairs of proteins appear in more than one
dataset so, in these combined sets, the repeated pairs are
first removed from the combined sets and only then ran-
domly split into training and test sets. Figure 4 shows the
WAF boxplot for the three yeast datasets, the four human
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Fig. 4WAF Boxplot using combined sets. The yellow boxes represent the WAF of predictions for human data and the green boxes represent the
WAF of predictions for yeast data. Within the same species, the datasets appear on the x-axis in ascending order of size. The median of the WAF
values is indicated by the bar within a box

datasets, the yeast combined set and the human com-
bined set. Each box includes theWAFs obtained in 10-fold
cross-validation.
Using the boxplots to compare the prediction perfor-

mance, we conclude that, for both species, the perfor-
mance using the combined set is similar to the perfor-
mance of the larger datasets included in that combined
set. This may be explained by the influence of the large
proportion of instances coming from the larger datasets,
such as GRID/HPRD-unbal-HS and GRID/HPRD-bal-HS
for human and STRING-SC for yeast, although for human
this influence is less pronounced.
We were also interested in investigating, within a

species, the performance of training in a given group of
datasets and testing on a different one. Once again, to
solve the problem of repeated pairs, we determine that
if a protein pair is simultaneously in the training set and
in the test set, it will be removed from one of them.
Tables 2 and 3 present the different tests we conducted,
indicating for each test which datasets are in the train-
ing set and which are in the test set for human and yeast
data, respectively. This strategy does not support stratified

cross-validation so results are based on 10 independent
runs.
The results for human and yeast are summarized in

Figs. 5 and 6, respectively. Analyzing the results for human
sets, we conclude that using a larger dataset for train-
ing can improve the performance of classification. For
instance, training with data from GRID/HPRD-bal-HS
(e.g., S+Gb_D+Gub), the larger dataset, leads to higher
test WAFs, while training with fewer data points (e.g.,
D_S+Gub+Gb) leads to lower WAF values. Relatively to
yeast sets, the same behavior is observed. For instance, in
S+D_B the experiment with the largest training set and
the smallest test set, WAF is more than 5% higher than in
the second best performing case.

evoKGsim for cross-species prediction
In the above analysis, the training and test data
come from the same species. However, training predic-
tion methods on one species’ data and testing them
on another species’ protein pairs may be useful to
explore, since GO annotation is designed to be species
independent [5].
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Table 2 Training and test sets and number of protein pairs
respectively used in each experiment

Training set No. of pairs Test set No. of pairs

S 6912 D+Gub+Gb 47307

D 2739 S+Gub+Gb 51480

Gb 31349 D+S+Gub 22870

Gub 31320 D+S+Gb 22899

S+Gb+Gub 69581 D 2115

D+Gb+Gub 65408 S 5037

S+D 9651 Gb+Gub 44929

Gb+Gub 62669 S+D 7239

S+Gb 38261 D+Gub 17746

D+Gub 34059 S+Gb 20697

S+Gub 38232 D+Gb 17771

D+Gb 34088 S+Gub 20668

The names of the datasets STRING-HS, DIP-HS, GRID/HPRD-unbal-HS, and
GRID/HPRD-bal-HS are abbreviated to “S”, “D”, “Gub” and “Gb”, respectively

To test this idea, we use evoKGsim to predict PPI but,
using one species’ data to train the model and another
species’ data to test it. Figure 7 displays the self-test WAF
boxplot (obtained using 10-fold cross-validation) and
cross-species-test WAF boxplot (obtained in 10 indepen-
dent runs) using four datasets (STRING-DM, STRING-
EC, STRING-HS, STRING-SC) of four different species.
The results reveal that evoKGsim is generally more

effective when trained and tested using data from the
same species than when trained with data from one
species and tested with data from another species. For D.
melanogaster, performances are very similar across train-
ing sets. For E. coli, performance can differ greatly, with
the human training set decreasing performance by more
than 27% when compared to E. coli.

evoKGsim for multi-species prediction
We also tested evoKGsim by training the model using
all species data except the one species that was used
for testing and performing 10 runs. Additionally, we also

Table 3 Training and test sets and number of protein pairs
respectively used in each experiment

Training set No. of pairs Test set No. of pairs

S 30384 B+D 11946

D 13807 S+B 28523

B 1366 S+D 40964

S+B 31750 D 11163

S+D 44191 B 713

B+D 15173 S 27639

The names of the datasets STRING-SC, BIND-SC, and DIP/MIPS-SC are abbreviated to
“S”, “B”, and “D”, respectively

ran a species-agnostic 10-fold cross-validation experi-
ment where the data from all datasets was combined into
a single dataset. The strategy to remove repeated pairs
used before in evolved combinations species-oriented is
applied.
In Fig. 8 we can observe some interesting effects. For D.

melanogaster and S. cerevisiae, the differences observed
between training with the other species or with the same
species are rather small: D. melanogaster multiple species
performance decreases by 0.3%, whereas for S. cerevisiae
it decreases by 3.3%. However, for E. coli and human,
the difference is more substancial, with E. coli dropping
performance by 16.6% and human by 5.9%. Interestingly,
the experiment that uses the data from all the datasets
produced a mid-range WAF value, indicating that it is
possible to produce a successful species-agnostic model.

Overview of GPmodels
Since GP produces potentially readable models, after eval-
uating the performance of evoKGsim, the models gen-
erated by GP across different datasets are analyzed. The
goal is to identify which are the operators and combina-
tions that GP uses more often, and how they compare
across datasets. The analysis of the models is conducted
using the Python library SymPy 1.3 [39] and the Python
package Graphviz 0.10.1 [40]. Table 4 summarizes, for the
10 folds performed in each dataset, the average length
(number of tree nodes) of the models and the average
relative frequency of variables BP, CC andMF in the mod-
els. These are calculated after arithmetic simplification
(using SymPy) of the best solutions returned by GP, that is
applied to remove redundant code.
As expected, variable MF appears less frequently in the

GP models. These results are in agreement with the pre-
vious results that indicated that BP and CC annotations
are stronger indicators for PPI than MF annotation. How-
ever, the frequency in which a given variable appears
in a GP model does not necessarily measure its impor-
tance for the predictions, as its effect may be stronger or
weaker depending on its surrounding context. The aver-
age length of the GP models is 64.2, with somewhat large
differences between datasets. One interesting observation
is that, when the datasets are smaller, such as STRING-
DM and BIND-SC, the average length of the GP models
tends to increase. This may be an indication that GP
is evolving highly tuned, possibly overfitted models, for
lack of sufficient data to induce smaller and more general
ones. However, in GP the complexity of a model does not
depend on its size, but on the particular features and oper-
ators used to build it, and therefore one cannot assume
that larger models overfit more than smaller ones [41].
In GP models of the species-agnostic experiment the

differences between the frequencies of the variables BP,
CC and MF are more substancial, being MF the least
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Fig. 5WAF Boxplot using human datasets to training and testing. The labels of the plots are in format ’D1+D2_D3+D4’, where D1, D2, D3, D4 are
the original datasets, D1+D2 is the training set that contains data from D1 and D2, and D3+D4 is the test set that contains data from D3 and D4. In
the labels, the names of the datasets STRING-HS, DIP-HS, GRID/HPRD-unbal-HS, and GRID/HPRD-bal-HS are abbreviated to “S”, “D”, “Gub”, and “Gb”,
respectively

frequent variable and BP, clearly, the most frequent vari-
able (last row of Table 4). Once again the results indicate
that similarities in BP and CC annotations are stronger
indicators for PPI than MF annotation, with a slight
advantage for BP.

Discussion
Comparison with static combinations
For all datasets, GP is able to learn combinations of
semantic aspects that improve the best classification per-
formance obtained by the static baselines for that dataset.
Regarding static combinations approaches, the differ-

ences between SSMs are not unexpected since SimGIC
considers multiple GO annotations for calculating SS
while Resnik approaches only consider the best-matching
term pairs. Therefore, the better performance using
ResnikMax makes sense because proteins in PPIs only need
to be in proximity in a single location or participate in
a single shared biological process, to be biologically rele-
vant for PPI prediction. As expected, the results indicate
that the predictive power of the BP and CC aspects is sim-
ilar, with a slight advantage for BP, while the predictive
power of MF is considerably lower. The dataset STRING-
EC (Fig. 3) is an exception because using only the SS
for BP ontology provides worse results comparatively to
the other combinations of single aspects. Once again, the
explanation for that can be the lack of BP annotations for

the species E. coli. The Avg combination outperforms the
Max in most cases. This is possibly due to the fact that the
Avg combination can take into consideration both the BP
and the CC aspects.
Regarding evoKGsim, improvements over the single

aspect baselines are, as expected, more pronounced for
MF (up to 26%) than for the other aspects. The improve-
ments are also clear when considering the combination
baselines (2-7% in most cases). evoKGsim significantly
outperforms theMF baseline in any dataset with any SSM.
In accordance with static combinations results, the impor-
tance of MF to predict PPI is also reduced in evoKGsim
as is evidenced by its lower frequency in the GP mod-
els. For the remaining static baselines, in all dataset-SSM
pairs, except the GRID/HPRD-bal-HS - ResnikMax pair,
the performance of evoKGsim is always slightly better
than the static baselines, but sometimes not enough to be
statistically significant.
It is important to note that the baselines were built to

emulate the scenario of a researcher choosing an opti-
mal threshold and employing two well-known strategies
for combining the single aspect scores. With GP, we have
always used the 0.5 cutoff with no further tuning, and have
used a function set that included the maximum but not
the average (which interestingly did not guarantee suc-
cess or failure when compared to these two baselines). It is
interesting to note as well, that often evoKGsim achieves
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Fig. 6WAF Boxplot using yeast datasets to training and testing. The labels of the plots are in format ’D1+D2_D3+D4’, where D1, D2, D3, D4 are the
original datasets, D1+D2 is the training set that contains data from D1 and D2, and D3+D4 is the test set that contains data from D3 and D4. In the
labels, the names of the datasets STRING-SC, BIND-SC, and DIP/MIPS-SC are abbreviated to “S”, “B”, and “D”, respectively

Fig. 7WAF Boxplot using one species to train and another species to test. ’D1_D2’ format of the labels means training with D1 and testing on D2
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Fig. 8WAF Boxplot using multispecies data in training set

its best WAF when used with ResnikMax (in five out of
nine datasets). ResnikMax is also the best overall mea-
sure for the single aspect baselines. For that reason, in the
experiments in sections dedicated to intra-, cross-, multi-
species prediction and overview of GP models, the results
are obtained using only ResnikMax as SSM.

Comparison with exhaustive search combinations
In four out of nine datasets, evoKGsim performs bet-
ter than combinations selected by exhaustive search,
and achieves the same performance in two datasets.
However, the statistical tests reveal that, in the majority
of cases, evoKGsim is not able to significantly outper-
form the exhaustive search approach. Nevertheless, when
evoKGsim has a worse performance, these differences are
never statistically significant.
It also should be taken into account that 20,000 param-

eter combinations are tested in search of the combination
of SS weights and SS threshold that maximizes the WAF
of PPI prediction. In opposition, evoKGsim is based on
a genetic algorithm that explores, in an efficient way,
the space of possible solutions to obtain the combination
of SS scores that maximizes the WAF of the classifica-
tion. To investigate differences in computational perfor-
mances, we compared the training and testing times of
exhaustive search combinations and our methodology.
To visualize these results, Fig. 9 shows the variation of

the median execution time with the size of the dataset
for each methodology (exhaustive search combinations
and evoKGsim). We observe that evoKGsim is not only
faster, but also more scalable than the exhaustive search
method. Although training and testing times depend on
the implementation, there are such large differences in
times that the differences cannot be attributed only to
implementation.

Table 4 Analysis of GP models for each dataset

Dataset BP CC MF Length

STRING-EC 0.362 0.446 0.192 66.9

STRING-DM 0.401 0.337 0.263 134.8

BIND-SC 0.327 0.397 0.277 128.9

DIP/MIPS-SC 0.479 0.359 0.162 30.9

STRING-SC 0.404 0.387 0.209 52.5

DIP-HS 0.477 0.337 0.187 61.7

STRING-HS 0.434 0.306 0.260 35.7

GRID/HPRD-unbal-HS 0.371 0.337 0.292 30.3

GRID/HPRD-bal-HS 0.452 0.289 0.259 36.5

Average 0.412 0.355 0.233 64.244

Species-agnostic 0.473 0.390 0.137 55.1
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Fig. 9 Plot of median execution time versus dataset size

Comparison with decision tree models
In eight out of nine datasets, evoKGsim is able to learn
combinations of semantic aspects that improve the best
classification performance obtained by decision trees.
These differences are statistically significant in six cases.
The only dataset where evoKGsim is unable to improve
the performance (STRING-EC) is one of the smallest
(<2500 protein pairs), which may help explain the lower
performance of our approach. For this dataset, we achieve
2.3% lower performance, but this difference is not sta-
tistically significant. Furthermore, we verified that the
obtained decision tree models are too large for human
understanding in nearly all cases, producing models with
hundreds of leaves.

Comparison of species-based aggregation of data
Our results suggest that having fewer instances can hin-
der the ability of GP to learn a suitable combination
of aspects. This motivated different strategies for aggre-
gating datasets based on species. Regarding predictions
based on different combinations of datasets within the
same species (see Figs. 10 and 11 and Table 1), we ver-
ify that prediction methods are always more effective
when trained and tested with the same dataset than when
trained with other datasets of the same species. This is
not surprising, considering how easy it is for biases to
be unintentionally included in a dataset, and how much
of these biases can be captured and used by a power-
ful method like GP, as long as they help achieve a good

Fig. 10 Overview of the evoKGsim methodology
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Fig. 11 Illustration of a directed acyclic graph representing GO terms
annotating two proteins. Red terms annotate only protein A, blue
terms annotate only protein B and white terms annotate both
proteins A and B

performance. Potential sources of bias could be a direct
result of the scientific process, where determining the
interaction of proteins is likely to target proteins that are
more abundant [42] or that participate in relevant pro-
cesses, e.g. resistance/susceptibility to disease or stress
conditions.
Regarding cross-species prediction, evoKGsim is gen-

erally more effective when trained and tested using data
from the same species. In fact, training with human data
gives consistently the worst results. This could be a result
of the human dataset being composed of proteins that
bear a lower similarity to those in other species datasets
or of differences in the annotation process.
Park [43] and Maetshke et al. [13] also evaluated the

cross-species accuracy by training a sequence-based clas-
sifier on one species data and predicting interactions for
another species. Park found that datasets typically used
for training prediction methods contain peculiar biases
that limit the general applicability of prediction methods
trained with them. In strong contrast, Maetshke et al. con-
clude that datasets linked to low self-test accuracy result
in low cross-species accuracies while datasets with high
self-test accuracy indicate datasets of good quality and,
consequently, lead to high test accuracies for all train-
ing sets. This means that, according to Maetshke et al.,
the prediction performance on the test species for dif-
ferent training species largely depends on the self-test
accuracy achieved on the test dataset and only to a lesser
degree on the training dataset. Interestingly, the results
for evoKGsim do not seem to indicate that datasets with
high self-test WAF (such as STRING-DM) lead to high
test WAF for all training sets.
Finally and considering the use of diverse training data

will likely produce more generally applicable models, we

also investigated applying a model learnt from more than
one species data to the classification of another species
data. This yielded interesting results with a successful
creation of a species-agnostic model.

Other PPI prediction methods
By using benchmark datasets, our results could be in prin-
ciple directly compared to the results obtained by other
works using the same datasets. However, our results can-
not be directly compared to the published ones, first
because we used more recent versions of the GO KG,
and second because we needed to exclude some protein
pairs of the benchmark datasets. The results obtained in
different works are also not directly comparable between
themselves. Nevertheless, the results from relevant
related work were compiled, to support a comparative
overview.
Table 5 summarizes the area under the receiver oper-

ating characteristic curve (AUC-ROC) for several predic-
tion methods and the median AUC-ROC for evoKGsim
using the best SSM.
The results in the third to sixth columns are all based on

a similar approach, whereby an interacting protein pair is
described by a vector that combines the presence/absence
of GO terms for both proteins. The ULCA (up to lowest
common ancestors) variant takes all annotations, direct
and inherited up to the lowest common ancestor. The
AA variant takes all annotations, direct and inherited.
The weighted variants (WULCA and WAA) weight the
presence of a GO term by its information content (IC).
This is not a semantic-similarity based approach, but
rather a propositional feature vector approach over the
GO KG. The third column shows the best prediction per-
formance of the ULCA with a Naïve Bayes classifier using
the BP aspect obtained by Maetschke et al. [13]. The
fourth, fifth, sixth columns present the results obtained by
cross-validation of SVM otained by Bandyopadhyay and
Mallick using all aspects [11]. The seventh column refers
to an improved algorithm proposed by [13] to compute SS
between GO terms annotated to proteins in benchmark
interaction datasets.
Bandyopadhyay and Mallick [11] is the most recent

work where the impact of the GO KG updates introduces
less bias in a comparison with our results. An impor-
tant difference between Bandyopadhyay and Mallick’s
approach and ours, is that while ours uses semantic sim-
ilarity as the features characterizing a protein pair, they
employ IC weighted vectors of the GO terms assigned
to each protein. Their approach gives the machine learn-
ing algorithm access to the annotations themselves, with
models being able to learn exactly which annotations
are better interaction predictors, while in evoKGsim the
model is only able to learn which semantic aspects are the
best predictors.
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Table 5 Summary of AUC-ROC with several PPI predicton methods, including evoKGsim methodology

Dataset evoKGsim ULCA by [13] ULCA by [11] WULCA by [11] WAA by [11] Best SSM by [17]

STRING-SC 0.89 0.83 0.92 0.95 0.95

STRING-HS 0.94 0.85 0.90 0.93 0.95

STRING-EC 0.92 0.93 0.93 0.96 0.96

STRING-DM 0.98 0.82 0.82 0.86 0.85

DIP-HS 0.97 0.92

BIND-SC 0.97 0.96 0.94

DIP/MIPS-SC 0.87 0.93 0.93

GRID/HPRD-bal-HS 0.74 0.68 0.67

GRID/HPRD-unbal-HS 0.80 0.83 0.82

The Onto2Vec method, proposed by Smaili et al. [12], is
also applied to predict PPIs in human and yeast. Although
they did not use our benchmark datasets, PPIs were col-
lected from STRING, the same database of PPIs from
STRING-SC and STRING-HS datasets. In this work,
Onto2Vec was used to learn feature vectors for proteins
combining information about their GO annotations and
the semantics of the GO terms in a single representation.
The best AUC-ROC values were 0.8869 and 0.8931 for
yeast and human datasets, respectively, and were obtained
using an artificial neural network on the Onto2Vec repre-
sentations.

Conclusions
Knowledge-graph based semantic similarity measures
have several very important biomedical applications,
ranging from the prediction of protein-protein interac-
tions, of gene product function or even of genes associated
with diseases. Using KG-based SSMs typically includes
selecting the aspects of the KG that are relevant for a given
target application, a task that needs expert knowledge.
We have developed a novel approach, evoKGsim, that is

able to learn suitable combinations of SS aspects to sup-
port supervised learning using GP. We evaluated its per-
formance in protein-protein interaction prediction using
the Gene Ontology as the KG (with its three seman-
tic aspects: molecular function, biological process and
cellular component) and a set of nine benchmark datasets.
evoKGsim is able to learn suitable combinations of

SS aspects that improve PPI prediction performance
over classical static combinations and classical classifica-
tion algorithms like decision trees. The results have also
revealed that exhaustive-like searches can provide com-
parable results to our methodology, but at the cost of
increased computational effort. To overcome the limita-
tion imposed by smaller datasets, we have also demon-
strated that a model trained on one or multiple other
species can be transferred and successfully be applied to a
different species.

There are several avenues for future work, including
the application to different supervised learning tasks,
adding more SSMs to the evaluation, and combining our
approach for semantic aspect selection with the more
recent approaches based on graph embeddings. Despite
the narrow application proposed here, evoKGsim can also
be generalized to other applications and domains, such
as disease gene discovery and prioritization using the
Human Phenotype Ontology, or link prediction over KGs.

Methods
An overview of the evoKGsim methodology is shown in
Fig. 10. In a first step, the semantic similarities corre-
sponding to each semantic aspect are computed for each
protein pair in our input data. In a second step, GP evolves
a good (hopefully the best) combination of the different
SS aspects to support PPI prediction. Finally, the quality
of the classifications obtained on the test set, using the
evolved combination, is evaluated.
The implementation of our methodology takes as input

an ontology file, a protein annotation file and a list of pro-
tein pairs. The Semantic Measures Library 0.9.1 [44] is
used to compute the SSMs using GO and GO annota-
tions. Two machine learning and GP libraries are used in
the second step: scikit-learn 0.20.2 [34] and gplearn 3.0
(https://gplearn.readthedocs.io).

Data sources
Data sources are organized in KG and benchmark
datasets, which are described in the next subsections.

Knowledge graph
The KG used in this work is composed by the GO and
GO annotations. GO [5] (dated January 2019) contains
45006 ontology terms subdivided into 4206 cellular com-
ponent terms, 29689 biological process terms, and 11111
molecular function terms. Only is-a relations are consid-
ered. GO annotations are downloaded from Gene Ontol-
ogy Annotation (GOA) database [45] (dated January 2019)

https://gplearn.readthedocs.io
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for different species. These link Uniprot identifiers for
proteins with GO terms describing them.
GO [5] is the most widely-used biological ontology. GO

defines the universe of concepts (also called “GO terms”)
associated with gene product1 functions and how these
functions are related with each other with respect to three
aspects: (i) biological process (BP), which captures the
larger process accomplished by multiple molecular activ-
ities in which the gene product is active; (ii) molecular
function (MF), biochemical (ormolecular-level) activity of
a gene product; (iii) cellular component (CC), the location
relative to cellular structures in which a gene product per-
forms a function. GO terms and their semantic relations
form a hierarchical directed acyclic graph (DAG) where
the three GO aspects are represented as root nodes of the
graph. The ancestor terms in the hierarchy subsume the
semantics of descendent terms.
A GO annotation associates a specific gene product

with a specific term in the GO, identifying some aspect of
its function. For instance, in Fig. 1 the gene product for
ACES HUMAN is annotated with the GO term amyloid
percursor protein metabolic process. A single gene product
may be annotated with several terms across all semantic
aspects of GO.

Benchmark protein-protein interaction datasets
For evaluation and comparison, we use benchmark PPI
datasets of different species. These datasets were pro-
duced by other works and have been applied by several
others in evaluating PPI approaches (see Table 6). The
positive data (interacting protein pairs) of these datasets
were collected from existing databases. The negative data
is obtained by random sampling of protein pairs, since
experimental high-quality negative data (non-interacting
protein pairs) is hardly available. Random sampling is
based on the assumption that the expected number of
negatives is several orders of magnitude higher than the
number of positives, such that the negative space is ran-
domly sampled with larger probability than the positive
space [43]. In most of the datasets, negative data is gen-
erated by randomly creating protein pairs that are not
reported to interact. In the dataset GRID/HPRD-bal-HS
a different strategy is employed to achieve balanced ran-
dom sampling. Here, the number of times each protein
appears in the negative set is equal to the number of times
it appears in the positive set, with the negative set still
being composed of protein pairs that are not known to
interact.
The species and the number of interactions for each

dataset are provided in Table 4. Given the evolving nature
of GO annotations, some benchmark proteins are no
longer found in current GOA files. Consequently, we

1proteins or RNA

Table 6 PPI benchmark datasets, with number of positive
interactions (PI) and number of negative interactions (NI)

Dataset Species PI NI

STRING-SC [13] S. cerevisiae 15218 15166

STRING-HS [13] H. sapiens 3460 3452

STRING-EC [13] E. coli 1127 1118

STRING-DM [13] D. melanogaster 288 262

DIP-HS [17] H. sapiens 1375 1364

BIND-SC [37] S. cerevisiae 724 642

DIP/MIPS-SC [37] S. cerevisiae 4659 9148

GRID/HPRD-bal-HS [38] H. sapiens 15675 15674

GRID/HPRD-unbal-HS [38] H. sapiens 15675 15645

removed all pairs that failed to meet this criterion: both
proteins have at least one annotation in one seman-
tic aspect. Furthermore, the yeast datasets do not use
Uniprot identifiers. We used the Protein Identifier Cross-
Reference (PICR) tool [46] web application to map protein
identifiers to the corresponding UniProt accession num-
bers. PICR provides programmatic access through Repre-
sentational State Transfer (REST) that is very useful since
we simply need to build a well-formatted RESTful URL.
Thus, not all identifiers could be mapped to Uniprot and
those proteins were removed.
Table S1 of Additional file 1 provides the number of

interactions for each dataset before excluding the pairs
that did not meet the above criteria.

Semantic similarity measures
A SSM is a function that, given two ontology terms
or two sets of terms annotating two entities, returns
a numerical value reflecting the closeness in meaning
between them. Thus, SS can be calculated for two ontol-
ogy terms, for instance calculating the similarity between
the GO terms protein metabolic process and protein sta-
bilization; or between two entities each annotated with
a set of terms, for instance calculating the similarity
between APBB1 HUMAN and ACES HUMAN. In the
case of proteins annotated with GO, SS can be inter-
preted as a measure of functional similarity between
proteins.
Many SSMs applied to biomedical ontologies have been

proposed, see for instance [14, 47, 48] and references
therein. Early approaches for term semantic similarity
have used path distances between terms, assuming that
all the semantic links have equal weight. More recent
approaches explore the notion of information content
(IC), a measure of how specific and informative a term
is. This gives SSMs the ability to weight the similarity of
two terms according to their specificity. IC can be calcu-
lated based on intrinsic properties, such as the structure of
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the ontology, or using external data, such as the frequency
of annotations of entities in a corpus. Taking Fig. 1 as an
example, this allows SSMs to consider protein catabolic
process and amyloid precursor protein metabolic process
more similar than protein metabolic process and protein
stabilization.
Entity SSMs typically employ one of two approaches:

(1) pairwise: where pairwise comparisons between
all terms annotating each entity are considered; (2)
groupwise: where set, vector or graph-based measures
are employed, circumventing the need for pairwise
comparisons. Figure 11 illustrates how two proteins are
represented by their GO terms when some terms annotate
only one protein while others annotate both proteins.
In this work, the SS between two proteins is com-

puted using three different SSMs (SimGIC, ResnikMax and
ResnikBMA), summarized in Table 7. SimGIC is a group-
wise approach proposed by Pesquita et al. [49], based on a
Jaccard index in which each GO term is weighted by its IC
and given by

simGIC(p1, p2) =
∑

t∈{GO(p1)∩GO(p2)} IC(t)
∑

t∈{GO(p1)∪GO(p2)} IC(t)
(1)

where GO(pi) is the set of annotations (direct and inher-
ited) for protein pi.
ResnikMax and ResnikBMA are pairwise approaches

based on the term-basedmeasure proposed by Resnik [50]
in which the similarity between two terms corresponds to
the IC of their most informative common ancestor. This
pairwise approach is used with two combination variants,
maximum

ResnikMax(p1, p2) =
max {sim(t1, t2) : t1 ∈ GO(p1), t2 ∈ GO(p2)} (2)

and best-match average

ResnikBMA(p1, p2) =
∑

t1∈GO(p1) sim(t1, t2)
2|GO(p1)| +

∑
t2∈GO(p2) sim(t1, t2)

2|GO(p2)|
(3)

where |GO(pi)| is the number of annotations for protein
pi and sim(t1, t2) is the SS between the GO term t1 and
GO term t2 and is defined as

sim(t1, t2) = max {IC(t) : t ∈ {A(t1) ∩ A(t2)}} (4)

Table 7 Summary of SSMs used to calculate the SS between
gene-products

SSM IC Approach Measure

SimGIC Intrinsic graph-based Jaccard

ResnikMax Intrinsic best pairs Maximum IC

ResnikBMA Intrinsic best pairs Average IC

where A(ti) is the set of ancestors of ti.
These measures were selected because SimGIC and

ResnikBMA represent high-performing group and pairwise
approaches in predicting sequence, Pfam and Enzyme
Commission similarity [49], whereas ResnikMax may help
elucidating whether a single source of similarity is enough
to establish interaction.
The IC of each GO term is calculated using a structure-

based approach proposed by Seco et al. [51] based on the
number of direct and indirect descendants and given by

ICSeco(t) = 1 − log
[
hypo(t) + 1

]

log
[
maxnodes

] (5)

where hypo(t) is the number of direct and indirect descen-
dants from term t (including term t) and maxnodes is the
total number of concepts in the ontology.

Genetic programming and supervised learning
GP [33] is one of the methods of evolutionary computa-
tion [52–54] that is capable of solving complex problems
by evolving populations of computer programs, using
Darwinian evolution and Mendelian genetics as inspira-
tion. GP can be applied to supervised learning problems
[33, 55], including several in the biomedical domain (e.g.
[56–58]).
Figure 12 illustrates the basic GP evolutionary cycle.

Starting from an initial population of randomly created
programs/models representing the potential solutions to
a given problem (e.g., combinations of SS aspects to pre-
dict PPI), it evaluates and attributes a fitness value to each
of them, quantifying how well the program/model solves
the problem (e.g., what is the F-measure obtained). New
generations of programs are iteratively created by select-
ing parents based on their fitness and breeding them using

Fig. 12 Genetic Programming Flowchart
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(independently applied) genetic operators like crossover
(swapping of randomly chosen parts between two parents,
thus creating two offspring) and mutation (modification
of a randomly chosen part of a parent, thus creating
one offspring). The fitter individuals are selected more
often to pass their characteristics to their offspring, so the
population tends to improve in quality along successive
generations. This evolutionary process continues until a
given stop condition is verified (e.g, maximum number
of generations, or fitness reaching some threshold), after
which the individual with the best fitness is returned as
the best model found.
Theoretically, GP can solve any problem whose candi-

date solutions can be measured and compared. It nor-
mally evolves solutions that are competitive with the ones
developed by humans [59], and sometimes surprisingly
creative. GP implicitly performs automatic feature selec-
tion, as selection promptly discards the unfit individuals,
keeping only the ones that supposedly contain the fea-
tures that warrant a good fitness. Unlike other powerful
machine learning methods (e.g., Deep Learning), GP pro-
duces ’white-box’ models, potentially readable depending
on their size. For PPI prediction, the models evolved by
GP are simply combinations of the SS of the three seman-
tic aspects. In tree-based GP (the most common type),
these models are represented as parse trees that are read-
ily translated to readable strings. Figure 13 shows a parse
tree of one of the simplest combinations evolved in our
experiments, here translated as

max (BP,CC) × max (BP,MF) (6)

where the SS aspects BP, CC and MF are the variables X0,
X1, and X2, respectively. These three variables constitute
what is called the terminal set in GP, as they are only
admitted as terminal nodes of the trees. In contrast, the
function set contains the operators that can be used to

Fig. 13 Example of a combination generated by GP. Variables X0, X1
and X2 represent the SS for BP, CC, and MF, respectively. Mul stands
for Multiplication, and Max stands for Maximum

combine the variables, and can only appear in internal
nodes of the trees. The function set is a crucial element
in GP. Together with the fitness function and the genetic
operators, it determines the size and shape of the search
space.
Given the free-form nature of the models evolved by

GP, its intrinsic stochasticity, and the size of the search
space where it normally operates, there is high variabil-
ity among the raw models returned in different runs, even
when using the same settings and same dataset. Even upon
simplification, these models normally remain structurally
very different from each other, while possibly exhibiting
similar behavior, i.e., returning similar predictions. This
characteristic raises some difficulty in interpreting the
GP models, even if they are fully readable. Either way,
it is always advisable to run GP more than once for the
same problem, to avoid the risk of adopting a sub-optimal
model that may have resulted from a less successful search
on such a large space.
We have used a “vanilla” tree-based GP system, with

no extras to boost the performance. The parameters we
have set are listed in Table 8. All others were used with
the default values of the gplearn software and are listed in
Table S2 of Additional file 1. The parsimony coefficient is a
non-standard parameter, specific to gplearn, and consists
of a constant that penalizes large programs by adjusting
their fitness to be less favorable for selection. It was set to
10−5, a value experimentally found to reduce the size of
the evolved models without compromising their fitness.
The function set contained only the four basic arithmetic
operators (+,−,×, and ÷, protected against division by
zero as in [60]), plus the Maximum (max) and Minimum
(min) operators. Although there is a vast array of tunable
parameters even in the most basic GP system, normally
they do not substantially influence the outcome in terms
of best fitness achieved [61].
For binary classification, it is fairly standard to use GP in

a regression-like fashion, where the expected class labels
are treated as numeric expected outputs (0 for no interac-
tion; 1 for interaction), and the fitness function that guides
the evolution is based on the error between the expected
and predicted values [62]. We have used this same system
in our experiments, with the Root Mean Squared Error
(RMSE) as fitness function [63]. However, when we report

Table 8 GP parameters

Parameter Value

Number of generations 50

Size of population 500

Function set +,−,×,÷,max,min

Fitness function RMSE

Parsimony coefficient 10−5
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the performance of evoKGsim, we first transform the real-
valued predicted outputs in class labels, by applying the
natural cutoff of 0.5.

Performance measures
The classification quality is evaluated using the weighted
average of F-measures (WAF). This metric accounts for
class unbalance by computing the F-measure for each
class and then calculating the average of all computed F-
measures, weighted by the number of instances of each
class:

WAF =
∑

c∈C F-measurec × Supportc
∑

c∈C Supportc
(7)

where C is the set of classes, F-measurec is the F-measure
computed for class c, and Supportc is the number of
instances in class c.
In each experiment, we perform stratified 10-fold cross-

validation. The same folds are used throughout all exper-
iments. At the end of each fold, we evaluate the WAF of
classifications on the respective test set and report the
median.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3296-1.

Additional file 1: Supplementary figures and tables.
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