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Abstract

Background: S-glutathionylation is the formation of disulfide bonds between the
tripeptide glutathione and cysteine residues of the protein, protecting them from
irreversible oxidation and in some cases causing change in their functions. Regulatory
glutathionylation of proteins is a controllable and reversible process associated with cell
response to the changing redox status. Prediction of cysteine residues that undergo
glutathionylation allows us to find new target proteins, which function can be altered
in pathologies associated with impaired redox status. We set out to analyze this issue
and create new tool for predicting S-glutathionylated cysteine residues.

Results: One hundred forty proteins with experimentally proven S-glutathionylated
cysteine residues were found in the literature and the RedoxDB database. These
proteins contain 1018 non-S-glutathionylated cysteines and 235 S-glutathionylated
ones. Based on 235 S-glutathionylated cysteines, non-redundant positive dataset of 221
heptapeptide sequences of S-glutathionylated cysteines was made. Based on 221
heptapeptide sequences, a position-specific matrix was created by analyzing the
protein sequence near the cysteine residue (three amino acid residues before and three
after the cysteine). We propose the method for calculating the glutathionylation
propensity score, which utilizes the position-specific matrix and a criterion for
predicting glutathionylated peptides.

Conclusion: Non-S-glutathionylated sites were enriched by cysteines in − 3 and + 3
positions. The proposed prediction method demonstrates 76.6% of correct predictions
of S-glutathionylated cysteines. This method can be used for detecting new
glutathionylation sites, especially in proteins with an unknown structure.

Keywords: S-glutathionylation, Peptide sequence, Protein glutathionylation, Redox
modification, Prediction method, Glutathionylation propensity score
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Introduction
S-glutathionylation is the reversible formation of disulfide bonds between cysteine resi-

dues of a protein and glutathione tripeptide associated with cell response to changes in

redox conditions, including hypoxia, ischemia and reperfusion. This mechanism is an

important part of the co- and post-translational regulation of the function of various

proteins [1–3]. Glutathionylation of proteins is a protective and adaptive mechanism. It

affects a number of transport proteins, such as Serca, RyR, VGCC, which allow main-

taining normal calcium flow in the myocardium under various pathological conditions

[4]. Undoubtedly, glutathionylation also has a regulatory effect, affecting protein func-

tionality depending on the redox status in the cell [5–7]. For example, glutathionylation

of Na,K-ATPase occurs during hypoxia, which leads to Na,K-ATPase partial inhibition

and helps to save ATP for cell survival [3, 8].

Thus, the determination of cysteine residues, which are potential targets for glu-

tathionylation, is important for understanding the mechanisms of glutathionylation ef-

fect on proteins functioning and confirmation of targets by mutagenesis. Prediction of

glutathionylating cysteine residues allows finding new target proteins that alter function

in pathologies associated with impaired redox status.

There are a number of studies based on these collected data on the prediction of glu-

tathionylation sites in proteins [9–13]. An analysis of flanking regions in some studies

showed the presence of negatively charged residues around S-glutathionylated cysteines

[10], while in others, the preference for positively charged ones [6, 12] was substanti-

ated. In all papers published in this field, the cysteines that were not found to be glu-

tathionylated were selected as negative control [9–14]. Namely, those cysteines that did

not react in the specific conditions of the glutathionylation experiment. However, the

reason for the non-interaction of such cysteines with glutathione can have a different

cause. Firstly, the cysteine can be located inside the protein or in transmembrane re-

gion and not be accessible to the solvent. Secondly, reactivity of thiol group concerns

with its deprotonation which depends on pKa group and environmental conditions. So

it is difficult to create true negative dataset. We suggested that the ability of cysteines

to react with glutathione can be affected by amino acids located quite close in the

chain. To test our hypothesis, we analyzed short (3 aa) sequences of flanking regions of

a non-redundant set of 221 experimentally confirmed glutathionylation sites in 140

proteins and proposed a simple method for predicting glutathionylation.

Materials and methods
Existing databases and services on S-glutathionylation prediction

RedoxDB was the first protein glutathionylation database [14]. It included 242 experi-

mentally verified S-glutathionylation sites on 153 S-glutathionylation proteins, which

subsequently, together with data from SGDB [9], became the basis for the dbGSH data-

base [10]. The dbGSH collection also includes 19 experimentally verified S-

glutathionylation sites (GSH) in UniProt release 2013–03, 75 experimentally verified S-

glutathionylation sites on 37 S-glutathionylation proteins from paper [10] and 1816 ex-

perimentally verified S-glutathionylation sites in 1011 S-glutathionylation proteins from

paper [12]. A server PGluS for predicting glutathionylation sites was presented in [11].

Nowadays there is only one GSHSite server [12], which stores data on known
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glutathionylation sites and allows predicting glutathionylation sites in protein (http://

csb.cse.yzu.edu.tw/GSHSite/index.php).

S-glutathionylated cysteines positive non-redundant dataset

S-glutathionylathion sites were obtained from the reviews dedicated to regulatory glu-

tathionylation of proteins [2, 15, 16] and from databases RedoxDB [14] and hprd.org.

Sequences of animal and human proteins, where glutathionylation was confirmed by

methods of molecular biology (mass spectrometry and site-directed mutagenesis) were

selected for further analysis. Some sequences were obtained from uniprot.org, search

was performed using the keyword “Glutathionylation [KW-0318]”. Sequences were

taken as heptapeptides, containing three aminoacid residues to the left and to the right

from the target cysteine residue.

Repeating heptapeptides were excluded from S-glutathionylation positive dataset.

Thus, 221 non-redundant S-glutathionylation sites of 140 proteins with experimental

verification were found (see Additional file 1).

Negative dataset

For a negative dataset, we needed to find experimentally proven cases where the cysteine

residue of protein, being available to the solvent and glutathione, does not react with

glutathione. We have found cases where only a part of cysteines is glutathionylated in a

protein. However, it turned out to be impossible to prove that non-S-glutathionylated cys-

teines are freely available to the solvent and glutathione. Therefore non-S-

glutathionylated cysteines were taken for the negative dataset, as in the other studies [9–

14]. We excluded from the negative sample 33 cysteines located, according to Uniprot, in

transmembrane domains, since such cysteines are not accessible to the solvent. So, nega-

tive dataset contains 1047 non-S-glutathionylated cysteine residues from 140 proteins.

Position specific matrix (PSM)

Non-redundant positive dataset of 221 heptapeptides became the basis for position spe-

cific matix (Table 1). Elements of the table represent the occurrence of amino acid resi-

dues at a given position. For example, in the third position to the left from cysteine,

alanine was found 20 times and in the first position to the right from cysteine, glycine

was found 24 times in a set of 221 heptapeptides.

Glutathionylation propensity score S

We proposed a glutathionylation propensity score S, calculated by the position-weight

matrix as the sum of the elements equal to the occurrence of these residues at the cor-

responding positions. For example, for the WRVCALL heptapeptide, the S value will be

4 + 8 + 13 + 221 + 14 + 22 + 21 = 303 (Table 1). Such values are given for each heptapep-

tide from our datasets (Fig. 1; Additional file 1).

Glutathionylation propensity score distribution for all combinatorially possible

heptapeptide sequences with cysteine in the central position

The distribution of the score for all possible sequences of heptapeptides with cysteine

in the central position is calculated by enumerating 20 aminoacids in three positions to
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Table 1 The occurrence of amino acid residues in short flanking regions around glutathionylation
sites calculated from the 221 heptapeptide sequences (position-specific matrix, PSM)

AminoAcid Positions in heptapeptide sequence

L3 L2 L1 C R1 R2 R3

– 2 0 0 0 2 4 4

A 20 14 28 0 14 19 18

C 2 4 5 221 4 4 3

D 11 9 14 0 13 12 12

E 16 15 10 0 13 16 20

F 9 9 7 0 11 7 5

G 16 17 20 0 24 14 15

H 5 7 7 0 5 8 5

I 12 10 15 0 8 4 6

K 14 18 14 0 14 13 18

L 15 17 26 0 18 22 21

M 3 5 3 0 8 4 8

N 8 7 7 0 5 6 13

P 10 18 8 0 16 15 12

Q 9 3 5 0 2 11 8

R 13 8 9 0 9 12 11

S 15 10 13 0 19 14 18

T 11 25 11 0 13 17 9

V 14 14 13 0 14 12 8

W 4 2 1 0 1 1 2

Y 12 9 5 0 8 6 5

Fig. 1 Relative frequencies of score S for all combinatorially possible heptapeptide sequences (gray) and for
heptapeptides with experimentally shown glutathionylation of cysteine (black) in the central position
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the right and three positions to the left from the cysteine residue (Fig. 1). Thus, this

gives 206 possible variants of such sequences (since is only the cysteine in the central

position of all such sequences).

Glutathionylation propensity score cut-off value

Prediction with respect to glutathionylation was done on the basis of S score. Cut off

value splits graphs of the distributions for all combinatorially possible heptapeptide se-

quences and for positive dataset sequences so that areas under the curves are equal

(Fig. 1). Сut off value was found at S = 294. Sequences having S > 294 were predicted to

undergo glutathionylation. Sequences with S ≤ 294 were predicted not to undergo glu-

tathionylation. Prediction was carried out for positive dataset as well as negative dataset

(see Additional file 1). The predicted glutathionylation status was compared with the

actual glutathionylation status by calculating sensitivity, specificity, accuracy, balanced

accuracy and Mathew’s correlation coefficient (as in [12], for example).

Validation using three control elements procedure (jackknife resampling)

To perform a validity test we removed three randomly selected heptapeptides from

non-redundant positive dataset, then we constructed PSM for the remaining 218 hepta-

peptides from the dataset (by subtracting from the original matrix the occurrence of

residues of the selected peptide). Next, using a modified position-specific matrix, we

calculated Glutathionylation Propensity Scores for all possible heptapeptide sequences

with cysteine in the central position and for new positive dataset of 218 heptapeptides.

For excluded peptides, we calculated the Glutathionylation Propensity Score and com-

pared it with a threshold value. In each experiment, it was determined how many of

the three heptapeptides were recognized correctly (3, 2, 1, 0). Jackknife resampling was

repeated 200 times. The overall accuracy of the method was determined as the number

of correctly defined sequences of 3 * 200 = 600 control points.

Results
The frequency of occurrence of amino acids in short flanking regions around cysteines

susceptible to glutathionylation

We selected 140 proteins containing cysteines susceptible to glutathionylation to

analyze the effect of short flanking regions (Additional file 1). All cysteines susceptible

to glutathionylation were extracted as heptapeptides with cysteine in the center. Dupli-

cated heptapeptide sequences were excluded. A non-redundant set of 221 heptapeptide

sequences with S-glutathionylated cysteine in the center was used for analysis. A matrix

reflecting the occurrence of various types of amino acid residues in three positions to

the right and left of such cysteine (Table 1, Fig. 2) was compiled.

Figure 2 shows that all types of amino acids are found in flanking regions. The occur-

rence of amino acid residues in flanking regions is slightly different from the occur-

rence of amino acid residues in 5029 proteomes. The exception is the significantly

lower occurrence of tryptophan around S-glutathionylation sites than in 5029 pro-

teomes. But one can see that tryptophan is less common in our protein set than in

5029 proteomes. Slightly more often than in 5029 proteomes, histidine, glycine, lysine,
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proline, and threonine are found around the S-glutathionylated cysteine residues. A lit-

tle less often - isoleucine, asparagine, glutamine, arginine, serine, valine.

Comparison of the occurrence of amino acid residues in the positive and negative

heptapeptide datasets by the TwoSampleLogo method showed that cysteines are often

found in non-S-glutathionylated heptapeptides at positions + 3 and − 3 from the central

cysteine residue (Fig. 3). We suggest that in such pairs of cysteines a disulfide bond

forms that protects cysteine residues from oxidation under conditions of oxidative

stress. Such a mechanism is implemented in the ribonuclease inhibitor protein [17].

Protein-S-Glutathionylation prediction method by amino acid context

To construct a simple method for predicting glutathionylation, we proposed to assign a

glutathionylation propensity score S, calculated by a position-specific matrix as the sum

of the elements equal to the occurrence of these residues at the corresponding posi-

tions, to each heptapeptide. So, for example, for the heptapeptide WRVCALL, this S

value will be 4 + 8 + 13 + 221 + 14 + 22 + 21 = 303 (Table 1).

Fig. 2 The occurrence of amino acid residues in the flanking sites of glutathionylation sites. Occurrence in
the positive dataset (black), in 5029 proteomes (white), in this dataset of 140 proteins (gray) and in the
negative dataset (striped)

Fig. 3 TwoSampleLogo presents the compositional biases of amino acids around S-glutathionylation sites
compared to non-S-glutathionylation sites in the same 140 proteins. The significant amino acids around S-
glutathionylated cysteine residue is enriched in the positive dataset and presented in upper panel (p <
0.05). Relatively, the high frequency around non-S-glutathionylated cysteines is depleted in the negative
dataset and presented in lower panel
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We calculated the S value for each of the 221 heptapeptides analyzed with the cyst-

eine residue in central position and examined the distribution of its values (Fig. 1). One

can see that the distribution is normal-like shape and unimodal.

Strictly speaking, in order to construct a prediction method, it is necessary to have

data of two equal samples: positive and negative.

However, we believe that it is possible to find experimental conditions that any cyst-

eine available to the solvent will interact with glutathione. Thus, the set of non-S-

glutathionylated cysteines is fundamentally absent. Indeed, it was not possible to find

experimentally confirmed cases in the literature that cysteines, being accessible to the

solvent and glutathione, do not react with it. In the absence of confirmed data on non-

S-glutathionylated cysteines, we used the distribution of S score for all combinatorially

possible heptapeptides with cysteine in the central position as the base sample (the total

number of such heptapeptides is 206).

We compared the distribution of S score for the 221 S-glutathionylated cysteine hep-

tapeptides with the S score distribution for all combinatorially possible heptapeptide se-

quences with cysteine in the central position. Figure 1 shows the relative frequencies of

score S values for all possible heptapeptides and for 221 heptapeptides with S-

glutathionylated cysteine.

For the formal separation of these two distributions, we used the criteria of Mann-

Whitney [18] and Wilcoxon [19] nonparametric statistics. These criteria do not require

the distribution law of the compared values and can be used in situations where two

unimodal distributions differ in mathematical expectations.

The calculated Mann-Whitney statistics U = 1050 (the number of degrees of freedom

df = 51). The probability that these two distributions differ is P = 0.953 (i.e., they differ

with a significance level of 0.047). The Wilcoxon test also gives a similar result (a sam-

ple value of Wilcoxon statistics W = 1.692, the number of degrees of freedom df = 51,

the probability of differences in distributions P = 0.955, p = 0.045). Thus, both tests con-

firm the formal difference between these distributions.

In order to make the simplest decisive rule for predicting S-glutathionylation of cen-

tral cysteine of heptapeptide, it is necessary to determine the cut-off value with respect

to the areas under the graphs of the two compared distributions that are equal. Having

determined the area under the distribution curves, we found that this boundary is S =

294. Thus, the decision on whether the heptapeptide belongs to the class of S-

glutathionylated is made if the value of the calculated glutathionylation propensity

score S exceeds the threshold value of 294.

Conclusions on this decision rule, as when testing any statistical hypothesis, are formu-

lated with varying degrees of confidence. Namely, we make the prediction of cysteine S-

glutathionylation with greater confidence than non-S-glutathionylation. This is due to the

lack of experimentally proven negative control, i.e. such cysteines on the surface of the

protein, which, being accessible to the solvent and glutathione, do not react with it.

We applied the proposed decision rule to 1282 cysteines from 140 S-glutathionylated

proteins (see Additional file 2, lines 1284–1293). It can be seen that in 180 cases a truly

positive forecast was obtained, 628 false positives, 55 false negative and 419 true nega-

tive forecasts (Table 2). We compared our results with the prediction computed by the

method proposed by Pal et.al [13]. It can be seen that the scores of Sensitivity and Mat-

thew’s correlation coefficient(MCC) in our method turned out better. Specificity and

Anashkina et al. BMC Bioinformatics 2020, 21(Suppl 11):282 Page 7 of 12



Accuracy are approximately equal. Note that for our purposes, it is important not to

miss the S-glutathionylated cysteine residues, which means maximizing the Sensitivity

score.

To verify the reliability of the proposed method for the recognition of S-glutathionylated

cysteines, we used modern resampling methods. The main advantage of this popular ap-

proach is the absence of the need to make and verify any assumptions about the distribution

law of the variables. We made 200 Jackknife resampling experiments as described in the

Materials and Methods section. Jackknife resampling with a random exclusion of three ele-

ments showed that in 6 cases out of 200, no control heptapeptide (out of the three excluded

when calculating the PSM matrix) was correctly recognized by the proposed method. In 25

cases out of 200, one control peptide of the three was correctly recognized, in 102 cases two

control peptides were recognized, and in 68 cases all three control peptides were recognized

correctly. This indicates a good predictive ability of the proposed method on real data. The

percentage of correct classification is 72.2% (Sensitivity).

Discussion
Glutathionylation plays an indispensable role in protecting cell viability during oxida-

tive stress. S-glutathionylation prevents irreversible oxidation of cysteines and protects

proteins from subsequent inactivation and degradation. Some glutathionylated proteins

significantly change their function, which helps the cell adapt to altered redox condi-

tions. For example, inhibition of Na,K-АТPase under hypoxia prevents ATP depletion

and promotes cell survival [3].

The prediction of S-glutathionylated cysteine residues in proteins is very important. It

will allow checking the predicted residues by site-directed mutagenesis, analyzing struc-

tural changes and understanding how the function of these proteins changes during oxi-

dative stress. It is necessary to have as full as possible prediction of S-glutathionylated

cysteine residues. In this case, it is more important not to lose potential candidates than

to receive false positive predictions. This requirement corresponds to maximization of the

Sensitivity score, which reflects the completeness of prediction of the positive dataset.

The interaction of glutathione with cysteine residues of proteins is possible due to at

least two critical factors. The first is the accessibility of the cysteine residue for the solv-

ent, and, accordingly, for interaction with glutathione. The flanking regions around

cysteine indirectly characterize its position in the protein structure. Thus, the presence

Table 2 PSM prediction results and comparison with Pal et al. [14] in a sample of 1282 cysteines
from 140 proteins

PSM Pal et al. [14]

TruePositive 180 161

FalsePositive 628 612

FalseNegative 55 74

TrueNegative 419 435

Sensitivity 0.766 0.685

Specificity 0.400 0.415

Accuracy 0.467 0.465

Balanced accuracy 0.583 0.550

MCC 0.133 0.080
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of hydrophobic residues may suggest the location of this cysteine inside the protein.

The presence of charged, polar or residues with hydrogen bonds may indicate the loca-

tion of such cysteine on the surface and accessibility to the solvent. However, it is im-

possible to check the accessibility of cysteine to solvent in the absence of the structure

of this protein. Even the presence of an experimentally determined protein structure

cannot guarantee the absence of steric difficulties in the interaction of glutathione with

cysteine in vitro and in vivo. This is evident, because there are local and even global dif-

ferences in the three-dimensional structure of protein under different conditions.

The second factor is the reactivity of cysteine residue. Reactivity is determined

by many factors, such as the properties of the solution (in particular pH, ionic

strength, the presence of ions, the redox status of the cell) and amino acid con-

text of the sequence, which affects the shift in electron density. Adjacent posi-

tively charged amino acids can facilitate deprotonation of cysteines SH group

(pKa usually 8.3–8.5; ranges from 3.4 to 9.5) and increase their reactivity [6]. It

is possible to select appropriate experimental conditions for the reaction of any

accessible protein cysteine with glutathione. A pure experiment to evaluate the

influence of amino acid context and environmental factors is the experiment with

short peptides containing cysteine. However, no such experiments have been car-

ried out so far. Thus it is necessary to predict cysteine reactivity for glutathiony-

lation in physiological conditions. Thus, it is impossible to create true negative

dataset until we discover influence of aminoacid environment on cysteines

reactivity.

We have created S-glutathionylation predictor that does not take into account the

negative control (Table 1, Fig. 1). Choosing a cut-off value of 294, which corresponds

to the equality of the right and left parts of graph 3, we obtained 76.6% of the correctly

predicted positive dataset. By reducing the cut-off value, we can increase the Sensitivity.

Other quality indicators naturally get worse. By lowering the cut-off value to 279, we

can get the correct prediction of more than 95% of glutathionylated cysteines. Natur-

ally, the number of false positive predictions increases. However, as mentioned above,

in this case it is more important not to miss possible glutathionylation sites. False posi-

tive sites can be excluded experimentally.

In addition, we suggest that the spatial context may affect the ability to react with

glutathione. That is, amino acid residues that are distant in sequence but close in space

can, in our opinion, affect the reactivity of this cysteine to glutathionylation. This as-

sumption requires further study.

Possibly, recognition indicators of glutathione-cysteine can be improved if not all the-

oretically possible sequences of seven residues (heptapeptides) with cysteine in the cen-

tral position were considered for comparison with S-glutathionylated heptapeptide

sequences dataset, but only those that really do not react with glutathione when access-

ible to solvent and glutathione. In addition, it is evident that not all combinatorially

possible heptapeptide sequences exist in nature. It can also be expected that the accur-

acy of the prediction will increase with an increase in the number of known of S-

glutathionylation sites.

In this article, we have presented simple successful predictor for identifying S-

glutathionylated sites from short flanking sequences around cysteine residues. The

proposed predictor is based on position-specific matrix, S-glutathionylation
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propensity score calculation and cut-off value of 294. The performance of the

method was measured with a sensitivity of 76.6% and MCC of 0.13. Additionally,

the proposed method was evaluated using a Jackknife resampling experiment

resulting in a sensitivity of 72.2%. The proposed method may be useful for detect-

ing new glutathionylation sites, especially in proteins with an unknown structure.

Sensitivity achieved with our position-specific matrix is greater than when calcula-

tions were performed using the method of Pal et al. [13]. In this paper authors im-

plemented a very similar approach. Pentapeptides were used (sequences with two

amino acid residues around glutathionylation site) to calculate position dependent

F-scores, which measure how a particular amino acid at a particular position may

affect the likelihood of glutathionylation event. Glutathionylation-score, indicating

propensity of a sequence to undergo glutathionylation, was calculated using

position-dependent F-scores for each amino-acid. We demonstrated that taking

into account not two, but three amino acids around the glutathionylation site im-

proves prediction (Table 2). Another existing prediction tool, GSHSite server [12],

is based on the analysis of long flanking areas (ten residues on each side). An or-

thogonal binary coding scheme was adopted to transform amino acids into numeric

vectors, in the so-called 20-dimensional binary coding. For the composition of 20

amino acids surrounding the S-glutathionylation sites, the vector had 20 elements

for the amino acid composition and 441 elements for the amino acid pair compos-

ition. High dimensional vectors are analyzed by support vector machine and max-

imal dependence decomposition methods. GSHSite server functions well on those

proteins that are included in its own database. However, it does not function for

proteins not included in this database. In addition, if the target cysteine residue is

located at a distance of less than 10 amino acids from the N- or C-terminus of the

protein, then analysis is not performed.

Conclusions
Here the new method for prediction of glutathionylation sites in proteins and peptides

has been developed. High sensitivity of the method allows not to lose potential glu-

tathionylation sites in proteins. The matrix reflecting the occurrence of various types of

amino acid residues in three positions to the right and left of such cysteine was created.

Non-S-glutathionylated sites were enriched by cysteines in − 3 and + 3 positions. The

proposed method is useful for detecting new glutathionylation sites, especially in pro-

teins with an unknown structure.
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