
METHODOLOGY ARTICLE Open Access

Hap10: reconstructing accurate and long
polyploid haplotypes using linked reads
Sina Majidian1, Mohammad Hossein Kahaei1* and Dick de Ridder2

* Correspondence: kahaei@iust.ac.ir
1School of Electrical Engineering,
Iran University of Science &
Technology, Narmak, Tehran
16846-13114, Iran
Full list of author information is
available at the end of the article

Abstract

Background: Haplotype information is essential for many genetic and genomic
analyses, including genotype-phenotype associations in human, animals and plants.
Haplotype assembly is a method for reconstructing haplotypes from DNA sequencing
reads. By the advent of new sequencing technologies, new algorithms are needed to
ensure long and accurate haplotypes. While a few linked-read haplotype assembly
algorithms are available for diploid genomes, to the best of our knowledge, no
algorithms have yet been proposed for polyploids specifically exploiting linked reads.

Results: The first haplotyping algorithm designed for linked reads generated from a
polyploid genome is presented, built on a typical short-read haplotyping method,
SDhaP. Using the input aligned reads and called variants, the haplotype-relevant
information is extracted. Next, reads with the same barcodes are combined to produce
molecule-specific fragments. Then, these fragments are clustered into strongly
connected components which are then used as input of a haplotype assembly core in
order to estimate accurate and long haplotypes.

Conclusions: Hap10 is a novel algorithm for haplotype assembly of polyploid genomes
using linked reads. The performance of the algorithms is evaluated in a number of
simulation scenarios and its applicability is demonstrated on a real dataset of sweet
potato.

Keywords: DNA sequence analysis, Computational genetics, Haplotype, Synthetic long
reads, Linked read, 10X genomics, Polyploid genomes, Clustering, Mathematical
optimization

Background
Polyploids are organisms that possess three or more copies of each chromosome.

There are numerous cases of polyploidy in the animal kingdom, including fish, am-

phibians and reptiles [1]. In plants, economically important crops such as potato,

wheat, cotton and oat are polyploids [2]. For many genetic and genomic analyses, it is

essential to know the sequence of alleles at variant sites corresponding to each hom-

ologous chromosome, i.e. the haplotypes. Haplotype information is needed to under-

stand recombination patterns and uncover genotype-phenotype associations, with

important applications in medicine [3] and plant breeding [2]. The development of

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Majidian et al. BMC Bioinformatics (2020) 21:253
https://doi.org/10.1186/s12859-020-03584-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03584-5&domain=pdf
http://orcid.org/0000-0002-1920-659X
mailto:kahaei@iust.ac.ir
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

DNA sequencing technologies, specific protocols and computational tools make it pos-

sible to reconstruct the haplotypes of individuals to some extent. Nevertheless, obtain-

ing haplotypes of polyploids remains a challenging computational problem [4].

Several algorithms for polyploid haplotyping have been developed in recent years for

diploid and polyploid haplotyping [5, 6]. In the absence of DNA sequencing errors, the

haplotyping problem reduces to a simple clustering if the provided reads are sufficiently

long to cover neighbouring variants. If errors have to be taken into account, no

polynomial-time solution is known. Therefore, different approximative and heuristic

approaches have been used to estimate haplotypes. HapTree [7] is a greedy likelihood-

based algorithm in which SNPs are added incrementally while keeping the tree of pos-

sible solutions to a manageable size. SDhaP [8] solves a correlation clustering problem

using a gradient method to estimate the haplotypes. H-PoP [9], a heuristic algorithm,

solves a combinatorial optimization problem called “polyploid balanced optimal parti-

tion”. Another approach is to use the minimum fragment removal (MFR) model in

which conflicting fragments (due to erroneous reads) are removed. Siragusa et al. de-

vised a new algorithm based on the MFR model, which uses integer linear program-

ming [10]. Polyphase, part of WhatsHap [11], is a method for polyploid haplotyping

developed for short and long reads. Reads are clustered based on a position-based

score, and haplotypes are threaded by dynamic programming. Poly-Harsh [12] is an-

other method, minimizing the difference between the haplotypes and the input reads

using a Gibbs sampling approach. The HapCompass algorithm [13] defines a SNP

graph, removing a minimum number of weighted edges to obtain unique haplotypes.

This is done by finding the spanning tree in such graph. RanBow [14], another program

developed for short reads, first creates haplotype segments as the consensus sequences

of fragments and then a graph in which haplotype segments and their overlaps are

nodes resp. edges. The graph is used to merge the overlapping segments and calculate

the haplotypeblocks [14]. For a recent review on different methods of polyploid haplo-

typing, see [6].

The above-mentioned algorithms are developed solely for short reads generated by

Illumina DNA sequencing machines. These produce reads that have a low sequencing

error rate (~ 0.1%) but do not provide long-range information, which is key in recon-

struction of long haplotypes. Over the last years, a novel category of sequencing tech-

nology characterized by long-read sequencing was developed and commercialized by

Pacific Biosciences and Oxford Nanopore [15]. However, successful application of long-

read sequencing for haplotyping is hampered by the still high sequencing error rate

and significant costs involved. Although a new technique has been recently been pro-

posed to resolve the issue of high error rate [16].

Recently, 10X Genomics developed a linked-read sequencing library preparation

strategy, commercialized through their Chromium platform, as a complementary tech-

nology to Illumina devices. This platform has the potential to provide long fragments

at both low error rate and cost. In brief, the input genomic DNA, as little as 1 ng, is

sheared into molecules of ~ 10–100 kbp. Subsequently, these molecules are isolated,

partitioned into fragments, tagged with a unique 16 bp barcode, and amplified on beads

in an emulsion. The resulting material is then sequenced by normal Illumina paired-

end technology, which results in high-throughput reads that contain long-range gen-

omic information through these barcodes [17]. The 10X technology described above is

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 2 of 18

one example of a general approach called synthetic long reads (SLRs), in which the low

cost and high accuracy of short reads are combined with long range information pro-

vided by a barcoding scheme. Besides 10X Genomics, such technologies are commer-

cialized by Illumina, Loop Genomics and Universal Sequencing Technology [18]. Such

linked reads make it possible to assemble repetitive genomic regions as well as recon-

struct long haplotype blocks. 10X Genomics delivers a likelihood-based algorithm in a

software package called LongRanger to reconstruct haplotypes of diploid organisms

such as humans [17, 19]. HapCUT2 [20] includes a program dedicated to linked-read

haplotyping of diploids, which assembles the haplotypes to be maximally consistent

with the read dataset by exploiting a likelihood-based model. Porubsky et al. proposed

using a mixture of linked-read and strand-seq data to improve haplotype assembly [21].

However, no polyploid haplotyping algorithm is available at this moment, precluding

the application of 10X-based haplotyping to a number of commercial crops and ani-

mals. Current polyploid haplotyping algorithms can be used on the obtained reads, ig-

noring the barcode information, but obviously the reconstructed haplotype blocks

would be shorter than possible.

Exploiting the barcode information for haplotyping is possible by leveraging the so-

called “fragment file” format. This format is used in preprocessing steps in several hap-

lotyping algorithms [8, 20, 22]. The extractHAIRs (Extract HAplotype Informative

Reads) program in the HapCUT2 package [20] can be used to produce a fragment file

based on aligned reads and heterozygous SNPs. Such a file contains only the relevant

information from reads: the coded alleles of each read at the SNP position and their

quality (see Step 2 of "Hap++" Section and the illustrative example in Supplementary

information: Figure S1). While extractHAIRs is dedicated to diploids and is used for

haplotyping based on 10X linked reads, the same concept (with some modifications)

may be applied to polyploids. Using the obtained fragment file as input of a haplotype

assembly core, SDhaP [8], long haplotype blocks of a polyploid can be reconstructed.

However, in our simulations for a small genome using the aforementioned approach

we obtained poor results in terms of reconstruction rate and vector error rate. More-

over, SDhaP crashes for larger datasets. This indicates that this short-read haplotyping

algorithm is currently unable to directly handle linked read data generated from a poly-

ploid genome.

To tackle this computational problem, we designed Hap10 – a first haplotyping soft-

ware package specifically tailored for 10X linked reads generated from a polyploid gen-

ome. We provide a general framework based on SDhaP that allows haplotyping at the

chromosome scale. Furthermore, we propose a novel optimization method that gener-

ates more accurate haplotypes with almost the same block length.

Methods
We have developed the Hap10 package to reconstruct haplotypes from a polyploid gen-

ome using linked reads. Prior to haplotyping, several processing steps on sequencing

reads are required. These include barcode handling, read alignment and variant calling,

which are discussed in "Preparation procedure" Section. Thereafter, Hap++, a new pipe-

line for polyploid haplotyping of linked reads is explained in detail in "Hap++" Section.

This pipeline uses SDhaP as the assembly core. Lastly, the Hap10 algorithm is pre-

sented in "Hap10: an improved assembly core" Section. This algorithm leverages the

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 3 of 18

Hap++ pipeline, supplemented with a novel optimization based on an augmented Lan-

grangian formulation as the assembly core. "Experimental setup" Section concludes by

discussing the data and performance measures used for validation of the method.

Preparation procedure

First, the 16 bp 10X barcode is removed from the beginning of each paired-end read

generated by the Illumina device. The barcode is stored as a read tag for further use.

The possibility of sequencing errors in the barcode calls for an error correction scheme

based on the known set of barcodes. Next, the reads are aligned to the reference gen-

ome using the barcode information. The barcodes contain long range information that

can help provide a better alignment, particularly in repetitive genomic regions. These

steps are performed using the LongRanger package (version 2.2.2) [19] provided by

10X Genomics, which generates a binary sequence alignment (BAM) file in which the

barcodes are stored in the BX tag of each read. Subsequently, single nucleotide poly-

morphism (SNP) sites and their genotypes are called using the FreeBayes package (ver-

sion 1.3.1) [23] with “-p 3” and “-p 4” for triploids and tetraploids, respectively and

stored as a variant call format (VCF) file. The pipeline is depicted in Fig. 1.

Hap++

Hap++ is a fast program to reconstruct haplotypes in polyploids by exploiting linked

read information. It consists of three main steps:

1) extracting haplotype-relevant information from input BAM and VCF files;

2) extracting molecule-specific fragments;

3) extracting strongly connected components of fragments.

The output of the last step can then be used by SDhaP to assemble the haplotypes.

The three steps are described below.

Step 1. Extracting haplotype information

We first extract data relevant for haplotyping from the BAM and VCF files. As only

heterozygous SNPs are informative for haplotyping, we filter out the homozygous vari-

ants from the VCF file. Next, we remove reads that cover fewer than two SNPs, since

these do not provide any information for haplotyping. Subsequently, we extract the al-

leles of SNP sites of each read stored in the BAM file. In order to exploit long-range in-

formation provided by the barcodes, we combine the obtained fragments originating

from the same 10X bead, i.e. with the same barcode. This results in long barcode-

specific fragments. If there are two mismatching alleles for a SNP site corresponding to

a specific barcode, we choose the one with the higher base quality. The result is a com-

pact fragment file, similar to the output file of extractHAIRS [20, 24].

Fig. 1 Preparation procedure for haplotyping of linked read data: barcode correction, read alignment and
SNP/genotype calling. The output consists of aligned reads (BAM file) and called variants (VCF file)

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 4 of 18

Step 2. Extracting molecule-specific fragments

The reads generated from the molecules in the 10X bead have identical barcodes. In an

ideal case, the microfluidic device is expected to produce one molecule within each

bead. In reality however there are, on average, 10 molecules per bead that originate ran-

domly from one of the haploid chromosomes [17]. Therefore, the haplotypic origin of

molecules with the same barcode is not identical, as discussed in [20]. As a result, parts

of fragments in the fragment file are derived from different haplotypes, which misleads

the haplotype assembly program. To tackle this issue, we propose a fragment process-

ing scheme to extract molecule-specific fragments from each barcode-specific fragment.

This is done by splitting barcode-specific fragments into several parts such that distant

parts are retained as individual fragments. To this end, we use the mean-shift clustering

algorithm [25] by means of its Python implementation from the Scikit-learn package

[26]. We set the bandwidth of clustering to half of the expected 10X molecule length.

This approach is based on the fact that molecule coverage is very low, and thus, mole-

cules with the same barcode are generally distant from each other.

Step 3. Extracting strongly connected components of fragments

It is crucial to have a decent reference genome, because read alignment to the reference

is upstream of haplotyping ("Preparation procedure" Section). However, in practice, ref-

erence genomes are incomplete and contain assembly gaps (usually represented by Ns).

This affects haplotyping: if the reference contains a gap with length comparable with

that of the 10X molecules, only few fragments connect the two sides of the gap and se-

quencing/mapping errors can have undue influence on the haplotyping process.

To prevent such problems, we first create a graph G in which fragments are consid-

ered as vertices v ∈G. The weight wij of the edge eij = (vi, vj) between two nodes is cal-

culated as the number of shared SNPs between two corresponding fragments, inspired

by SDhaP [8]. As a demonstration, we generated such a graph for a read dataset

(depicted in Supplementary information: Figure S2), in which the length of the 10X

DNA molecules is slightly higher than 50 kb, the length of the simulated gap. In this

graph, one edge was found to connect two separate parts. This is based on a single

molecule covering two distant SNPs in the vicinity of the gap. However, a single bar-

coded fragment is not enough for linking all haplotypes. Consequently, the accuracy of

the whole haplotype block decreases.

As errors other than those due to gaps can lead to spurious edges in G, we provide a

generic solution based on extracting strongly connected components of fragments. To

this end, we exploit an iterative bipartitioning method based on the normalized cut

(NC) [27]. We calculate the normalized Laplacian matrix (LN) of G based on the corre-

sponding weight matrix W:

LN ¼ D−1
2 D−Wð ÞD−1

2; ð1Þ

where D is the degree matrix of the graph, a diagonal matrix with Dii ¼
X
j

wij . After

calculating the eigenvalue decomposition of LN, we use the eigenvector (E2) that corre-

sponds to the second smallest eigenvalue in order to bipartition the graph. In [27], it is

shown that minimization of NC value is equivalent to minimization of a Rayleigh quo-

tient, x
TLNx
xT x . This can be used to show that the second eigenvalue presents the optimum

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 5 of 18

partition in terms of the NC value defined in (2) [27]. The sign of the elements of vec-

tor E2 indicates the affiliation of fragments to either subgraph G1 or G2. Then, we cal-

culate the NC value:

NC G1;G2ð Þ ¼

X
i∈G1; j∈G2

wij

X
i∈G1;∀ j

wij

þ

X
i∈G1; j∈G2

wij

X
∀i; j∈G2

wij

: ð2Þ

If NC is greater than a pre-specified threshold t, we stop the bi-partitioning proced-

ure; otherwise, we continue bi-partitioning for each remaining partition. We set t to

0.03 for all simulations throughout the paper. When this step is finished, we output all

strongly connected components of fragments as individual fragment files for processing

by the assembly core, SDhaP. The Hap++ pipeline is depicted in Fig. 2. Note that this

pipeline can be parallelized; specifically, the assembly core can be run on each strongly

connected fragment simultaneously.

Hap10: an improved assembly core

The Hap10 pipeline leverages the Hap++ pipeline and adds a novel optimization as the

assembly core. The goal of a haplotype assembly algorithm is to reconstruct K haplo-

types H = {h1,…, hK} from N aligned fragments R = {r1,…, rN} generated by DNA se-

quencing of a K-ploid organism. This definition is universal and applies to different

sequencing data types. Each ri is assumed to originate from a single haplotype, as is the

case for Illumina reads. As we discussed earlier, in linked read technology, we use

molecule-specific fragments as ri in our pipeline.

As a basis for Hap10, we use the three-step approach introduced by SDhaP:

Fig. 2 Hap++ pipeline. The output of the preparation procedure – BAM and VCF files – is pre-processed to
make the haplotyping of 10X data feasible for polyploids. Next, strongly connected components of the
molecule-specific fragment graph are extracted and used as input to the assembly core, which yields the
haplotype blocks

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 6 of 18

I. Construct a fragment graph (similar to that of "Hap++" Section, Step 2) with

weights between fragments (vertices) i and j calculated as.

Wij ¼ #mismatched alleles−#matched alleles
#shared SNPs

: ð3Þ

II. Split the fragments into K clusters, exploiting the graph weights.

III. Combine fragments of each cluster into a single haplotype using majority voting.

The reconstructed haplotypes are reported in a text file in a format similar to Hap-

CUT2’s output [20] presented in Supplementary information: Table S1.

Here, we explore step II of the assembly core. We use max- K-cut modelling [28] for

clustering the graph based on the edge weights W, which results in the following con-

vex optimization problem over X ∈ℝN ×N:

minTr WXð Þ s:t:Xij≥−
1

k−1
;X≽0; ð4Þ

in which X ≽ 0 indicates that X is a positive semi-definite matrix. Note that X̂i , the i-th

column of the optimum X̂ , corresponds to the i-th fragment. The matrix X̂ is used to

estimate the cluster membership of each fragment using a randomized approach [28].

Each fragment is assigned to the k-th cluster when the corresponding column is the

closest to the k-th random vector in terms of inner product [29]. To do so, firstly, K

random vectors {v1,…, vK} are generated, each an N × 1 vector with elements drawn

from a standard normal distribution. Next, inner products between columns of X̂ and

these random vectors are calculated and the i-th fragment is assigned to the k-th clus-

ter, corresponding to the k-th haplotype, if

k ¼ argmax X̂i; v1
� �

;…; X̂i; vK
� �� �

; ð5Þ

in which 〈., .〉 represents the inner product of two vectors.

We exploit dual theory in optimization to solve the semidefinite programming prob-

lem (3). Note that the identity matrix is a positive definite matrix, and all its elements

are nonnegative. Thus, the identity matrix belongs to the interior of the optimization

domain. Thus, the optimization is strictly feasible. Therefore, Slater’s condition is satis-

fied for the optimization, which immediately results in strong duality (section 5.2.3 of

[30]). To derive the dual optimization problem of (4), the Lagrangian function can be

written as L(X, λ, Z)=

Tr WXð Þ þ
X
t

λt
1

K−1
−Tr AtX i; jð ÞjNiþ j¼tf g

� �� 	
−Tr ZXð Þ s:t:λ≥0;Z≽0; ð6Þ

in which At is a matrix with the same dimensions as X of zeroes with a 1 in the (i, j)-th

element. Then, (6) can be rearranged to

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 7 of 18

L X; λ;Zð Þ ¼ 1
K−1

X
t

λt þ Tr X W−
X

λtAt−Z

 �
 �

s:t:λ≥0;Z≽0: ð7Þ

Since the second term is affine in X, we should make it bounded. To this end, the

weight of the affine function should be zero. Thus, the maximization (6) can be simpli-

fied to

max
1

K−1

X
t

λt s:t:W−
X

λtAt−Z ¼ 0; λ≥0;Z≽0: ð8Þ

To achieve an unconstrained optimization, we define the augmented Lagrangian

function of the optimization as [31]:

Lμ λ;Z;Yð Þ ¼ 1
K−1

X
t

λt þ Tr Y W−
X

λtAt−Z

 �
 �

þ μ
2

W−
X

λtAt−Z
��� ���2: ð9Þ

A novel iterative optimization scheme for solving the max- K-cut problem then

becomes:

ðλiþ1;Ziþ1Þ ¼ argmaxLμðλ;Z;Y iÞ s:t:λ≥0;Z≽0;Y iþ1

¼ Y i þ σ i

W−

X
λitAt−Z

i
� ð10Þ

Then, the optimality condition of the first optimization results in a linear equation,

which is solved by a Newton conjugate gradient approach (Section 10.2 of [32]). We

stop the iteration when the relative duality gap (defined as
objp−objd

1þobjpþobjd
in which objp and

objd are the value of primal and dual objective functions, respectively [33]) falls below a

certain convergence threshold, which we set to 0.01. Note that the smaller this thresh-

old, the longer the runtime but the better the estimate (Supplementary information:

Table S2). Then, the primal optimal point X is found using complementary slackness

conditions (section 5.5.2 of [31]). To implement the mentioned algorithm, we use the

SDPNAL+ package [33].

Experimental setup

Data

In order to evaluate the performance of the developed pipelines and algorithms, we

consider numerous scenarios on both simulated and experimental data. First, we per-

formed extensive simulation experiments using the reference genome of potato (Sola-

num tuberosum) as a basis. We first simulated data based on an arbitrarily selected

region of one million base pairs (1Mb) starting from position 5,032,020 on chromo-

some 1 and subsequently used the full chromosome 1 sequence (88.6 Mb). We intro-

duce SNPs in the reference at a rate of one per 100 or 1000 (for the 1MB region) and

one per 100 for the full chromosome. We generate synthetic triploid and tetraploid ge-

nomes as FASTA files by combining K = 3 resp. K = 4 mutated copies of the reference

sequence using the haplo-generator routine from the Haplosim package [4]. This pack-

age also produces K true haplotypes in a text file, including the genomic positions of

SNPs and the corresponding alleles, which are used for evaluation (see "Performance

assessment" Section).

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 8 of 18

Subsequently, we simulated several linked-read datasets following the 10X technical

specifications, using the LRSIM package [34]. We set the number of molecules per bead

(−m) as 10 and assigned the number of barcodes (−t) such that the molecule coverage

is 0.2, as discussed in the 10X Genomics technical note (No. CG00044). The output of

each LRSIM simulation consists of two FASTQ files, containing paired-end reads with

length of 2 × 151 bp, in which the first 16 bases are the barcode sequence. The outer

distance between the two reads in a pair is set to the default value, 350, with a standard

deviation of 35. Then, as described in "Preparation procedure" Section, the LongRanger

and FreeBayes packages are used for aligning reads and calling SNPs, respectively.

To the best of our knowledge, there is no publicly available, real dataset for a poly-

ploid organism containing true haplotype sets, which makes it hard to determine accur-

acy. To obtain an impression of the distribution of haplotype block lengths and

runtimes, we download 10X raw read data of hexaploid sweet potato (Ipomoea batatas)

from the NCBI database (accession SRX4706082) [35].

Performance assessment

To evaluate the length of the reconstructed haplotypes, we calculate and report the

mean value over all haplotype blocks. To assess the accuracy of each algorithm, we

consider two criteria: reconstruction rate, a measure of local accuracy; and vector

error rate, a more global measure. Given reconstructed haplotypes Ĥ ¼ fĥ1;…; ĥKg
and ground truth haplotypes H = {h1,…, hK}, the reconstruction rate is defined as:

RR ¼ 1−
1
kL

minp
XK
k¼1

DH ĥk ; hpk

 �
; ð11Þ

in which L is the haplotype length and DH(., .) is the Hamming distance function, which

counts the number of mismatch elements between its arguments. Additionally, p is a

permutation on the set {1,…, K}, and pk is the k-th element of p. We calculate this cri-

terion for each haplotype block and report the average. The vector error rate is calcu-

lated by finding the minimum number of switches needed in haplotype segments in

order to match Ĥ to H; this number is then divided by the haplotype length [9, 24].

Since for real data there is no ground truth for assessing the performance of the esti-

mated haplotype, the mentioned metrics cannot be used. To handle this issue, another

metric, the Minimum Error Correction (MEC) score, has been frequently used in the

literature [7, 8]:

MEC R; Ĥ
� � ¼ XN

i¼1

minkDHE Ri; ĥk

 �

ð12Þ

in which Ri is the i-th pre-processed read ("Preparation procedure" Section). For haplo-

types with a length of l, the extended Hamming distance function is defined as DHEðRi;

ĥkÞ ¼
Pl
j¼1

dðRið jÞ; ĥkð jÞÞ. The value dðRið jÞ; ĥkð jÞÞ will be one when read Ri covers the j-

th position of haplotype ĥk and both are of the same allele, and will be zero otherwise.

To interpret this metric, we should note that MEC shows the extent of match between

the reconstructed haplotypes and the read dataset.

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 9 of 18

Results
We have developed Hap10, a novel pipeline for haplotyping polyploids based on

linked-read (SLR) data. The basis of Hap10 is a set of pre-processing steps called

Hap++. After application of Hap++, SDhaP [8] can be used as an assembly core. We

also propose an alternative core, based on the SDPNAL+ algorithm. The combination

of Hap++ and the new assembly core is called Hap10.

To obtain an impression of the performance of SDhaP, Hap++/SDhaP and Hap10,

we performed extensive simulations based on real-world data, the potato genome. This

allows us to investigate accuracy ("Performance assessment" Section) and run time in

different scenarios, varying sequence length, coverage, ploidy, heterozygosity etc. ("Sim-

ulated data" Section). We then apply the pipeline to real-world data to evaluate per-

formance in terms of haplotype block length and run time ("Real data" Section).

Simulated data

We first applied the various algorithms on 10X data simulated based on a relatively

short stretch of the potato genome, of 1Mb ("Experimental setup" Section), to learn

about the influence of various genome and sequencing characteristics.

Linked-read information yields longer haplotypes

As a first test, we applied SDhaP to the simulated read data with and without taking

the barcode information into account. The program has no problem dealing with data

for a region of this length. Without linked-read information, the reconstruction rate

and the vector error rate are relatively good, but the reconstructed haplotype blocks are

very short, 11.8 SNPs on average (Supplementary information: Table S3, first row) as is

to be expected.

Taking the linked read information into account here improves average haplotype

block length dramatically, to over 6000 SNPs (Supplementary information: Table S3,

second row compared to the first row). At the same time, the reconstruction rate

drops, and the vector error rate increases, indicating low quality haplotypes. This is due

to the effect of mixed haplotypic origin of fragments, misleading the haplotype assem-

bly program. It can be also considered the consequence of the poor connections be-

tween subgraphs, insufficient for haplotyping, as illustrated in Supplementary

information: Figure S2. An approach in which haplotypes are calculated independently

on three equally sized parts of the region of interest supports this: the average block

length decreases, but both reconstruction rate and vector error rate improve (Supple-

mentary information: Table S3, third row compared to the second row). This suggests

that while SDhaP in principle works for haplotype assembly in polyploids, performance

may be improved by pre-processing the data. From here on, all results reported for

SDhaP are based on barcode information.

Preprocessing by hap++ yields shorter, more reliable haplotype blocks

To solve the problems encountered in "Simulated data" Section, we developed a novel

preprocessing pipeline Hap++, to extract strongly connected components from the

fragment graph. This reduces the potential for erroneous haplotype assembly, at the ex-

pense of a reduced haplotype block length. We apply Hap++ to triploid and tetraploid

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 10 of 18

data simulated on the 1Mb region taken from the potato genome, at various levels of

coverage (2, 5 and 10 per haploid) and different SNP rates (0.01 and 0.001). We re-

peated the simulations 5 times and report average haplotype block lengths, reconstruc-

tion rates and vector error rates in Fig. 3.

Hap++ indeed yields much shorter haplotype blocks (e.g. 339.9 versus 787.2 Kb for

SDhaP for triploid, SNP rate 0.01, coverage 10), but drastically improves performance

over SDhaP. The reconstruction rate increases, in particular for the triploid simulations,

and the vector error rate drops to below 0.1 for almost all simulations where for SDhaP

it can reach as high as 0.6. This indicates that the spurious connection problem

Fig. 3 Average haplotype block length (left column, note the logarithmic scale), reconstruction rate (middle)
and vector error rate (right) for different coverage levels. Bars indicate averages, whiskers standard deviation of
5 repeated simulations

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 11 of 18

discussed before occurs in practice and seriously impacts results. It is clear that the

SNP rate has a large influence on performance: at low SNP rates, average haplotype

block lengths are shorter and accuracy is higher, again particularly for the triploid

simulations.

Figure 3 also shows that performance improves with coverage (as expected), and that

a coverage of 2 is so low that all methods make errors, due to the fact that SNPs often

cannot even be detected. Hap++ benefits more quickly from increasing coverage than

SDhaP. SDhaP performance improves up to a coverage of 10 per haploid and keeps im-

proving, as spurious connections in the fragment graph will increasingly be supported

by more connections and errors will be counteracted by solid data: in fact, SDhaP needs

5 times as much coverage to reach a similar vector error rate (Supplementary informa-

tion: Table S4).

Figure 4 shows performance at different ploidy levels. While haplotype block length

is invariant to the ploidy level, in most cases more trustworthy haplotypes are attained

at higher ploidy levels. To understand this, note that the max-K-cut randomized ap-

proach (part of the assembly core) is theoretically guaranteed to converge to near the

optimal value (by a factor of ð1− 1
K þ 2 lnK

K2 Þ, a function increasing in K, as presented in

Theorem 1 of [28]). However, limited precision in the SDP solver means this solution

is not always found in practice.

Hap++ deals better with imperfect 10X data

Ideally, the 10X technology ensures each unique barcode is assigned to fragments that

originate from a single, long DNA molecule. In practice however, fragmentation is im-

perfect, leading to shorter molecules, and more than one molecule may receive the

same barcode (see "Hap++" Section). Hap++ contains a pre-processing step to cluster

reads based on the expected molecule size, to avoid the concatenation of different mol-

ecules in a single line of the fragment file as much as possible.

Figure 5 (top) shows performance as a function of both the number of molecules that

on average receives the same barcode (in simulated data). The difference between

SDhaP and Hap++ is striking, in that vector error rate increases drastically with the

number of molecules per barcode for SDhaP but remains negligible for Hap++. The

Fig. 4 Average haplotype block length (left), reconstruction rate (middle) and vector error rate (right) for different
ploidy levels (SNP rate 0.01). Bars indicate averages, whiskers standard deviation of 5 repeated simulations

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 12 of 18

Hap++ reconstruction rate decreases somewhat, but remains higher than that of SDhaP

up to at least 10 molecules per barcode – which, given the sequence length of 1Mb

and the molecule length of 100 kb entails a significant probability of overlap between

molecules with the same barcode.

We also varied the length of the 10X molecules in the simulations, from 30, 50 and

100 to 150 kb. Figure 5 (bottom) shows that longer molecules yield better haplotypes in

terms of reconstruction rate due to the improved long-range information, but eventu-

ally increases the vector error rate, likely due to the increased probability of overlap of

such long molecules (150 kb in a 1Mb region).

Hap10 improves performance, at considerable computational cost

Figure 3 also includes performance of Hap10, a combination of the Hap++ pre-

processing stage with a new assembly core based on the SDPNAL+ algorithm.

Overall, Hap10 and Hap++ perform more or less on par, with a slight advantage

for Hap10 at higher coverage levels, at lower molecule lengths and when more

molecules receive the same barcode. This suggests the Hap10 assembly core is

more robust to errors and problems due to imperfect 10X data. However, this

comes at a cost: the Hap10 runtime is significantly higher. Table 1 reports CPU

times for the results reported in Fig. 3. The pipelines were run on 24 CPU cores

of a machine with 48 cores (Intel Xeon Silver 4116) and 754 GiB system memory.

Clearly, the pre-processing by Hap++ occurs a time penalty, most visible for lower

coverages, which pays off in a quicker runtime of the final SDhaP application,

Fig. 5 Average haplotype block length (left), reconstruction rate (middle) and vector error rate (right) for
different settings of the 10X linked-read simulation (SNP rate 0.01, tetraploid), varying the number of
molecules per bead (top) and the molecule length (bottom). Bars indicate averages, whiskers standard
deviation of 5 repeated simulations

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 13 of 18

clearly seen at higher coverages. Hap10 is up to two orders of magnitude slower.

When this is worth the effort, the pipeline can be run in accurate mode (using

Hap10 optimization) with high haplotype quality, or in fast mode (using Hap++)

with reasonable quality, depending on user preference.

Hap++ and Hap10 work on longer sequences

As a final test, we generated linked read data for the full chromosome 1 of the po-

tato genome, simulating a tetraploid genome at a SNP rate of 0.01. The coverage

is 10 per haploid genome. Results are reported in Table 2. Notably, SDhaP encoun-

tered a segmentation fault in this simulation, leaving us unable to report a result.

Hap++ and Hap10 provide haplotypes with the same block lengths, with better ac-

curacy in terms reconstruction rate and vector error rate. Moreover, the MEC be-

tween the read set and the reconstructed haplotypes is lower, suggesting a better

compatibility between the two. However, as before, the computational cost of

Hap10 is significant at approx. Nine hundred CPU hours vs. 12 h for Hap++. The

results for H-PoP [9] on short reads show a very small haplotype length, but ac-

curate, as expected.

Table 1 Run times (seconds) of the algorithms compared in Fig. 3

Ploidy SNP rate Coverage SDhaP Hap++ Hap10

Triploid 0.001 2 4 53 419

5 24 54 2919

10 34 92 1590

0.01 2 3 64 2590

5 150 162 8590

10 660 400 19,221

Tetraploid 0.001 2 8 39 710

5 21 90 4119

10 65 204 13,824

0.01 2 43 98 15,307

5 478 370 28,598

10 1497 1022 36,736

Table 2 Results for chromosome 1 of a tetraploid potato with coverage 10 per haploid and a SNP
rate of 0.01

Method Avg. haplotype block
length
(no. SNPs)

N50 haplotype block
length (bp)

Reconstruction
rate

Vector error
rate

MEC CPU
time
(min)

SDhaP – – – – – –

H-PoP 12 1597 0.93 0.11 36,
228

39

Hap++ 3923 828,058 0.88 0.0083 342,
956

741

Hap10 3923 828,058 0.92 0.0070 218,
635

54,835

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 14 of 18

Real data

To obtain an idea of the applicability of Hap++ and Hap10 to real data, we ran the

pipeline to reconstruct the six haplotypes of chromosome one of sweet potato (with the

length of 36Mb) based on 10X data available in the NCBI Short Read Archive.

The length distribution of the reconstructed haplotypes is displayed in Fig. 6; the N50

length of the blocks is 78.4 resp. 78.3 kb for Hap++ and Hap10. To compare the two plots,

note that the SNP positions assigned to haplotype blocks are determined using the

strongly connected components, which are the same for Hap++ and Hap10. Afterwards,

the alternative optimization routine employed by Hap10 can yield different results than

found by Hap++. The MEC scores between the read set and the reconstructed haplotypes

Fig. 6 Haplotype block length distributions for 10X real data of sweet potato using Hap++ (top) and
Hap10 (bottom)

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 15 of 18

are 122,363 resp. 133,282 for the reconstructed haplotypes using Hap++ and Hap10, re-

spectively, which would indicate that in this case the reconstructed haplotypes by Hap++

are more compatible with the read dataset than those generated by Hap10. However, true

accuracy can only be evaluated by comparison to a ground truth.

Conclusion
We developed a first haplotyping pipeline specifically for linked-read data generated

from a polyploid genome. It makes haplotyping full chromosomes of complex genomes

feasible. The proposed Hap++ preprocessing pipeline improves on the accuracy of im-

mediate application of SDhaP by approximately 30% (resp. 20%) on simulated 10X data

of triploids (resp. tetraploids) at the cost of a decreased haplotype block length. Our

framework builds on SDhaP, a typical Illumina haplotyping algorithm, using a standard

fragment file as input. Any improvement in SDhaP or similar algorithms thus may im-

mediately enhance linked-read (SLR) haplotyping. The proposed novel optimization

scheme, Hap10, provides even more accurate haplotypes, albeit at significant computa-

tional cost.

One topic for future research is to consider different optimization techniques for the

max-K-cut clustering problem [36]. A new method based on linear programming [37]

may provide a solution for overcoming the high runtime involved in the semidefinite

programming problem. A second avenue for research is automatic optimization of the

key parameters of the pipeline, specifically the threshold t for the normalized cut algo-

rithm and the convergence threshold used in the optimization step.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03584-5.

Additional file 1: Figure S1. Description of the fragment file format using an example SAM and VCF input. A) In
the SAM format, each line corresponds to a read (except for the header lines). The fourth column shows the
genomic position of the first base of the aligned read. As a simple example, for each read 10 bases are shown in
the 10th column. The next column shows the Phred quality of each base. Finally, the BX tag shows the barcode of
each read provided by LongRanger software. For more information on the SAM format, see http://samtools.github.
io. B) In the VCF format, the second column shows the genomic position of the variant in each line (except for the
header lines). The third and fourth columns contain the reference and alternative alleles, respectively. The last
column shows the genotype of the variant, in this example for a triploid. For more information on the SAM format
see http://samtools.github.io. C) In fragment file designed for short reads, the first column shows the number of
consecutive alleles (called part here) in the fragment, the second column the id of the fragment, the third column
the start position of the first part, followed by the alleles of the part. The position is reported as the index of the
variant in the VCF file, starting from 1. If there are more parts, they will appear next. The last column shows the
Phred quality scores of all alleles in all parts consecutively. D) To include the barcode information for haplotyping,
the barcodes in the SAM file BX tag are provided in the third column of the fragment file. The other columns are
shifted accordingly. E) In Barcode-specific fragment file, reads with the same barcode are combined, as discussed
in step one of "Hap++" Section. F) Molecule-specific fragments file is the output of step one of "Hap++" Section.
The third column, which was the barcode, is iterated from one to the number of molecules for each barcode with
an underscore in between. G) A schematic of the mentioned procedures is illustrated here. Eight fragments are
presented in the image, colors indicating barcodes. In all three boxes, row corresponds to a line in the correspond-
ing file.

Additional file 2: Figure S2. A graph indicating overlap between fragments. Red dots are vertices
(corresponding to the fragments), grey lines are edges drawn when two fragments have at least one SNP in
common. The depicted graph is for a case with 5 mb reference genome containing an N-region of 50 kb. The
coverage is 15 per haploid and the SNP rate is 0.01. The average length of 10X DNA molecules for this simulation
is set to 50 kb. Few fragments originate from a DNA molecule larger than 50 kb. The resulting graph has two separ-
ate subgraphs connected by a single edge. Note that one barcode-specific fragment connecting two read blocks
is not sufficient for connecting the corresponding haplotypes. This phenomenon decreases the quality of recon-
structed haplotype. The figure is generated using Cytoscape (www.cytoscape.org).

Additional file 3: Table S1. An example of the haplotype output format. We report the reconstructed
haplotypes as a text file with a specific format similar to that of HapCUT2. Each haplotype block starts with a line
describing the length of the haplotype, number of reads corresponding to the block and the minimum error

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 16 of 18

https://doi.org/10.1186/s12859-020-03584-5
http://samtools.github.io
http://samtools.github.io
http://samtools.github.io

correction (MEC) score. From the next line, each row corresponds to each variant. The first and second columns
show the 1-based index and variant position, respectively. Then, the next 2 ∗ ploidy columns are haplotypes and
quality scores. For each allele of haplotypes, a quality score is provided. As a metric for quality, we use the number
of matching reads at each position that are estimated for each haplotype.

Additional file 4: Table S2. The impact of the convergence threshold on Hap10 performance. A triploid genome
of 230 kb with a SNP rate of 0.001 is simulated. The average molecule length and number of molecules per bead
are 50 k and 10, respectively.

Additional file 5: Table S3. SDhaP with and without linked-read information. For the latter, the input data is con-
sidered as regular Illumina reads and barcodes are not used. The dataset is simulated using 1 Mb of chromosome
one of potato genome with a SNP rate of 0.01. The coverage is 10. The results are averaged over 5 independent
simulations. For the third row, we split the 1 Mb region into three independent parts of the same size. The last two
rows present results of Hap++ and Hap10 on the same data.

Additional file 6: Table S4. Performance of SDhaP at different coverage levels, for a triploid genome with SNP
rate of 0.001. The average molecule length and number of molecules per bead are 50 k and 10, respectively. The
results are averaged over 5 independent simulations.

Abbreviations
BAM: Binary sequence alignment; bp: Base pair; extractHAIRs: Extract haplotype informative reads; MEC: Minimum error
correction; MFR: Minimum fragment removal; NC: Normalized cut; RR: Reconstruction rate; SLRs: Synthetic long reads;
SNP: Single nucleotide polymorphism; VCF: Variant call format

Acknowledgements
We would like to thank Brian Lavrijssen for helpful discussions.

Authors’ contributions
Methods and experiments were designed by SM and DdR. Algorithm code was implemented by SM. SM and DdR
wrote the manuscript. DdR and MHK supervised the project. All authors read and approved the final manuscript.

Funding
The authors received no specific funding for this work.

Availability of data and materials
● Reference genome of Solanum tuberosum
ftp://ftp.ensemblgenomes.org/pub/plants/release-42/fasta/solanum_tuberosum/dna/
● 10X read data of sweet potato: https://www.ncbi.nlm.nih.gov/sra/SRX4706082
● LRSIM: https://github.com/aquaskyline/LRSIM
● LongRanger: https://github.com/10XGenomics/longranger
● FreeBayes: https://github.com/ekg/freebayes
● SDPNAL+: https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
● Scikit-learn: https://scikit-learn.org/
● SDhaP: https://sourceforge.net/projects/SDhaP/
● Our pipeline and code: https://github.com/smajidian/Hap10

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Author Dick de Ridder is an Associate Editor for BMC Bioinformatics.

Author details
1School of Electrical Engineering, Iran University of Science & Technology, Narmak, Tehran 16846-13114, Iran.
2Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.

Received: 8 January 2020 Accepted: 5 June 2020

References
1. Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836–46.
2. Qian L, Hickey LT, Stahl A, Werner CR, Hayes B, Snowdon RJ, Voss-Fels KP. Exploring and harnessing haplotype diversity

to improve yield stability in crops. Front Plant Sci. 2017;8:1534.
3. Liu PY, Zhang YY, Lu Y, Long JR, Shen H, Zhao LJ, et al. A survey of haplotype variants at several disease candidate

genes: the importance of rare variants for complex diseases. J Med Genet. 2005;42(3):221–7.
4. Motazedi E, Finkers R, Maliepaard C, de Ridder D. Exploiting next-generation sequencing to solve the haplotyping

puzzle in polyploids: a simulation study. Brief Bioinform. 2017;19(3):387–403.
5. Choi Y, Chan AP, Kirkness E, Telenti A, Schork NJ. Comparison of phasing strategies for whole human genomes. PLoS

Genet. 2018;14(4):e1007308.

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 17 of 18

ftp://ftp.ensemblgenomes.org/pub/plants/release-42/fasta/solanum_tuberosum/dna/
https://www.ncbi.nlm.nih.gov/sra/SRX4706082
https://github.com/aquaskyline/LRSIM
https://github.com/10XGenomics/longranger
https://github.com/ekg/freebayes
https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://scikit-learn.org/
https://sourceforge.net/projects/SDhaP/
https://github.com/smajidian/Hap10

6. Zhang X, Wu R, Wang Y, Yu J, Tang H. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct
Biotechnol J. 2020;18:66–72.

7. Berger E, Yorukoglu D, Peng J, Berger B. HapTree: a novel Bayesian framework for single individual polyplotyping using
NGS data. PLoS Comput Biol. 2014;10(3):e1003502.

8. Das S, Vikalo H. SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genomics.
2015;16:260.

9. Xie M, Wu Q, Wang J, Jiang T. H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of
polyploids. Bioinformatics. 2016;32(24):3735–44.

10. Siragusa E, Haiminen N, Finkers R, Visser R, Parida L. Haplotype assembly of autotetraploid potato using integer linear
programming. Bioinformatics. 2019;35(21):4534.

11. Schrinner S, Mari RS, Ebler JW, Rautiainen M, Seillier L, Reimer J, Usadel B, Marschall T and Klau GW. "Haplotype
threading: accurate polyploid phasing from long reads. 2020. BioRxiv. https://doi.org/10.1101/2020.02.04.933523..

12. He D, Saha S, Finkers R, Parida L. Efficient algorithms for polyploid haplotype phasing. BMC Genomics. 2018;19(Suppl 2):
171-80. Article number 110. https://doi.org/10.1186/s12864-018-4464-9.

13. Aguiar D, Istrail S. Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics.
2013;29(13):i352–60.

14. Moeinzadeh MH. De novo and haplotype assembly of polyploid genomes. PhD thesis. Germany: Freie Universität Berlin;
2019. http://dx.doi.org/10.17169/refubium-2712.

15. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat
Rev Genet. 2016;17(6):333–51.

16. Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND,
Töpfer A. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human
genome. Nat Biotechnol. 2019;37(10):1155–62.

17. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res.
2017;27(5):757–67.

18. Tolstoganov I, Bankevich A, Chen Z, Pevzner PA. cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs.
Bioinformatics. 2019;35.14:i61–70.

19. Marks P, Garcia S, Barrio AM, Belhocine K, Bernate J, Bharadwaj R, et al. Resolving the full spectrum of human genome
variation using linked-reads. Genome Res. 2019;29(4):635–45.

20. Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies.
Genome Res. 2017;27(5):801–12.

21. Porubsky D, Garg S, Sanders AD, Korbel JO, Guryev V, Lansdorp PM, Marschall T. Dense and accurate whole-
chromosome haplotyping of individual genomes. Nat Commun. 2017;8(1):1–10.

22. Majidian S, Kahaei MH. NGS based haplotype assembly using matrix completion. PLoS One. 2019;14(3):e0214455.
23. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. arXiv preprint q-bio.GN/1207.

3907.
24. Motazedi E, de Ridder D, Finkers R, Baldwin S, Thomson S, Monaghan K, Maliepaard C. TriPoly: haplotype estimation for

polyploids using sequencing data of related individuals. Bioinformatics. 2018;34(22):3864–72.
25. Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell.

2002;24(5):603–19.
26. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J

Mach Learn Res. 2011;12:2825–30.
27. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.
28. Frieze A, Jerrum M. Improved approximation algorithms for max k-cut and max bisection. Algorithmica. 1997;18(1):67–81.
29. de Klerk E, Pasechnik DV, Warners JP. On approximate graph colouring and max-k-cut algorithms based on the θ-

function. J Comb Optim. 2004;8(3):267–94.
30. Boyd S. Vandenberghe L. Convex optimization: Cambridge University Press; 2004.
31. Rockafellar RT. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math

Oper Res USA. 1976;1(2):97–116.
32. Golub GH, Van Loan CF. Matrix computations: Johns Hopkins University Press; 1996.
33. Yang L, Sun D, Toh KC. SDPNAL++: a majorized semismooth Newton-CG augmented Lagrangian method for

semidefinite programming with nonnegative constraints. Math Program Comput. 2015;7(3):331–66.
34. Luo R, Sedlazeck FJ, Darby CA, Kelly SM, Schatz MC. LRSim: a linked reads simulator generating insights for better

genome partitioning. Comput Struct Biotechnol J. 2017;15:478–84.
35. Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, et al. Genome sequences of two diploid wild relatives of cultivated

sweetpotato reveal targets for genetic improvement. Nat Commun. 2018;9(1):4580.
36. Ghaddar B, Anjos MF, Liers F. A branch-and-cut algorithm based on semidefinite programming for the minimum k-

partition problem. Ann Oper Res. 2011;188(1):155–74.
37. de Sousa VJR, Anjos MF, Le Digabel S. Improving the linear relaxation of maximum k-cut with semidefinite-based

constraints. EURO J Comput Optimization. 2019;7(2):123–51.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Majidian et al. BMC Bioinformatics (2020) 21:253 Page 18 of 18

https://doi.org/10.1101/2020.02.04.933523.
https://doi.org/10.1186/s12864-018-4464-9
http://dx.doi.org/10.17169/refubium-2712

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Preparation procedure
	Hap++
	Step 1. Extracting haplotype information
	Step 2. Extracting molecule-specific fragments
	Step 3. Extracting strongly connected components of fragments

	Hap10: an improved assembly core
	Experimental setup
	Data
	Performance assessment

	Results
	Simulated data
	Linked-read information yields longer haplotypes
	Preprocessing by hap++ yields shorter, more reliable haplotype blocks
	Hap++ deals better with imperfect 10X data
	Hap10 improves performance, at considerable computational cost
	Hap++ and Hap10 work on longer sequences

	Real data

	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

