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Abstract

Background: Models including an interaction term and performing a joint test of
SNP and/or interaction effect are often used to discover Gene-Environment (GxE)
interactions. When the environmental exposure is a binary variable, analyses from
exposure-stratified models which consist of estimating genetic effect in unexposed
and exposed individuals separately can be of interest. In large-scale consortia
focusing on GxE interactions in which only the joint test has been performed, it may
be challenging to get summary statistics from both exposure-stratified and marginal
(i.e not accounting for interaction) models.

Results: In this work, we developed a simple framework to estimate summary
statistics in each stratum of a binary exposure and in the marginal model using
summary statistics from the “joint” model. We performed simulation studies to assess
our estimators’ accuracy and examined potential sources of bias, such as correlation
between genotype and exposure and differing phenotypic variances within exposure
strata. Results from these simulations highlight the high theoretical accuracy of our
estimators and yield insights into the impact of potential sources of bias. We then
applied our methods to real data and demonstrate our estimators’ retained accuracy
after filtering SNPs by sample size to mitigate potential bias.

Conclusions: These analyses demonstrated the accuracy of our method in
estimating both stratified and marginal summary statistics from a joint model of
gene-environment interaction. In addition to facilitating the interpretation of GxE
screenings, this work could be used to guide further functional analyses. We provide
a user-friendly Python script to apply this strategy to real datasets. The Python script
and documentation are available at https://gitlab.pasteur.fr/statistical-genetics/j2s.
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Background
Gene-Environment (GxE) interactions are of great interest in deciphering biological mecha-

nisms underlying complex human traits and diseases. Several theoretical approaches [1–3]

and applications [4–7] have recently been published that identify such GxE interactions. A

strategy to detect these interactions applies linear regression models including a GxE inter-

action term and testing for the hypothesis of null main genetic effect size and GxE interaction

effect size, also referred to as the “joint” test [8, 9]. Although several interactions have been as-

sociated with different traits using this joint test, the main limitation is that of large sample

sizes requirements to reach a suitable statistical power [10]. The Gene-Lifestyle Interaction

Working Group is an international, large-scale, multi-ancestry initiative within the Cohorts

for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium that aims to

systematically evaluate genome-wide GxE interactions on cardiovascular disease related traits

using genotypic data from up to 610,475 individuals [11]. This working group has already un-

raveled significant GxE interactions using the joint test [12–15]. Nevertheless, in the case of

binary exposures, alternative approaches can be of interest, notably to identify differential gen-

etic effects between unexposed and exposed individuals. This strategy requires summary sta-

tistics computed in each group of individuals separately, which may not always be available in

large-scale consortia. Because of logistical challenges, it can be difficult to obtain these sum-

mary statistics in such consortia including tens of individual cohorts.

To benefit from these consortia in which only summary statistics in the joint testing

framework may be available, we developed a simple tool to infer summary statistics in

the groups of unexposed and exposed individuals separately, as well as summary statis-

tics from the regression model without the GxE interaction term. First, we showed that

these summary statistics can be efficiently derived from the joint model assuming inde-

pendence between genotypes and exposure. We then performed a series of simulations

to assess the accuracy of these estimations and to examine the impact of different po-

tential sources of bias. Finally, we applied our pipeline to real data from the Gene-

Lifestyle Interactions Working group within the CHARGE Consortium.

Theoretical derivations
Consider a trait Y, a dichotomous exposure E and a SNP G coded as the number of

minor alleles. A framework to test Gene-Environment interactions is based on the gen-

eralized linear model:

g E Y jG½ �ð Þ ¼ αþ βG þ γE þ δGE

where g denotes either the identity function if Y is a quantitative trait or the logit func-

tion if Y is a binary phenotype.

The marginal model (i.e excluding the interaction term) in unexposed individuals

(E = 0), exposed individuals (E = 1) and all individuals are defined as:

g E Y G; E ¼ 0j½ �ð Þ ¼ αunexp þ βunexpG
g E Y G;E ¼ 1j½ �ð Þ ¼ αexp þ βexpG
g E Y jG½ �ð Þ ¼ αmarg þ βmargG þ γE

Assuming independence between the genotypes and the exposure (i.e E½GjE ¼ 0�
¼ E½GjE ¼ 1� ¼ G), the joint model can be used to retrieve the marginal genetic effects

βunexp and βexp in unexposed (e = 0) and exposed (e = 1) individuals respectively:
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g E Y G; E ¼ ej½ �ð Þ ¼ αþ βG þ γeþ δGe
¼ αþ βþ δeð ÞG þ γe

Then setting e to either 0 or 1, marginal effect sizes in unexposed individuals dβunexp

and in exposed individuals dβexp can be derived from the genetic and interaction effect

sizes (β̂ and δ̂ respectively) estimated in the joint model:

dβunexp ¼ β̂; σ
dβunexp

¼ σβ̂

dβexp ¼ β̂þ δ̂; σ
cβexp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
β̂
þ σ2

δ̂
þ 2 cov σβ̂; σδ̂

� �

r

where σ
β̂
and σ

δ̂
denote respectively the standard errors of the genetic effect and inter-

action effect in the joint model.

Similarly, summary statistics in the marginal model (excluding the interaction term)

can be derived from the joint model:

g E Y jG½ �ð Þ ¼ g E Y E ¼ 0j½ �ð Þ � ℙ E ¼ 0ð Þ þ g E Y E ¼ 1j½ �ð Þ � ℙ E ¼ 1ð Þ
¼ αþ βG½ � � 1−μEð Þ þ αþ βG þ γ þ δG½ � � μE

¼ αþ γμEð Þ þ βþ δμEð ÞG

Hence, the marginal genetic effect dβmarg and its standard error σ
dβmarg

are equal to:

dβmarg ¼ β̂þ δ̂μE

σ
dβmarg

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
β̂
þ μ2Eσ

2
δ̂
þ 2μE cov σβ̂; σδ̂

� �

r

Implementation
We developed a Python script to derive summary statistics in the marginal model and

in each group of individuals separately. As input, the script takes one file with the sum-

mary statistics from the joint model, that are genetic and interaction effect sizes, their

standard errors, the correlation between the two effect sizes and the sample size per

SNP corresponding to the number of genotypes available for this SNP (which may dif-

fer from the sample size of the study because of missing data). This file corresponds to

the output of the METAL software to meta-analyze GxE screenings using the joint test

[9]. In addition to this file, the script also takes two arguments that are the total sample

size N of the study and the number of exposed individuals Ne included in the study.

These two arguments are used to infer the sample sizes Nv � ðN−NeÞ
.

N
and Nv

�Ne
.

N
in the group of unexposed and exposed individuals respectively for each SNP,

where Nv is the sample size for the SNP. We also implemented a filtering procedure to

exclude variants with a low sample size compared to the distribution of the sample

sizes: a SNP with a sample size below the 9th decile of the sample size distribution di-

vided by 1.5 is excluded from the analysis. As output, the script generates a single file

containing the genetic effect size and its standard error in the group of unexposed indi-

viduals, in the group of exposed individuals and in the total sample. The script and a
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detailed documentation using an example are available at https://gitlab.pasteur.fr/statis-

tical-genetics/j2s.

Results
Simulation study

First, we performed a simulation study to assess the accuracy of the estimations ob-

tained from the theoretical results described above. In each of the 1000 replicates, we

simulated 10,000 genotypes of a SNP with a random MAF between 1 and 50% and a

binary exposure with a random probability of being exposed ranging from 0.1 to 0.5.

Then, we simulated a continuous phenotype Y = βGG + βGE + βGEG × E + ε as a linear

combination of the SNP G, the exposure E and the G × E interaction term with ran-

domly chosen effect sizes βG, βE and βGE and a random noise ε � N ð0; σ2Þ. The effect

sizes βG, βE and βGE were drawn from a uniform distribution on [0.05; 0.2] with a ran-

domly and equiprobably chosen sign. Note that in this design, genotypes G and expos-

ure E were drawn independently. Then, on the one hand, we computed the summary

statistics from the joint model including the GxE interaction term using individual level

data. On the other hand, we applied linear regressions without the GxE interaction

term in each group of individuals (unexposed and exposed) separately and in the

pooled sample to compute the summary statistics of the genetic effect in each group of

individuals and in the marginal model. Using the estimators derived from the joint

model, we also inferred these summary statistics in each group and in the marginal

model using our pipeline. Comparisons of the empirical and inferred summary statistics

showed high accuracy of the estimators, with intraclass correlation coefficient (ICC) be-

tween “real” and “estimated” equal to 1 in all scenarios (Fig. 1).

We also performed this simulation study for a binary trait. For each of the 10,000

replicates, we generated random effect sizes βG, βE and βGE as described above and then

simulated a binary outcome from a Bernouilli distribution, with the probability of being

a case as a binary trait from using a logistic model as PðY ¼ 1Þ ¼
1
.

ð1þ eαþβGGþβGEþβGEG�EþεÞ , where ε � N ð0; σ2Þ. We then conducted the same ana-

lyses as for quantitative traits by performing logistic regressions instead of linear regres-

sions to compare the summary obtained using individual-level data to those estimated

by our pipeline. As for quantitative traits, the estimator was highly accurate (Figure S1).

Potential bias sources

We performed several complementary simulation studies to assess the contribution of

several bias sources. Each time, we generated genotypes for 50,000 individuals and re-

peated the analysis 10,000 times.

First, the estimators’ derivation relies on the assumption that genotypes and environ-

ment are statistically independent. We performed a simulation study in which correl-

ation existed between genotypes and the environment. We then compared our

summary statistics estimated from the joint model to summary statistics derived using

individual-level data (Figs. 2, S2). Relaxing the G-E independence assumption did not

impact the estimator’s accuracy when deriving stratified summary. However, estima-

tions in the marginal model were slightly impacted by the correlation between G and E.
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Indeed, inferred effect sizes are a little biased and effect sizes standard errors are over-

estimated. Although estimation errors increase with the correlation, the impact on the

test statistics remains very limited.

Second, bias can occur because of a misspecification of the proportion of exposed in-

dividuals. This is very likely to happen for SNPs with a low sample size (because of

missing genotypes) compared to the maximum sample size. To evaluate the impact of

such a misspecification, for each SNP, we selected a subset of individuals to include

only a randomly selected proportion of individuals while intentionnaly misspecifying

the proportion of exposed individuals. For each subset, we removed a randomly se-

lected number of exposed individuals. We the compared the summary statistics ob-

tained using the individual-level data and those estimated using the pipeline. As

expected from the theoretical derivations detailed above, misspecifying the proportion

of exposed individuals, quantified as jμE−mEj
.

μE
where μE is the mean of the exposure

in the whole sample and mE is the mean of the exposure in the subsample, only im-

pacted estimations in the marginal model including all individuals. Notably, the larger

the difference between the true (in the subset of selected individuals) and the estimated

(computed in the whole sample) proportions of exposed individuals, the larger are the

discrepancies between the summary statistics (Figs. 2, S3).

Third, bias in our estimations can also occur due to differences in phenotypic vari-

ance between unexposed and exposed individuals. To explore this, we simulated a

phenotype with exposure-dependent variance by adding statistical noise to the

Fig. 1 Comparison between summary statistics derived from individual-level data (True) and their
estimations (Estimated) in unexposed (a) and exposed (b) individuals and in the marginal model (c) using
simulated data in the case of a quantitative phenotype
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phenotypes of exposed individuals and performed the same simulation study as de-

scribed above. A different phenotypic variance in the two groups of individuals did not

bias estimation of the summary statistics in the marginal model but it clearly biased the

estimation of summary statistics in the exposed and unexposed individuals (Figs. 2, S4).

Although this exposure-dependent phenotypic variance did not impact the estimation

of the effect sizes, it biased the estimation of the effect size standard error. Standard er-

rors tend to be overestimated in the group in which the phenotypic variance is the lar-

gest, leading to deflated test statistics and conversely. Importantly, the larger

differences in phenotypic variance yielded larger induced biases.

Finally, we also generated data (50,000 individuals and 10,000 iterations) under a null

model with neither a genetic effect nor an interaction effect to assess the control of the

type I error rate and quantify the discrepancies in significance results that can arise be-

cause of these different sources of bias (Figures S5, S6). Globally, the type I error rate is

well-controlled in the presence of G-E correlation and for SNPs with low sample com-

pared to the total sample size (Figure S5), but the systematic inflation (resp. deflation)

of chi-square statistics observed in a group of individuals when the phenotypic variance

differs depending on the exposure (Figure S4) leads to an uncontrolled type I error rate

(Figure S5). However, important discrepancies in the significance assessment evaluated

as the proportion of SNPs significant using Bonferroni-adjusted p-values with only one

of the two methods (using individuals-level data or the estimation pipeline) can be ob-

served, confirming the impact of these source of bias (Figure S6).

Real data application

We assessed the accuracy of our estimations using real data from the Gene-Lifestyle

Interaction Working Group of the CHARGE consortium [11]. This Working Group re-

cently published genome-wide SNP-by-alcohol interaction screenings [13] using joint

tests and focusing on three lipids level: triglycerides (TG), high-density lipoproteins

Fig. 2 Impact of the different sources of bias on the estimations. The Intraclass Correlation Coefficient (ICC)
between the test statistics from real data analysis and the test statistics estimated from the summary
statistics in the joint model in unexposed individuals only (red), exposed individuals only (blue) and in the
marginal model (green) are plotted by quintiles of the G-E correlation coefficient distribution (left), the
difference between the true and estimated proportion of exposed individuals (middle) and the distribution
of the difference in phenotypic standard deviation between unexposed and exposed individuals (right)
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(HDL), and low-density lipoproteins (LDL). Genome-wide screenings for genetic mar-

ginal effects were also performed in unexposed and exposed individuals separately and

in the whole sample. Here, we used summary statistics from the genome wide SNP by

exposure interaction screenings in individuals from European ancestry and derived

marginal summary statistics in unexposed and exposed individuals separately, and in

the whole sample. We then compared the inferred summary statistics with the empir-

ical summary statistics derived using individual-level data (Figs. 3, 4, 5). The estima-

tions exhibited high accuracy as demonstrated by the very high ICC between the

estimated and true summary statistics (mean ICC = 0.99). Note that some discrepancies

are observed for only a very limited number of SNPs (less than 100 out of more than 7

million variants) and do not influence much the ICC, which measures the “agreement”

between the true and estimated parameters. Overall, filtering to exclude SNPs with low

relative sample size (i.e below the 9th decile of the sample size distribution divided by

1.5) lead to more accurate estimations

Discussion
In this work, we aimed at inferring marginal genetic effects in exposed and unexposed

individuals separately and in the whole sample using summary statistics of the joint test

performed in the context of GxE interaction studies. We analytically derived estimators

of marginal genetic effects in the different groups of individuals and in the total sample.

We validated the method through simulation studies and real data applications which

Fig. 3 Comparison between summary statistics derived from individual-level data (True) and their
estimations (Estimated) in unexposed (a) and exposed (b) individuals and in the marginal model (c) using
real data summary statistics from the SNP by alcohol screenings on triglycerides
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both highlighted the accuracy of our estimations. Notably, this method can be applied

without loss of accuracy to quantitative and binary traits.

As demonstrated by our simulation studies, differences between true and estimated pa-

rameters are observed for SNPs with the lowest sample sizes. This is explained by a differ-

ent proportion of exposed individuals for this particular SNP and in the whole sample.

Also, our method also provides basic estimates of the expected sample size in the groups

of exposed and unexposed individuals. For the same reason, these estimates could be

biased for SNPs with low sample size compared to the total sample size. Consequently,

we implemented a procedure to filter out variants with low relative sample size to

minimize this potential bias.

Our estimations rely on the independence between genotypes and exposures. Relaxing

this assumption leads to biased estimations of the marginal effect size standard deviation

in the marginal model, but does not impact the accuracy of the estimations in the strati-

fied models. As correlation between SNPs and the exposure cannot be retrieved using

summary statistics from the joint model, although this assumption may not hold only for

a very limited number of SNPs,existing litterature may be helpful to identify variants

which should be discarded from the analyses because of existing correlation with the con-

sidered exposure. The correlations between genotypes and exposures are expected to be

low, resulting in little overall impact, as observed when validating our estimators using

real data from the Gene-Lifestyle Interaction Working Group.

Finally, we evaluated our estimations in the case of exposure-dependent phenotypic

variance. Although our simulations showed clear impacts on the estimations in the

Fig. 4 Comparison between summary statistics derived from individual-level data (True) and their
estimations (Estimated) in unexposed (a) and exposed (b) individuals and in the marginal model (c) using
real data summary statistics from the SNP by alcohol screenings on High Density Lipoproteins
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stratified models, we noted that the error increased with the magnitude of this differ-

ence. In real data applications, such differences in phenotypic variance are expected to

be small and should consequently have only a limited impact on the estimations in

each exposure stratum. Application to real data sets confirmed this notion as our esti-

mations were highly concordant with real data.

Overall, an advantage of exposure-stratified models is that they allow for a comparison be-

tween genetic effects in each group of individuals. This different way of quantifying GxE inter-

actions makes the interpretation more intuitive compared to the joint test by comparing

genetic effects between the two groups. In addition, exposure-stratified summary statistics can

also be used to apply further analyses such as biological pathways [16] or heritability-based

[17–19] analyses. Results from those analyses in each group could then be compared and help

better understanding the genetic architecture of the trait. These strategies could also highlight

different genetic mechanisms induced by the exposure, opening new path towards public

health prevention policies or the identification of potential drug targets.

Conclusion
In this work, we derived accurate estimations of the marginal genetic effects in unexposed

and exposed individuals separately and in the whole sample in the context of genome-

wide GxE interaction screenings using the joint test. This method can not only lead to a

more intuitive understanding of GxE interactions but also be used to perform additional

studies that can guide further functional analyses. We implemented j2s, a Python3 script

to easily apply this method, available at https://gitlab.pasteur.fr/statistical-genetics/j2s.

Fig. 5 Comparison between summary statistics derived from individual-level data (True) and their
estimations (Estimated) in unexposed (a) and exposed (b) individuals and in the marginal model (c) using
real data summary statistics from the SNP by alcohol screenings on Low Density Lipoproteins
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Availability and requirements
Project name: j2s

Project home page: https://gitlab.pasteur.fr/statistical-genetics/j2s

Operating systems: Linux

Programming language: Python3

Other requirements: None

License: MIT

Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03569-4.

Additional file 1: Figure S1. Comparison between summary statistics derived from individual-level data (True)
and their estimations (Estimated) in unexposed (A) and exposed (B) individuals and in the marginal model (C) using
simulated data in the case of a binary phenotype. Figure S2. Comparison between summary statistics derived
from individual-level data (True) and their estimations (Estimated) in unexposed (A) and exposed (B) individuals
and in the marginal model (C) using simulated data in the case of a quantitative phenotype when relaxing the
genotype-environment independence. Figure S3. Comparison between summary statistics derived from
individual-level data (True) and their estimations (Estimated) in unexposed (A) and exposed (B) individuals and in
the marginal model (C) using simulated data in the case of differences between the proportion of exposed individ-
uals for the SNP and the proportion of exposed individuals in the whole sample. Figure S4. Comparison between
summary statistics derived from individual-level data (True) and their estimations (Estimated) in unexposed (A) and
exposed (B) individuals and in the marginal model (C) using simulated data in the case of different phenotypic vari-
ance conditionally on the exposition. Figure S5. Comparison of the Type I error rate evaluated between summary
obtained using individual-level data (blue) and summary statistics estimated using the pipeline (orange) with re-
spect to the different quintiles of the different sources of bias: G-E correlation(A), misspecification of the proportion
of exposed individuals (B) and different phenotypic variance in the strata of the exposure (C). Type I error rate were
evaluated for the marginal model in all individuals (left), in unexposed individuals only (middle) and in exposed in-
dividuals only (right). The dashed line represents the nominal significance threshold (5%). Figure S6. Proportion of
SNPs with discordant significance results between summary statistics obtained using individual-level data and sum-
mary statistics estimated using our pipeline with respect to the different quintiles of the different sources of bias:
G-E correlation(A), misspecification of the proportion of exposed individuals (B) and different phenotypic variance
in the strata of the exposure (C). Type I error rate were evaluated for the marginal model in all individuals (left), in
unexposed individuals only (middle) and in exposed individuals only (right).
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