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Abstract

Background: Genomic prediction is an advanced method for estimating genetic values, which has been widely
accepted for genetic evaluation in animal and disease-risk prediction in human. It estimates genetic values with
genome-wide distributed SNPs instead of pedigree. The key step of it is to construct genomic relationship matrix
(GRM) via genome-wide SNPs; however, usually the calculation of GRM needs huge computer memory especially
when the SNP number and sample size are big, so that sometimes it will become computationally prohibitive even
for super computer clusters. We herein developed an integrative algorithm to compute GRM. To avoid calculating
GRM for the whole genome, ICGRM freely divides the genome-wide SNPs into several segments and computes the
summary statistics related to GRM for each segment that requires quite few computer RAM; then it integrates these
summary statistics to produce GRM for whole genome.

Results: It showed that the computer memory of ICGRM was reduced by 15 times (from 218Gb to 14Gb) after the
genome SNPs were split into 5 to 200 parts in terms of the number of SNPs in our simulation dataset, making it
computationally feasible for almost all kinds of computer servers. ICGRM is implemented in C/C++ and freely
available via https://github.com/mingfang618/CLGRM.

Conclusions: ICGRM is computationally efficient software to build GRM and can be used for big dataset.
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Background
Majority of economic traits in animal and human dis-
eases have polygenic nature, the precise estimate of
genetic value is important for animal breeding and
disease-risk evaluation in human. Henderson [1] pro-
posed a best linear unbiased estimate (BLUP) to estimate
genetic value, which takes advantage of the inheritance
similarities among individuals based on pedigree infor-
mation. With the development of sequencing technique,
using whole genome-wide SNPs to calculate the similar-
ities among individuals has been well developed [2], in
which the pairwise kinship among individuals is usually
described with a matrix called genomic relationship

matrix (GRM). The method using GRM instead of pedi-
gree to estimate breeding value is called genomic best
linear unbiased estimate (GBLUP), which has been
widely applied to estimate breeding value in the animal
breeding program for dairy cattle and pig [3–5] instead
of BLUP method.
Recently, whole-genome re-sequencing technique has

been applied to genomic selection, by which millions of
SNPs can be genotyped. Although it is able to increase
the accuracy of breeding-value estimate, the computa-
tional RAM is very demanding. Furthermore, for some
species, such as dairy cattle, usually animals from mul-
tiple breeding farms and countries are combined for
breeding value prediction, which increases the RAM re-
quirement cubically. Therefore, it is very meaningful to
develop new software to solve this problem.
Sophisticated statistical method plays an important role

on discovery of important biology law, especially in the gen-
omic era [6, 7], it also helps to accelerate the computational
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speed or decrease the computer memory [8]. Current
method for GRM construction is largely based on VanRa-
den’s algorithm [9–13], although it is mathematically sim-
ple, the computer RAM cost is very big especially when the
number of individual and SNPs are huge. However, we
found the equation of VanRaden’s algorithm is additive for
both numerator and denominator. It motives us to factorize
VanRaden’s equation into two parts and calculates numer-
ator and denominator respectively. Taking advantage of
such additive character, we are able to use split and com-
bine strategy to reduce the computational burden.
We herein develop a package, called ICGRM, which

splits the genome SNPs into several parts and calculate
the summary statistics for each part that only needs very
few computer RAM; then combines the summary statis-
tics for each part to produce GRM. ICGRM avoids cal-
culating GRM for the whole genome at the same time;
thus it makes the construction of the GRM more effi-
cient for big dataset. The other feature of ICGRM is that
it can assign a weight for each SNP effect in the con-
struction of the GRM, by which it further increases the
prediction accuracy for breeding value estimate.

Implementation
We use Intel Math Kernel Library (Intel MKL) with
BLAS routine to perform matrix operation. BLAS imple-
mentations are optimized for speed on a machine in par-
allel, which greatly reduces the computational time. We
wrap the algorithm to computational package ICGRM,
which is implemented with a command line script, in-
cluding two parts, GRM calculation and integration rou-
tines. The command lines to achieve the task are below.
./clgrm_grm --in_file <inputFile> --weight_file <

inputWeightFile> --out_file <outputFile> -–threads_
num <numberOfThreads>
./clgrm_combine <inputFileList>
The first command line is to construct GRM matrix

for a specific genome segment, by which ICGRM calculates
GRM for each segment separately, where users can option-
ally define the weight of SNP effect with “--weight_file”;
and the second command line is to combine each GRM
from each segment/loci for generation of the final GRM.

Results
The idea of the proposed method is that it firstly splits
the genome SNPs into d segments, for each segment, it
calculates the summary statistics related to each GRM;
finally, it combines these summary statistics to produce
the GRM (see Fig. 1).

Integrating summary statistics to GRM
Suppose there are k SNPs in genome, in VanRaden’s
equation (VanRaden 2008), the GRM is expressed as:

G ¼ ZZ0
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Specifically, for two individual m and n with K SNPs
investigated, the relationship for individual m and n can
be expressed as
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Both numerator and denominator is the sum over sta-
tistics of K SNPs, respectively, which motivates us to
split k SNPs into d segments, each containing k1, k2, ⋯,

and kd SNPs, respectively, and K=
Pd

s¼1ks . Then we cal-
culate the two statistics for each segment. Specifically,

for segment s with ks SNPs, we calculate Ds ¼
Pks

j¼ks−1

zmjz
0
nj and Ns ¼

Pks
j¼ks−1pjð1−pjÞ , respectively, for s = 1,

2, ⋯, d and k0 = 1. After calculating these summary statis-
tics, we save them on computer disk, and then use them
to calculate GRM for whole genome using the eq. (3).

Gmn ¼
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s¼1Ds

2
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ð3Þ

Weighted GRM with SNPs
As suggested by Fragomeni et al. (2017), the accuracy of
the GBLUP can be further increased by taking the
weight of SNP effect into account and the weighted
GRM can be written as

G ¼ ZDZ0

2
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where, D is a diagonal matrix with the diagonal entry dj
being the weight of each SNP effect. For two individual
m and n,
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which shows that the numerator and denominator are
also additive for each SNP or segment, suggesting that
our split-combine strategy is also applicable for this case.
We also add this function into our package ICGRM for
ease of use.
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Simulations
To illustrate the performance of the proposed
method, we simulate a genome with the number of
individuals from 5000 to 30,000; and the number of
SNPs ranged from 0.1 to 10 million. As shown in
Table 1, when the number of SNPs is greater than
10 million and the number of individuals is greater
than 10,000, the computational memory cost is
greater than 250G, which has already been difficult
for many computer servers to run the job and we
also do not complete the job due to computer
memory limitation. We therefore employ ICGRM to
achieve this. For comparison, we keep using 10
CPU threads for calculation although we can use
more. We conduct an experiment using datasets
with 10 million SNPs and 5000, 10,000, 20,000, 30,
000 individuals, respectively. To decrease the mem-
ory use, for each setup, we split dataset into 5, 10,
20, 50, 100 and 200 parts, respectively, in terms of

SNP number; we calculate summary statistics for
each part, separately, and then integrate them to-
gether to produce GRM. The memory and compu-
tational time cost are shown in Fig. 2a. It can be
seen that when the dataset is split into more parts,
the memory cost decreased dramatically (~ 15 times
reduction from 5 to 200 parts); specifically, when
the individual number is set at 30,000, the memory
cost reduces from 218Gb to 14Gb, making it com-
putationally feasible for almost all kinds of com-
puter server. We also summarize the total
computational time in Fig. 2b. It shows that when
data are split into 5 to 50 parts, the total computa-
tional time cost is reduced about 7 times (using
server with Intel Xeon CPU and total RAM 384Gb);
but when the number of splitting parts is greater
than 50, the computational time is starting to in-
crease, and most of the computational time is con-
sumed during data writing process.

Fig. 1 The flowchart of the ICGRM

Table 1 The computer memory cost at different level of individuals and SNPs

0.1 Million SNPs 0.5 Million SNPs 1 Million SNPs 10 Million SNPs

5000 3. 9G 11.4G 20.7G 181.2Gb

10,000 6.4G 21.2G 39.9G –

20,000 12.3G 42.1G 79.4G –

30,000 19.8G 64.5G 118.3 G –
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Discussion
We have developed a computational efficient algorithm
and software ICGRM, which is useful for big dataset.
When the number of SNPs is greater than 10 million
and number of individual is greater than 10,000, the
current method is not able to run due to the computer
memory limit, but ICGRM solves this problem by split-
ting the dataset and merging the summary statistics,
which reduces the computer memory dramatically. The
software will be useful in future for prediction of gen-
omic breeding value for big dataset.

Conclusions
ICGRM is computational efficient software to build
GRM and can be used for big dataset.

Availability and requirements
Project name: CLGRM.
Project home page: https://github.com/mingfang618/

CLGRM
Operating system(s): Linux.
Programming language: C++.
License: No.

Fig. 2 The computational memory (a) and time cost (b) at different number of individuals and splitting parts
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