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Abstract

Background: Macrophages show versatile functions in innate immunity, infectious diseases, and progression of
cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different
macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages
due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage
activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling
of macrophage activation can improve the understanding of this biological process through quantitative analysis
and provide guidance to facilitate future experimental design. However, few results have been reported for a
complete model of macrophage activation patterns.

Results: We globally searched and reviewed literature for macrophage activation from PubMed databases and
screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from
published results were selected to establish Boolean network models for macrophage activation patterns in
response to three different stimuli. A combination of modeling methods including clustering, binarization, linear
programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean
networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based
on protein-protein-interaction databases, pathway databases, and published experimental results. Computational
predictions of the network evolution were compared against real experimental results to validate the effectiveness
of the Boolean network models.

Conclusion: Three macrophage activation core evolution maps were established based on the Boolean networks
using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible
determination of macrophage activations using extracellular cytokine measurements.
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Background
Over the past 30 years, extensive research has been dedi-
cated to investigating the role of macrophages due to its
versatile functions in innate immunity, infectious diseases,
and progression of cancers and cardiovascular diseases,
the top 2 leading causes of death in the world [1–4]. Mac-
rophages have bactericidal and phagocytic functions and

regulate immune responses and the development of in-
flammation by secreting monokines including enzymes,
complement proteins, and regulatory factors such as IL-1
(Interleukin-1), IL-6, and IL-12 [5]. M2 macrophages turn
off the damaging immune system activation, function in
constructive processes like wound healing and tissue re-
pair, and coordinate the chronic inflammatory response
by regulating downstream cellular functions (inflamma-
tion resolution, endothelial cell, and fibroblast activation)
[4, 6–8]. These contradictory functions of macrophages
were conducted by different macrophage phenotypes
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classified as M1 (classically activated macrophages) and
M2 (alternatively activated macrophages) due to different
stimuli in the complex in vivo cytokine environment.
Macrophages have shown in vitro M1 activation with

Lipopolysaccharide (LPS), interferon-gamma (IFN-γ), or
TNF (Tissue Necrotic Factor) stimuli. M1 macrophages
secrete high levels of IL-12 and IL-23 and low levels of
IL-10. In contrast, M2 macrophages secrete high levels
of IL-10, Transforming Growth Factor–β (TGF-β) and
low levels of IL-12 and IL-23. Recently, M2 activation
has been further classified into 4 sub-phenotypes, M2a,
M2b, M2c, and M2d. M2a activation is stimulated by
interleukin-4 (IL-4) and IL-13, while M2b with immune
complex (IC) + Toll-like receptor (TLR), IC + IL-1 recep-
tor (IL1R), or IL-1β, M2c with IL-10 or TGF-β stimuli,
and M2d with TLR ligands or adenosine receptor ligands
[9–12]. In addition, switches between M1 and M2 phe-
notypes have been reported [13–15].
Analysis of macrophage activations has been reported

by others and our group. We have reported differential
equation models on macrophage activation and effects
of matrix metalloproteinase-9, and − 28 on macrophage
activations [16–18]. Martin and colleagues have vali-
dated a Boolean dynamics of genetic regulatory network
for LPS-stimulated macrophage activation using tem-
poral microarray (mRNA) data at 8-time points (15mins,
30mins, 1 h, 2 h, 4 h, 8 h, 16 h, 32 h) [19]. Rex’s group
characterized the inflammatory gene expression patterns
of LPS-stimulated M1 activation and IL-4 and IL-13-
stimulated M2 activation at 0.5, 1, 2, 6, 10, and 24 h, and
modeled macrophage activations by combining Boolean
dynamics and differential equations [20]. Though less
than 50 genes were considered in each macrophage acti-
vation model, the limited 6 temporal measurements still
led to an unavoidable difficulty in parameter estimation
for differential equation models. Recently, transcriptional
and post-transcriptional graphical networks of macro-
phage in healthy and diseased hearts were reported [21].
All these models focused on the regulatory networks at
the gene level and gave a deeper insight of what hap-
pened inside a cell. Interestingly, all models reported
significant cytokine markers for macrophage activations.
Furthermore, in an in vivo situation, stimuli and final se-
cretion products of activated macrophages stay outside
the cells. It’s natural and practical to define macrophage
phenotypes with cytokine expressions for an Input-
Output representation only based on cytokine expres-
sions outside of the cells. Therefore, in vitro cytokine
profiles from macrophage activations serve perfectly to
explore such abstract models.
We globally searched “temporal” or “time series” and

“macrophage activation” or “macrophage polarization” in
PubMed, GEO datasets/profiles, and ProteomeExchange
to screen specific macrophage activation temporal

profiles with different stimuli. A total of 173 datasets
were found for Mus musculus and 156 for Homo sapiens
as of June 18, 2019. Eleven studies focused on temporal
macrophage activations. Currently, complete temporal
in vivo genome or proteome expression profiles of
macrophage activation has not been reported. However,
in vitro temporal data has been deposited in public data-
bases to shed a light on macrophage activation mecha-
nisms. A dataset from Melton’s group was selected to
establish a Boolean model because macrophage activation
expression profiles of 27 cytokines for 4 groups (a control
group and 3 activation groups with 3 different stimuli,
LPS, IL-4, and IL-10) at 7 points (0 h, 0.5 h, 1 h, 3 h, 6 h,
12 h, 24 h) were documented [22]. This dataset provides
extra information on time points, sub-activation groups,
and cytokine expression levels to existing models on gene
regulations [19–21].
In this study, expression levels of the selected differen-

tially expressed cytokines were binarized with “1” (up-
regulated) and “0” (down-regulated). Linear program-
ming algorithm was applied to determine the structure
(links and interaction strengths) of a regulatory network
for macrophage activations among the 27 selected cyto-
kines under 3 different stimuli. Based on the obtained
network structure, Boolean functions were determined
for each cytokine in the network using a Karnaugh Map.
For the first time, core networks for macrophage activa-
tion models were generated and mathematically repre-
sented with the semi-tensor product. The core network
for M1, M2a, and M2c only contained 6, 7, and 5 pro-
teins, respectively. Links of macrophage activation net-
works were validated based on public Protein-Protein
Interaction (PPI) and Kegg pathway databases. The core
network for each activation pattern was validated by the
coincidence of predicted and temporal experimental re-
sults. A novel temporal evolution map for each macro-
phage activation model was also generated to show all
Boolean states, suggesting possible evolutionary paths of
the networks with different initial conditions.

Results
Curve fitting with smooth spline algorithm
An illustration of 3 typical expression profiles by curve fit-
ting was shown in Fig. 1. The 3 proteins are C-C motif
chemokines ligand 12 (CCL12, also named as MCP-5) in
M2c activation, CCL7 (MCP-3) in M1 activation, and
chemokine (C-X-C motif) ligand 10 (CXCL10, also named
as IP-10) in M2a activation. Interestingly, MCP-5 followed
a similar profile as promotion, (c t

1þtÞ , where c repre-
sents a constant of its max amplitude with respect to
time t (Fig. 1a). MCP-3 followed a bell shape curve similar
to a Gaussian distribution in Fig. 1b, and IP-10 followed
an inhibition relatable to, ( c 1

1þt þ biasÞ , in Fig. 1c. The
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bias denotes an offset term since an expression may not
necessarily reach 0. The average R-Squared error of the
fitting algorithm was 0.9087, 0.8566, and 0.8106 for M1,
M2a, and M2c group, respectively.
A temporal profile is considered as a promotion if its

final expression level is more than twice or inhibition if
it is less than half of the initial expression level, and a
bell-curve otherwise. It’s worth to mention that an
expression profile demonstrates different patterns with
different time periods due to activation dynamics. About
138 out of 324 (27x4x3, 27 protein expression measured
from 4 replicates in 3 activation groups) protein expression
profiles followed a promotion pattern, 27 had inhibition
profiles, and 148 had a bell curve within the first 6 h as
shown in Table 1. Examining the complete 24 h time span,
78 profiles fit a promotion, 110 fit an inhibition while 125
for a bell curve, suggesting significant protein up-regulation
in the first 6 h and gradually evolve to stable polarizations.
M2 activation profiles demonstrate more inhibition pat-
terns compared to M1 activation in Table 1. Chemokine
(C-X-C motif) ligand 1 (CXCL1/KC-GRO) did not or
barely reached detectable levels in both M2a and M2c acti-
vations. These profiles were denoted as N/A in Table 1.
Therefore, KC-GRO was not considered in either M2 acti-
vation models for undetectable expression levels. GM-CSF
(Granulocyte-macrophage colony-stimulating factor) from

some replicates reached a detectable level 12 h post-stimu-
lation in M2a and M2c and was included in both M2
models. KC-GRO was significantly up-regulated in M1
activation, illustrating their role to identify M1
activation [23]. All other protein expression levels are
either elevated or down-regulated comparing against
the average of the control group at least 1 out of 7 time
points with p-value < 0.05.

Fig. 1 Three typical temporal protein expression profiles for macrophage activations. Horizontal coordinate represents time and the vertical
coordinate denotes expression levels of proteins. The red line shows the constructed continuous profile while the blue stars denote the real
experimental data at each sampling time point. a The profile of MCP-5 in M2c activation shows a promotion pattern. b The profile of MCP-3 in
M1 activation shows a bell curve. c The profile of IP-10 in M2a activation shows an inhibition pattern

Table 1 Properties of Expression Profiles

Activation Time Bell Curve Promotion Inhibition N/A Total

M1 6 h 26 74 8 0 108

9 h 36 61 11 0 108

24 h 33 46 29 0 108

M2a 6 h 60 29 13 6 108

9 h 57 17 28 6 108

24 h 57 3 42 6 108

M2c 6 h 62 35 6 5 108

9 h 64 32 7 5 108

24 h 35 29 39 5 108

Total 6 h 148 138 27 11 324

9 h 157 110 46 11 324

24 h 125 78 110 11 324
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Binarization
Both normal K-means and iterative K-means algorithms
were applied to the 50 re-sampled data from the fitted
curves. Figure 2 gives an illustration of 2 clusters with
the normal K-means method and the final binarization
of the iterative K-means method. The Iterative K-means
generates better binarization results than the normal K-
means method since it identifies more significant peaks
in the conversion.
A binarization obtained from the smooth spline and

iterative K-means is shown in Fig. 3. The blue stars
represent the initial time points (0 h, 0.5 h, 1 h, 3 h, 6 h,
12 h, 24 h) in the dataset, the red solid line represents
the curve fitting result, the green solid line gives the
threshold from the iterative K-means, and the yellow
solid line is the final binarization result. An error band
centered at the binarization threshold is denoted by
dashed lines for possible binarization errors.

Statistical analysis
All experimental measurements at 7 sample times have
been analyzed in Melton’s paper for statistical significance
[22]. We confirmed their analysis with the Kolmogorov-
Smirnov test (p < 0.01). We fitted temporal expression
profiles for all genes with detectable expression levels in 3
stimulated groups and 1 control group. Two-sample
Kolmogorov-Smirnov tests were performed on fitted tem-
poral profiles of each gene given a stimulus versus the
control with a significance value p < 0.01.

The fitted smooth spline functions are determined by
minimizing the summation of squared errors at seven
time points. The average error at these seven sample
time points can be obtained in Matlab. Such error may
lead to a false determination of binarization value. To
test the sensitivity of binarization, an error band was
formed as a binarization threshold ± error. If any of the
50 re-sampled data from the averaged fitted expression
stays in the error band, there might be a false binariza-
tion and the re-sampled data is sensitive to binarization.
The maximum likelihood for false binarization is less
than 5% for all genes in 3 stimuli groups. No outlier is
detected in our experimental and fitted data.

Determining Boolean functions
There are three assumptions in determining the Boolean
functions of a network model. 1) Significant functional
changes appear in a period larger than the simulation in-
tervals; 2) The cycles of macrophage activation are larger
than our simulation interval; 3) The Boolean network
will have a fixed structure and regulation during the 24-
h response period in the experiment.
Since macrophage activations have the most significant

changes in the first 9 h post-stimulation, we put 40 sam-
ples during the first 9 h, which led to a simulation inter-
val of about 13.5 min. The other 10 out of 50 samples
were evenly re-sampled from 9 to 24 h. Therefore, the
simulation interval is 13.5 min in this study.
Currently, most of the published results show a period

of 24 h for macrophages’ responses to stimuli. In addition,

Fig. 2 Comparison of binarization threshold using K-means and iterative K-means methods. Analyzing the same expression profiles in (a), the K-means
method identified the first 5 peaks with relatively high expression levels in (b) while the iterative K-means method identified all peaks in (c)
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experimental data are collected with different time periods
ranging from 15min to hours [19–21, 24]. Our simulation
time interval is very similar to the minimum sampling
time of available experimental measurements (15min).
This validated assumptions 1 and 2. Since biological regu-
lations have demonstrated stability and robustness, as-
sumption 3 is a general assumption for modeling.
Boolean functions are determined with respect to binar-

ized values in a time period instead of a single distinct
time point. We verified the Boolean function determined
by the averaged gene expressions with two methods:
agreement with Boolean function dependent on experi-
mental results and agreement of promotion/inhibition de-
termined by Linear Programming. A total of 23 out of 27
datasets (85%) have shown the agreement of Boolean
functions determined by the average expressions of genes
from 4 replicates with a total of 50 samples for 24 h post-
stimuli and linear programming results.
However, variations of temporal responses exist in bio-

logical systems [25]. The variations may be more severe
during the transition between two different states. If
there is any disagreement of Boolean function deter-
mined by Karnaugh map and experimental measurement
or Linear programming results, we further determined
the Boolean function among proteins with respect to
each individual experimental replicate instead of the
average of 4 replicates and enriched our samples to be
200. An illustrative example showing the agreement of
Boolean functions determined by the averaged expres-
sion and individual replicates is shown in Fig. 4. In a

small network with two inputs (IL-10 and MIP-1β) and
one output (MIP-2), the averaged profiles have a missing
state (IL-10 = 1 and MIP-1β = 0), so the Boolean func-
tion determined by the Karnaugh map showed MIP-2 =
0, contradicting to our experimental results. In this case,
expression levels of 4 replicates are considered together
to determine the Boolean function. Note that there are
only 49 (average) and 196 (4 replicates) sample time
points for the iterative evolution ends at sample 49 to
predict the state at sample time point 50. The agreement
of this Boolean function is about 90%.

Properties of the networks established with linear
programming algorithm
Linear programming algorithm was applied to determine
the network structure for 3 macrophage activation pat-
terns. As shown in Table 2, the networks obtained were
still complex. To simplify the network structure, a link
between two nodes was removed if its weight calculated
by linear programming was less than 70% of the max-
imum link weight described in the Method Section. The
70% threshold was chosen based on the criteria to
minimize the number of links and maximize the summa-
tion of link weights. Properties of the networks established
with original linear programming and the simplified net-
work were shown in Table 2. Input nodes are proteins
with no parent nodes and output nodes are proteins with
no child nodes. All 3 simplified networks have fewer
nodes and links than the original results obtained from
the linear programming algorithm. In addition, the

Fig. 3 Binarization of a protein expression level. The blue stars show the experimental measurements, the red curve is the fitted continuous
profile, the green line represents the threshold from the iterative k means method, and the orange line denotes the final binarization. An
illustration of a possible sensitivity region is shown between the two dashed black lines as an error band
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complexities of M1 and M2a polarization networks are
less than the networks for M2c polarization, specifically
for the number of links and network density. While the
M2c activation network has 3 nodes with ≥4 parent nodes,
these 3 nodes are all output nodes and will not affect the
regulation of Boolean functions, suggesting that the 50
sample data should be sufficient to establish the Boolean
functions.

LPS induced M1 activation network
The structure for the LPS induced M1 activation net-
work was shown in Fig. 5. Boolean regulations for each
node were shown in Table 3. An overbar denotes a neg-
ation, while a double vertical bar for a logic ‘OR’ and a
‘&’ symbol representing a logic ‘AND’. In addition, inter-
action strengths calculated by the linear programming
algorithm for each link were listed in Table 3.

There are 26 proteins in this network. TIMP-1 (Tissue
Inhibitor of Metalloproteinases) is the only protein re-
moved from the 27 measured proteins as an orphan
node. The two input nodes are FGF-9 (Fibroblast
Growth Factor-9) and IL-4. FGF-9 has been known to
be an inflammation promoter in multiple sclerosis [26].
Interestingly, IL-4, not LPS, was annotated as input for
the M1 activation network. Though IL-4 is known as a
stimuli for M2a activation and anti-inflammatory re-
sponses, the combination of LPS and IL-4 has been
reported for its promotion of other inflammation cyto-
kines including IL-6, CCL-1, CCL-3 (macrophage in-
flammatory protein 1-α, MIP-1α), CCL-4 (macrophage
inflammatory protein 1-β, MIP-1β), CCL-5 (Regulated
upon Activation, Normal T cell Expressed, and Secreted,
RANTES), TNF-α, and IFN-γ, which are also included
in our M1 activation network [44]. In addition, LPS has

Fig. 4 The Binary Expressions of a simple network with two inputs (MIP-1β and IL10) and one output (MIP-2). The sub-Figs. a-d showed the
binarization of 4 replicates of the LPS stimulated responses and e being the binarization of the average of 4 replicates. The green dashed line
represents IL-10, the red dotted for MIP-1β and the blue solid line for MIP-2. The Karnaugh maps for the average and each replicate are shown in
f and g respectively

Table 2 Properties of M1, M2a, and M2c Activation Networks

M1 M1-simplified M2a M2a- simplified M2c M2c- simplified

Number of Nodes 27 26 27 24 27 24

Network Density 12.9 1.5 12.9 1.5 15 1.75

Number of Links 348 39 348 36 404 42

Number of Promotion links 189 25 189 19 211 25

Number of Inhibition links 159 14 159 17 193 17

Number of Input Nodes 0 2 0 1 0 0

Number of Output Nodes 5 10 6 11 5 9

Number of Attractor N/A 1 N/A 0 N/A 0

Nodes with ≥4 Inputs N/A 0 N/A 0 N/A 3
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been shown to induce IL-4 gene expression, which con-
firmed the rationale for IL-4 serving as an input for the
M1 activation network [59]. The M1 activation network
has 10 output nodes: GM-CSF, IL-2, IL-6, IL-7, IL-
12p70, IL-17A, IP-10, OSM (Oncostatin M), TNF-α, and
VEGF-A (Vascular Endothelial Growth Factor A). All
these proteins’ expressions are significantly upregulated
compared to the control group.

Validation of LPS induced M1 activation network model
To further validate the links in our network model,
Protein-Protein-Interaction (PPI) database (STRING),
KEGG pathway database, and literature results were
used to confirm interactions among proteins in the net-
work. The majority of links (35 out of 39) were con-
firmed by STRING directly. The other 4 links can be
verified through the KEGG pathway database as shown

in Table 3. Lymphotactin can trigger the chemokine re-
ceptor pathway which can further stimulate multiple
pathways such as Salmonella infection to produce IL-1α.
MCP-5 to IL-12p70 link can be verified through MCP-5,
Chemokine receptor pathway, MAPK signaling pathway,
and then RIG-I-like receptor signaling pathway that
leads to the synthesis of inflammatory cytokines includ-
ing Il-12. Similarly, MCP-5 can also trigger the secretion
of IL-17 through chemokine receptor pathway, JAK-
STAT signaling pathway, and Th17 cell differentiation
pathway. MCP-3 to RANTES link can possibly be veri-
fied through MCP-5, Chemokine Receptor Pathway,
MAPK signaling pathways, Toll-like receptor signaling
pathway and Herpes simplex virus 1 infection/ Influenza
A pathway.
There were 5 feedback loops as shown in Fig. 5: 1)

IFN-γ attractor; 2) from IFN-γ to itself through MCP-1

Fig. 5 The network for M1 activation includes 26 nodes with each node representing a protein (blue block), a black line with an arrow for a
positive connection from a parent node to a child node, and logic negation being a red dashed connection with a ‘T’ arrow. The core network is
shown as the diamond nodes in the network
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(monocyte chemoattractant protein), MCP-5, Lympho-
tactin, IL-1α, and SCF (Stem Cell Factor); 3) from IFN-γ
to itself through Lymphotactin, IL-1α, and SCF; 4) a
loop between Lymphotactin and MCP-5, and 5) a loop
between MCP-3 and RANTES. Interestingly, the first
three loops illustrated an IFN-γ attractor self-promotion
loop during macrophage activation [60]. STRING data-
base showed MCP-3 and RANTES, MCP-5 and Lym-
photactin are interaction pairs.

Figure 5 showed the complete Boolean network gener-
ated with our temporal profiles. The 10 output nodes
(from the leftmost node IL-7 to the rightmost node
VEGF-A at the bottom of Fig. 5) do not affect the regu-
lations of the network and their states can be deter-
mined by their parent nodes. In addition, the signal
flows from FGF-9 to IL-11 to MIP-1β and from SCF to
IL-3 to MIP-1β form single direction forward links,
therefore, given the status of input node FGF-9, the

Table 3 Boolean Functions and Description of LPS Stimulated M1 Activation Network. IS: intermediate state

Child node Parent node Validation Attribution Weights from LP

FGF-9(K + 1) N/A Input- [26] Input N/A

GM-CSF(K + 1) IFN−y (K) & MCP-5(K) IFN- γ: String [27], MCP-5 [28–30]: Output (− 180, 185)

KC-GRO(K + 1) IL-10(K)&MCP−5 (K) IL-10: String
MCP-5: String

IS (5.45, −5.82)

IFN-γ(K + 1) SCF(K) || IFN- γ (K) IFN-γ [31, 32]:
SCF [33, 34]:

IS (1170)

IP-10(K + 1) IL-10(K)& MCP-5 (K) MCP-5: String [33, 35, 36],
IL-10 [33, 35, 37] [38]:

Output (68,100, 85,000)

IL-1α(K + 1) Lymphotactin(K) KEGG IS (787000)

IL-2(K + 1) (KC−GRO (K)&MIP−2 K)) ||
(KC-GRO(K)&Rantes (K))

KC-GRO: String [39, 40],
MIP-2: String [41],
RANTES: [33, 42, 43]

Output (34.7,-27, − 33.8)

IL-3(K + 1) SCF(K) SCF: String IS (302)

IL-4(K + 1) N/A Input [44]: Input N/A

IL-6(K + 1) IL-1α(K) &Rantes (K) IL-1α: String [45, 46],
RANTES: String

Output (3840, − 4840)

IL-7(K + 1) MIP-1β(K) MIP-1β: String [47], Output (10)

IL-10(K + 1) IL−4 (K) &Lymphotactin(K) IL-4: String [48] [49],
Lymphotactin: String

IS (− 64,700, 48,600)

IL-11(K + 1) FGF-9 (K) FGF-9-String IS (6190)

IL-12p70(K + 1) MCP-5(K) KEGG Output 5.6

IL-17A (K + 1) MCP-5(K) KEGG Output (0.555)

Lympho-
tactin(K + 1)

IFN−y (K) IFN- γ: String [50], IS − 1675

MIP-1β(K + 1) IL-3(K) || IL-11(K)) IL-3: String
IL-11: String

IS (44,800, 41,600)

MIP-2(K + 1) IL-10(K)& MIP−1β (K) IL-10: String [51]
MIP-1β: String [52]

IS (7880, − 10,400)

MCP-1(K + 1) IFN−y (K) IFN- γ: String [53] IS (− 5090)

MCP-3(K + 1) (IL-4(K)& (FGF-9(K))||
(FGF−9(K) & Rantes (K)))

FGF-9 [26]:
IL-4 [54]:
Rantes: String

IS (27,600,
22,800,
− 27,400)

MCP-5(K + 1) Lymphotactin(K) &MCP-1(K) Lymphotactin: String IS (5840, − 4590)

OSM(K + 1) IL-10(K) & MIP-1β(K) IL-10 [55]:
MIP-1β: String

Output (6.45, 6.19)

SCF(K + 1) IL−1α (K) IL-1α [56]: IS (− 70,800)

RANTES(K + 1) MCP−3 (K) KEGG IS (304)

TNF-α(K + 1) IL−1α (K) IL-1α: String [57] Output (− 1.37)

VEGF-A(K + 1) MCP−5 (K) MCP-5 [58]: Output (− 17,850)
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status of MIP-1β can be determined together with SCF.
Similarly, signal flow from IL-4 to IL-10 to KC-GRO
forms single directional links. The input node IL-4 and
Lymphotactin expression levels determine IL-10 and
KC-GRO expression levels, suggesting Lymphotactin
should be a major in evolution and IL-10 and KC-GRO
are dependent variables in the simulations and can be
removed. Therefore, removing output and single direc-
tion transduction nodes led to a simplified network with
only 8 proteins for two sub-networks: MCP-3 –
RANTES loop for sub-network 1 and IFN-γ, MCP-1,
MCP-5, Lymphotactin, IL-1α, and stem cell factor (SCF)
for a core 6-protein (in diamond shapes) network as
shown in Fig. 5. States of other nodes in the M1 activa-
tion network can be determined by the states of these 8
proteins and the input nodes.
The state transition map for the M1 activation core

network was shown in Fig. 6. The state transition map

contains 64 = 26 states with one isolate state e764 and the
final state e5864 . The state e6264 is an important transition
state with multiple incoming branches. Our binarized
and original temporal profiles showed the transition
from e1164→e164→e2264→e6264→e5864 and these states were illus-
trated in red boxes in Fig. 6. The binary values of these
5 transition states were shown in Table 4. The state
numbers are illustrated in two’s complement representa-
tion. Temporal transitions for the 6 proteins with binary
states and sampled data were shown in Fig. 7.
It’s worth to mention, not all 4 experiments for M1 ac-

tivation converged at the same time. One replication of

this experiment reached the state e5864 while the other 3

ended at the state e6264. The coincidence of state transition
from experimental results and computational results
demonstrated the effectiveness of the core network
model of M1 activation.

Fig. 6 The evolution map of the core network for M1 activation showed all possible pathways predicted by the M1 Boolean network. The
evolution of 64 (64 = 26) states for 6 nodes in the core network were illustrated from different initial conditions. The states in red boxes represent
the evolution path based on the temporal cytokine profiles in this study
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M2 activation networks
Boolean networks for IL-4 induced M2a and IL-10 in-
duced M2c activations have been established and shown
in Fig. 8 and Fig. 9, respectively. M2 activations were
more complicated than M1 activation due to variant
stimuli and M2 subtypes [11, 14]. These were repre-
sented by the increased network density and number of
links in the M2c activation network compared against
the M1 activation network as shown in Table 2.
Though M2a and M2c networks shared common re-

sponses, different subtypes also illustrated specific re-
sponses [3]. In the M2a and M2c activation networks,
there were 23 common nodes as shown in Tables 5 and 6.
The only two different proteins between M2a and M2c
are TIMP-1 and IL-11. TIMP-1 was included in both M2a
and M2c networks from our linear programming results.

However, TIMP-1 was an orphan node in the M2c net-
work and not shown in Table 6 and Fig. 9. Previous results
have shown that TIMP-1 is consistently produced by mac-
rophages and further induced by LPS (M1) and IL-10
(M2c) in fully differentiated macrophages [128, 129]. Add-
itionally, TIMP-1 was down-regulated by IL-4 in M2a
[130]. Since TIMP-1 functions by forming one-to-one
complexes with target metalloproteinases and there is no
measurement on metalloproteinases in this study, TIMP-1
is classified as an orphan node. IL-11 is included in the
M2c but not the M2a network in this study. IL-11 is a
member of the IL-6-type cytokine family and may provide
a link between inflammation and cancer [131, 132]. The
role of IL-11 in macrophage activation has not been well
studied yet.
M2a network has one input, IL-1α, which remains low

consistently in the binarized profiles [71]. The M2c net-
work has no input node. The shared output nodes for
M2a and M2c include GM-CSF, IL-3, IL-6, IL-7, IL-
12p70, IL-17, TNF-α, and OSM. IL-6 is an inflammatory
cytokine and has demonstrated a consistently low profile
in both M2 activation models [133, 134]. The low ex-
pression profile of IL-6 also indicates low expression
profiles of Lymphotactin and IL-1a. TNF-α promotes
the activation of inflammatory M1 cells and has a de-
creased value in M2 cells, which was also demonstrated
by our M2 activation model [135, 136]. In addition, IL-6
and TNF-α, outputs of M2 macrophage, can reduce

Table 4 Binary Expressions of Proteins in the Core Network for
LPS Stimulated Macrophage Activation. The binarization is
shown in two’s complement representation

State MCP-5 Lymphotactin IL-1α SCF IFN- γ MCP-1

e1164 1 1 0 1 0 1

e164 1 1 1 1 1 1

e2264 1 0 1 0 1 0

e6264 0 0 0 0 1 0

e5864 0 0 0 1 1 0

Fig. 7 Experimental expression levels of the 6 proteins in the core network for M1 activation were compared with their binary profiles. The blue
stars showed the measured experimental expression levels at 6 time points (0, 0.5 h, 1 h, 3 h, 6 h, and 12 h) while the orange line illustrated the
temporal binary expression. The vertical black bars represent the states that are in our M1 activation evolution map
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inflammation and kill the pathogen [134]. IL-12p70 is an-
other common output that is elevated in M1 activation
and remains as a logic low in both M2 models [137]. It
has been reported that IL-17 induced the production of
pro-inflammatory cytokines by human macrophage, but
the quantitative analysis is still needed [138].

Validation of IL-4 induced M2a and IL-10 induced M2c
activation models
Parent and child nodes, Boolean functions, attribution of
each node, interaction strengths from linear programming
algorithm, and published results confirming the links in
M2a and M2c networks were also shown in Tables 5 and 6,
respectively. The majority of the links can be verified based
on the KEGG pathway or protein interaction database.
The established M2a Boolean network includes a link

between MIP-2 (Chemokine (C-X-C) motif ligand 2-
CXCL-2) and FGF-9 which cannot be validated by
STRING or KEGG database. The regulation between
MIP-2 and FGF-9 is the most complicated Boolean func-
tion in all three activation networks. However, it has been
reported that FGF-9 enhanced M2 differentiation post-

myocardial infarction accompanying with significantly ele-
vated IL-10 secretion [139]. MIP-2 as an inflammatory
protein is typically secreted by M1 macrophages. Another
un-validated link in the M2a network is inhibition of IL-7
by MCP-5. Since MCP-5 is typically expressed in M1 and
IL-7 in M2 [10, 11, 13, 136, 140], we consider these as
meaningful Boolean regulations and keep them in our net-
work model. In addition, all these unvalidated links are
links to output nodes in the network, which will not affect
the core regulation. Once the expression profiles in the
experiments agree with the Boolean function, the links are
kept in the established M2a activation network.
The only un-validated link in the M2c network is

MIP-1β to FGF-9. Again, the experimental results illus-
trated the effectiveness of the Boolean regulation and
the link was kept in the network model. FGF-9 demon-
strated elevated expression levels in three macrophage
activation networks, while LPS stimulated macrophages
produced much more FGF-9 than M2a and M2c [22].
M2 activation models were further validated by tem-

poral transitions of their Boolean network models. M2a
and M2c activation networks were simplified by

Fig. 8 The network for M2a activation includes 24 nodes with each node representing a protein (blue block), a black line with an arrow for a
positive connection from a parent node to a child node, and logic negation being a red dashed connection with a ‘T’ arrow. The core network is
shown as the diamond nodes in the network
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removing the output nodes and the single directional
signal transduction nodes. The core network for M2a
and M2c activation networks are represented by proteins
in diamond nodes in Figs. 8 and 9. Simplified M2a net-
work contains a 7-protein core network including FGF-
9, MCP-1, MCP-5, MIP-1β, MIP-2, SCF, and VEGF-A.
This core network has multiple feedback loops including
MCP-1 attractor, MIP-2 attractor, MCP-1 and MIP-1β
interaction loop, MCP-5 and VEGF-A interaction loop,
and VEGF-A and SCF interaction loop. Besides, there
are feedback loops among VEGF-A, MIP-2, FGF-9, SCF,
and MCP-5 (Additional file 1: Figure S2).
Simplified M2c network contains a 5-protein core net-

work including IL-11, IL-1α, SCF, MCP-5, and IFN-γ as
shown in Fig. 9. This core network has MCP-5 and SCF
self-inhibition loop, IL-1α, and IL-11 interaction loop, IL-
1a and IFN-γ interaction loop, and feedback loops among
IL-1α, IL-11, SCF, IFN-γ. The link between IFN-γ and IL-
1α was obtained by removing MCP-3 since MCP-3 is just
a signal transduction state in this branch. Separated core
networks for M1, M2a, and M2c activation were also
available in (Additional file 1: Figure S1, S2, and S3). All
these interaction loops were confirmed by previous studies
or the KEGG pathway as shown in Table 6.
Evolutionary maps of M2a and M2c were shown in

Fig. 10 and Fig. 11, respectively. The evolution of M2a
has a state transition map that contains 128 = 27 states

while M2c has a state transition map for 32 = 25 states.
The binarized M2a temporal profiles in our dataset
showed the transition from e3128→e4128→e20128→e84128→e120128

and these states were illustrated in red boxes in Fig. 10.
The binary values of these 7 states were shown in
Table 7. M2c network has binarized transitions from e132
→e532→e1332→e1032→e432→e2432→e3232→e2832 illustrated in red
boxes in Fig. 11. The binary values of these 5 states were
shown in Table 8. The computational binary state transi-
tion was compared with temporal experimental profiles
and converged to experimental results.

Discussion
The most significant contribution of this study includes
the following facts. We established and validated novel
Boolean networks for 3 macrophage activation patterns
using in vitro temporal cytokine profiles. Our results
confirmed 1 stable M1 macrophage activation state and
2 stable M2 activation states, which agreed with reported
in vitro classification on macrophage activation patterns.
Validation of the models was conducted based on the
coincidence of predicted cytokine expression levels, pub-
lic databases, and reported experimental results. The
literature review confirmed the majority of links in the
Boolean networks for M1, M2a, and M2c network
models as shown in Tables 3, 5, and 6, respectively.

Fig. 9 The network for M2c activation includes 24 nodes with each node representing a protein (blue block), a black line with an arrow for a
positive connection from a parent node to a child node, and logic negation being a red dashed connection with a ‘T’ arrow. The core network is
shown as the diamond nodes in the network
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More importantly, our results demonstrated possible key
factors IFN-γ, IL-1α, Lymphotactin, MCP-1, MCP-5,
and SCF for M1 activation, FGF-9, MCP-1, MCP-5,
MIP-1β, MIP-2, SCF, and VEGF-A for M2a activation
IFN-γ, IL-1α, IL-11, MCP-5, and SCF for M2c activa-
tion. Further, expression profiles of these cytokines can
serve as signatures for macrophage activation patterns
since other protein expressions can be determined by
proteins in the core network and input proteins of the
network. These core signatures provide a possible mixed
combination for macrophage activation markers instead
of using only static individual markers. Additionally,

cytokine markers might be more useful for in vivo study
for easy and less costly measurements.
Robustness of Boolean networks is an important re-

search aspect while only a few results have been re-
ported [141–143]. These results have shown a large
basin for the robustness and stability of a Boolean net-
work. In this study, the simulated biggest core network
for M1 macrophage activation has two stable states: e764
and e5864 as shown in Fig. 6. The state e764 represents a
state when MCP-5, Lymphotactin, IL-1α, and MCP-1
have elevated expression levels, SCF and IFN-γ have de-
creased expression levels. This is a single state attractor

Table 5 Boolean Functions and Description of IL-4 Stimulated M2a Activation Network. The * symbol denotes a non-validated link
from public databases or literature

Child node Parent node Validation Attribution LP Weights

FGF-9(K + 1) (MIP−2 *(k)&Vegf−A (k)) ||
(MIP-2(k) & VEGF-A(k)) ||
(MIP−2 (k) &Lymphotactin(k))

VEGF-A: String [61] [62, 63],
Lymphotactin [64]:

IS (89.6, 87, − 82)

GM-CSF(K + 1) MCP−1 (K) || SCF(K) MCP-1: String [65, 66],
SCF: String

Output (2.75, −3.23)

IFN- γ (K + 1) MIP-2(k) || Vegf−A (k) MIP-2: String [67, 68],
VEGF-A: String

IS (34, − 31.7)

IP-10(K + 1) VEGF-A(K) [69, 70] IS 121

IL-1α(K + 1) N/A Input [71]: Input N/A

IL-2(K + 1) MCP-3(K) String IS 92.7

IL-3(K + 1) MCP-3(K) [72, 73] Output 41.9

IL-4(K + 1) MCP-1(K) String [74–76], Output 151

IL-6(K + 1) Lymphotactin(K) [77] Output 58.7

IL-7(K + 1) IL-1α(K) & MCP-5* (K) IL-1α: [78] Output (−0.9, − 1)

IL-10(K + 1) VEGF-A(K) [79] IS − 296

IL-12p70(K + 1) Lymphotactin(K) KEGG Output 0.557

IL-17A(K + 1) MCP-3(K) MCP-3 [80, 81]: Output (.34)

Lympho-tactin(K + 1) IL-1α (K) & MCP-5 (K) [82] IS (192, − 159)

MIP-1ϐ(K + 1) IL-1α(K) & MCP-1(K)) IL-1α: String [83] [84]
MCP-1: String,
[85] [86]

IS (− 6490, 6650)

MIP-2(K + 1) MCP-3(K)& MCP-5(K) MCP-3 [87]:
MCP-5: String [87],

IS (816, − 1160)

MCP-1(K + 1) IL−2 (K) & MIP−1β MIP-1ϐ(K) IL-2 [88, 89]:
MIP-1β:String [85] [86],,

IS (− 6150, − 6520)

MCP-3(K + 1) IFN- γ (K) &MCP-1(K) IFN- γ: String [90, 91],
MCP-1: String [92],

IS (−15,900, 16,800)

MCP-5(K + 1) SCF(K) || VEGF−A (K) SCF [93]:
VEGF-A: KEGG

IS (1300, − 1140)

OSM(K + 1) MCP-1(K) String [94, 95], Output 1.11

SCF(K + 1) FGF-9(K)* & IL-10(K) IL-10 [96, 97]: IS (12,700, − 14,400)

TIMP-1(K + 1) Lymphotactin*(K) Not validated Output 1.19

TNF-α(K + 1) IL-2(K) String [98, 99], Output −0.188

VEGF-A(K + 1) MCP-5(K) & SCF(K) MCP-5:String
SCF: String [100, 101],

IS (−13,400, 13,300)
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meaning the Boolean network starting from this initial
state will stay here forever. All of the other 63 states of
the network will evolve to the state of e5864 , which is a
controversial state of e764 (SCF and IFN-γ are elevated
and other 4 proteins are down-regulated). Similarly, the
core network for M2a has two stable states e88128, and e1128
(Fig. 10). In the state of e1128; all 7 proteins have elevated
expression levels. The core network of M2c activation
has only one stable state e2832 as shown in Fig. 11. All
these have demonstrated the robustness of the estab-
lished Boolean networks.
The STRING PPI database integrates several PPI data-

bases and is the most widely adopted database for protein-

protein interactions. We only use the STRING PPI data-
base to confirm possible interactions among proteins in
the established Boolean networks. Since the STRING PPI
database does not provide directional information for
protein-protein interactions, the directional information
of our Boolean networks is generated by the linear pro-
gramming algorithm computationally. The confirm-
ation of directions in the network can be indirectly
confirmed by 1) their positions in up- or downstream
of pathways since cytokines can be either stimuli or
production of a pathway; and 2) the temporal sequence
of significantly elevated or inhibited expressions in bio-
logical experiments.

Table 6 Boolean Functions and Description of IL-10 Stimulated M2c Activation Network. The * symbol denotes a non-validated link
from public databases or literature

Child node Parent node References Attribution LP Weights

FGF-9(K + 1) MIP-1β*(K) Not Validated IS 13

GM-CSF(K + 1) IP−10 (K) & IL−2 (K) & IL-4(K) & IL-10(K) IL-2: String [102],
IL-4: String [102], [103]
IL-10: [104, 105]

Output (−0.83, − 0.73, 0.73, 0.75)

IFN-γ(K + 1) IL-1α(K) & SCF(K) IL-1α: String
SCF: String

IS (− 18,20)

IP-10(K + 1) MCP-1(K) & MCP-3(K) MCP-3: String MCP-1: String [106], IS (− 4470, 4050)

IL-1α(K + 1) IL-11(K) & MCP-3(K) IL-11: String
MCP-3: String

IS (− 699, 609)

IL-2(K + 1) IL-10(K) & IL−11 (K) IL-11: String
IL-10: String,

IS (5.62, −6.42)

IL-3(K + 1) (FGF-9 (K) & IL−1a (K) & MIP−1 (K) & MCP-3(K) FGF-9: String,
MCP-3: [72]
MCP-1: [107]

Output (7.16, − 7.99, − 8.86, 8.68)

IL-4(K + 1) IL-10(K) String, [48, 108] IS 41.6

IL-6(K + 1) IL-1α(K) & MIP-1ϐ(K) & MIP−2 (K) & VEGF−A (K) MIP-2: String, VEGF-A: String
IL-1α: [45, 46] MIP-1ϐ [109, 110]:

Output (2.26, 2.09, − 2.4, − 2.04)

IL-7(K + 1) MCP-3(K) String Output 0.476

IL-10(K + 1) MCP-3(K) String IS 3330

IL-11(K + 1) IL-1α(K) String [111, 112], IS −78.1

IL-12p70(K + 1) MCP-3 (K) || SCF(K) MCP-3 [113]: SCF: [114] Output (1.34, −1.38)

IL-17A(K + 1) MCP−1 (K) || MCP-3(K) MCP-1: String [115–118],
MCP-3: String [80],

Output (−0.236, 0.19)

Lympho-tactin(K + 1) SCF(K) String IS 39

MIP-1β(K + 1) IL-11(K) String IS −16,100

MIP-2(K + 1) SCF(K) String [119], IS 2420

MCP-1(K + 1) MIP-1β(K) & SCF(K) MIP-1β: String [85, 86],
SCF: String [120, 121] [,122],

IS (2050,1920)

MCP-3(K + 1) IFN- γ (K) IFN- γ: String [90, 91], IS 1410

MCP-5(K + 1) SCF (K) SCF [93]: IS −728

OSM(K + 1) MIP-1β(K) MIP-1β: String [123–125], Output 0.186

SCF(K + 1) IL-11(K) & MCP-5(K) IL-11: String [126],
MCP-5 [93]:

State (14,700, − 18,000)

TNF-α(K + 1) IP-10(K) IP-10: String [127], Output 0.156

VEGF-A(K + 1) Lymphotactin (K) || MCP−5 (K) MCP-5: String Output (19,200, −24,100)
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Conclusion
The proposed method can also be applied to large scale
datasets to establish regulatory Boolean networks for other
biological processes. Due to the limited sampling time
points in most of the deposited experimental datasets,
Boolean networks might be much more promising than
traditional differential equation models, which require de-
termination and estimation on a huge amount of parame-
ters. In addition, with measurements at limited time
points, deep learning might not be a good approach to at-
tack specific biological processes at the current stage. It’s
worth to mention, this method can be applied to a small
set of key factors extracted from big data, and the follow-
ing computational prediction and validation of the small
networks are much easier than the big network. Currently,
our software package (Matlab) can easily handle the evolu-
tion of a Boolean network with 11 nodes, leading to a total
of 211 transition states using a normal workstation. For
larger Boolean networks with more than 11 nodes, high-
performance computing is more suitable.

We did notice some limitations of the proposed mod-
eling method due to noisy/outlier functions. Outliers
can still cause the linear programming to gather an extra
connection, drop a connection or give a wrong sign to a
connection. Additionally, a time delay can also cause
problems in determining Boolean regulations depending
on the amount of delay. For example, if protein A pro-
motes protein B in a motif, up-regulation of protein A
should give an instant high expression of protein B in
the mathematical model. However, time delays and vari-
ations of temporal responses are very common in bio-
logical responses. One of our modeling assumptions is
the Boolean network is fixed without changing nodes
and changing Boolean functions in the response time
period. Accordingly, Boolean functions are determined
with respect to the whole experimental time period, not
the single time point In this study. Therefore, small
time-delays or variations of temporal response may
affect the Boolean regulation at a short period of time,
but won’t affect the Boolean regulation in the whole

Fig. 10 The evolution map of the core network for M2a activation showed all pathways predicted by the M2a activation Boolean network. The
evolution of 128 (128 = 27) states for 7 nodes in the core network were illustrated from different initial conditions. The states in red boxes
represented the evolution path based on the temporal cytokine profiles in this study
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time period. However, if experimental results have a
long delay on the up-regulation of protein B, incorrect
Boolean functions may be selected. Finally, the model
will be limited to the proteins that were measured in the
experiment. Any other proteins not sampled were left
out. Further studies will be conducted to integrate cross-
platform data for a more complete macrophage activa-
tion model in the future.

Three Boolean network models were established to
elucidate the regulation of M1, M2a, and M2c macro-
phage activations. Prediction of the Boolean network
models agree with experimental results and validated the
established models. Signatures of core cytokine profiles
were determined, which provided a possible examination
for macrophage activations based only on the cell
productions.

Methods
Data Preparation: A total of 27 cytokines’ expression
levels from macrophages isolated from C57BL/6 J male
mice (Jackson Labs, Bar Harbor, ME) were collected at 7
time points, setpoint (0 h, 0 h), 0.5 h, 1 h, 3 h, 6 h, 12 h,
24 h from 4 biological groups (4 replicates/group) in-
cluding 1 control group and 3 macrophage polarized
groups: M1 induced by LPS, M2a induced by interleukin
4 (IL-4), and M2c induced by interleukin 10(IL-10) [22].
All proteins in the established networks are cytokines,

which are small, nonstructural proteins, including inter-
leukins, chemokines, interferons, and tumor necrosis
factors [144]. A total of 34 cytokines have been reported

Fig. 11 The evolution map of the core network for M2c activation showed all pathways predicted by the M2c activation Boolean network. The
evolution of 32 (32 = 25) states for 5 nodes in the core network were illustrated from different initial conditions. The states in red boxes
represented the evolution path based on the temporal cytokine profiles in this study

Table 7 Binary Expressions of Proteins in the Core Network for
IL-4 Stimulated Macrophage Activation. The binarization is
shown in two’s complement representation

State VEGF-A FGF-9 MIP-1β MCP-5 SCF MIP-2 MCP-1

e3128 1 1 1 1 1 0 1

e4128 1 1 1 1 1 0 0

e20128 1 1 0 1 1 0 0

e84128 0 1 0 1 1 0 0

e120128 0 0 0 1 0 0 0

e88128 0 1 0 1 0 0 0
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in the literature and are secreted by different cell types
including macrophages, T-cells, neutrophils, and fibro-
blasts. In the manuscript by Melton’s group, 24 proteins
were reported. IL-1α, IL-6, and TNF-α were measured
in their experiments and included in their dataset, but
not reported because the authors thought these three cy-
tokines were related to M2b activation [22]. All 27 cyto-
kines secreted by macrophages were used to establish
the Boolean network model in this study.
Due to the limited temporal measurements, a curve

fitting algorithm was applied to enrich the dataset and
this dataset served as inputs for a linear programming
algorithm to find the most significant protein (node) and
connections (links) for network structure. The same
enriched data was also analyzed by an iterative K-means
method to find the threshold for binarization. Thus, a
network could be established where each node repre-
sents a protein and each link between the nodes repre-
sents an association of two proteins. Meanwhile, the
expression level of each node was defined as a Boolean
variable ‘0’ or ‘1’. A Karnaugh map was used to determine
the Boolean regulatory functions among these nodes/vari-
ables to create a Boolean network model. Verification of
the regulations was conducted based on published interac-
tions from PPI databases and literature searches. The pre-
dicted evolution of each Boolean network model for a
macrophage activation pattern was further validated with
public databases and published results.

Curve fitting
The smooth spine algorithm in Matlab was applied to
approximate continuous secretion profiles for 27 pro-
teins. The algorithm was chosen due to its ability to
construct an accurate curve with noisy data. By minim-
izing the squared error between the constructed data
and experimental data at the sampling time points, op-
timized fitting curvature was obtained using the follow-
ing equation [145]:

p
X

i
aiðxi−sðtiÞÞ2 þ ð1−pÞ

Z � d2s
dt2

�2

dt; ð1Þ

where p denotes the smoothing parameter controlling
the level between the smoothness of the function and
the error between the experimental data xi and the value
of the fitting function s(ti) at chosen time points ti. Par-
ameter ai represents the weight of the error, which is set
to be the default value in MATLAB. Once the continu-
ous fitting function s(ti) was gathered, we divided the
24-h time span into 50-time points with 40 being evenly
sampled from the initial reading to the 9th hour and the
last 10 samples coming from the 9th hour to the final
24. This was set because the majority of regulations oc-
curred within the first few hours [19–22]. No negative
value is allowed in the fitting algorithm to match with
real biological situations.

Binarization
In a Boolean network model, protein expression is either
up-regulated or down-regulated, therefore, binarization
of the fitting function is needed. Any protein with simi-
lar expression levels during the 24 h time period is con-
sidered non-significant and will not be modeled. The
iterative K-means method was used to cluster the ex-
pression levels for each protein and determine an activa-
tion threshold for each stimulus and experiment [146,
147]. The objective function for iterative K-means
method using the absolute difference from the point to
the center of the cluster was defined as:

J ¼
Xk

j¼1

Xn

i¼1
j xi − C j j; ð2Þ

Where k is the cluster number, Cj is the centroid of
the jth cluster, i represents each sample, and n is the
total number of samples (50 in this study). We started
with 8 clusters for iterative K-Means method and re-
duced to 2 clusters. The average of the mean distance
from each cluster was used as the activation threshold
for a specific protein. Any expression level below the ac-
tivation threshold is defined as “0” and above the thresh-
old is defined as “1” for binarization.
The threshold could be a value of 0 if there was no

reading at any of the time points, or no significant
change in protein expression levels. However, if a
threshold of 0 will be considered in our modeling pro-
cedure, any non-zero low expression measurement will
be considered active. To avoid such a conflict, a thresh-
old of value “0” was changed to a low value claimed by
the detection range of the biological experiment, such as
1 × 10− 6 in this study.

Table 8 Binary Expressions of Proteins in the Core Network for
IL-10 Stimulated Macrophage Activation. The binarization is
shown in two’s complement representation

State IL-11 SCF MCP-5 IL-1α IFN-γ

e132 1 1 1 1 1

e532 1 1 0 1 1

e1332 1 0 0 1 1

e1032 1 0 1 1 0

e432 1 1 1 0 0

e2432 0 1 0 0 0

e3232 0 0 0 0 0

e2832 0 0 1 0 0
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Linear programming algorithm
A network with connections among 27 proteins and
each interaction strength was determined by linear pro-
gramming method with an R package [148, 149]. In the
network model, each protein and interaction among pro-
teins is represented as a node with a link. Each node is
assigned with an activity level xi ϵ R+ which is the
expression level of each protein. Each link is assigned a
weight, wj, i, form parent node j to the child node i. The
weights wj, i ϵ R with wj, i > 0 representing promotion
and wj,I < 0 for inhibition. Also, each protein has an acti-
vation threshold, δi, determined by the Binarization
method above. The activity level of each node xi can be
determined by its initial status w0

i , the activity level of a
parent node xj and contribution weight wj, i from the
parent node as

xi ¼ w0
i þ

X
j≠i
w j;ix j; ð3Þ

Considering biological networks are sparse, we

minimize the sum of the absolute link weights
X

i; j

j wj;i

j, the bias term
P

w0
i , and noise effects denoted by ζl. A

random variable ζlϵ R0
+, l = 1., …, L, is introduced to ac-

counts for data variations in the experimental data. L
represents the set of inactive proteins in the experimen-
tal data and coincides with the number of constraints
that might violate the linear programming. The objective
function was defined as:

min
X

i; j
j wj;i j x j þ 1

Υ

X
i
w0
i þ

1
λ

X
l
ζl ð4Þ

subject to the constraints of

∀ði;mÞ where xi;m≥δi : w
0
i þ

X
j≠i
wi; jx j;m≥δi;m ð5Þ

∀ði;mÞ where xi;m < δi : w0
i þ

X
j≠i
wi; jx j;m

< 0þ ζl; ð6Þ
where the constraints are defined for each experiment
performed, mϵ 1,2,3,4, representing the 4 replicates in
each experimental group, and for each time point from
the enriched fitting data. Constraint (5) selected proteins
up-regulating specific protein while constraint (6) looks
for proteins down-regulating the protein. Effects of the
data variation are minimized by the term 1

λ

X

l

ζl in the
objective function (4).
In the objective function, the production term, |wj, i|xj

shows the contribution to the child node expression xi
level from the parent node xj.Two parameters γ and λ
are non-negative weights of the bias term and slack vari-
ables representing the penalties on the initial values and
data variations in the objective function. For an ideal
parameter, λ, 5-fold cross-validation was used with the

smallest mean square error limiting the value of λ a
maximum set of Lσ2(xj,m), where σ is the variance of a
variable. Parameter Υ in the objective function (4) repre-
sents the weights on the bias w0

i . A bigger value of
Υ (Υ = 100) in this study will put more penalty on the
link of the proteins rather than bias. Minimizing this
term helps to find the most significant connection to the
child node, xi.
We further modified the linear programming algo-

rithm to simplify the network structure. For each child
node xi, a weighted contribution |wj, i|xj from a parent
node (xj) is calculated. The maximum value of all
weighted contribution from a parent node can be deter-
mined. For any node, if a value of |wj, i|xj is larger than
70% of the maximum value related to the node, the link
from node j to node i is kept; In addition, orphan nodes
and a node without significant changes in expression
levels were not included in our model. The final output
of the modified linear programming is a set of nodes
and links with interaction strength wj, i. Positive wj, i

means promotion while negative wj, i means inhibition.

Establish the Boolean logic function
Theoretically, to determine a Boolean regulation with 3
nodes, 8 (23) states representing the status of the 3
nodes are needed. It means at least 8-time points are
needed and each time point represents a unique status
of the network. Since we only have data at 7-time points,
curving fitting with respect to time and resample the fit-
ted data at different time points is reasonable to enrich
the dataset. The 50 samples generated from the fitted
data allows us to determine a Boolean function for up to
5 nodes ideally since 25 = 32 < 50. Considering the same
status of the system may occur at different time points
and most biological sub-networks have dual or triplet
nodes, a maximum 5-node sub-network motif is ex-
pected with 50-time points in this study. It’s worth to
mention, that the number of time points to be selected
depends on how fast the dynamics evolve and the com-
plexity of the network, is not the focus of this study and
won’t be discussed in detail.
Based on assigning expression levels ‘0’ or ‘1’ to each

node, a truth table of a motif including parents and child
nodes can be established. Boolean regulation between
parent and child node was determined by the Karnaugh
map.
If there is a mismatch of promotion or inhibition

between Boolean relation obtained from Karnaugh Map
and linear programming or experimental profiles, then
an extended 200 samples were re-examined (50 from
each replicate and 4 replicates in each group) to deter-
mine the Boolean function instead of using the average.
This can occur when one set of data has a large variation
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from the other 3 replicates, causing a skew in the aver-
age or when a time delay affects promotion and inhib-
ition responses. The 200-sample-set was also used to
determine if self-regulation could have been an option,
which was mainly done on the results that always
remained logic high, occurring once in the M1 cell and
validated with experimental results.

Mathematical modeling and validation
The linear programming approach determined the nodes
and possible connections in a network. Boolean regula-
tions among nodes were determined by the Karnaugh
map and represented by Boolean functions. With each
node in the network as a Boolean variable X, the evolu-
tion of the status of a network can be written as:

Xðk þ 1Þ ¼ M ⋉ XðkÞ; ð7Þ

where k represents current time point and k +1 for next
time point, X (k) and X (k + 1) represent current and fu-
ture states of the network, M is the state transition
matrix determined by Boolean functions and ⋉ repre-
sents the semi-tensor product [150]. We and other re-
search groups have established computational tools for
Boolean network models that are available for free
download [150–152]. .An example of determining a 3-
node network is shown in Fig. 12. The 8 states, state
transition matrix, and evolution of the 8 states for the 3-
node network was computed with our own software
package [151]. All codes associated with macrophage
polarization can be found in our GitHub link (https://

github.com/RicardoRamirez2020/Macrophage_Boolean_
Network_LP).

Establishment of a core network
Dynamics of Boolean networks become more compli-
cated with increasing numbers of nodes and Boolean
functions, resulting in difficulties in understanding and
analysis of the network. Given a network with N nodes,
there exist 2N states of the network and the state transi-
tion matrix will be 2N by 2N dimension, indicating a
huge computational cost. Simplification of a Boolean
network for easy analysis has been conducted to reduce
both the number of nodes and functions while still keep-
ing the capability of predicting all states of the network.
It’s worth to mention, output nodes of a network only
have incoming signals and do not affect the regulations
of the network. In addition, if multiple nodes are con-
nected by single direction links, all intermediate nodes
only transduce the signal with promotion (keep the
signal) or inhibition (Not operation). These nodes with
single direction connections can be simplified by keep-
ing the starting and ending nodes and the correspond-
ing Boolean function can be derived with basic logic
operations. Therefore, by removing the output and
intermediate transduction nodes, a core network can
be established to represent a Boolean network with
much simpler Boolean functions and fewer states for
simulation. Meanwhile, with the determined states of
a core network, states of removed nodes can be
reconstructed.

Fig. 12 The Boolean functions and evolutionary map for a 3-node network were illustrated
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Additional file 1: Figure S1. The core network for M1 activation by
removing output nodes and signal transduction node. Figure S2. The
core network for M2a activation by removing output nodes and signal
transduction node. Figure S3. The core network for M2c activation by
removing output nodes and signal transduction node.
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