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Abstract

Background: Abnormal activation of human nuclear hormone receptors disrupts
endocrine systems and thereby affects human health. There have been machine
learning-based models to predict androgen receptor agonist activity. However, the
models were constructed based on limited numerical features such as molecular
descriptors and fingerprints.

Result: In this study, instead of the numerical features, 2-D chemical structure
images of compounds were used to build an androgen receptor toxicity prediction
model. The images may provide unknown features that were not represented by
conventional numerical features. As a result, the new strategy resulted in a
construction of highly accurate prediction model: Mathews correlation coefficient
(MCC) of 0.688, positive predictive value (PPV) of 0.933, sensitivity of 0.519, specificity
of 0.998, and overall accuracy of 0.981 in 10-fold cross-validation. Validation on a test
dataset showed MCC of 0.370, sensitivity of 0.211, specificity of 0.991, PPV of 0.882,
and overall accuracy of 0.801. Our chemical image-based prediction model
outperforms conventional models based on numerical features.

Conclusion: Our constructed prediction model successfully classified molecular
images into androgen receptor agonists or inactive compounds. The result indicates
that 2-D molecular mimetic diagram would be used as another feature to construct
molecular activity prediction models.
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Background
Androgen receptor (AR) is one of nuclear receptors playing an important role in ex-

pressing male phenotype. AR is activated by steroid hormones such as testosterone and

5α-DHT [1]. Although AR-induced cellular functions are vital for early development

and physiological regulations [2], excessive AR activation triggered by xenobiotic ago-

nists accelerates diseases severity such as androgen insensitivity syndrome (AIS) and

prostate cancer [3]. For this reason, AR is one of targets for testing drug toxicity, and

drug candidates should be assayed for potential AR-mediated toxicity. There have been

reports on experimental AR affinity assays of chemical compounds [4, 5]. Recently due

to the advance of high-throughput techniques AR screening could be carried out at a

large scale [6]. Nonetheless, experiment-based screening methods are still costly and

time-consuming as well as it is not possible to cover the structural diversity of chemical

compounds. To tackle down the limitation, computational AR-dependent toxicity pre-

diction methods have been developed to save time and cost. However, their accuracies

are not enough to completely replace experiments and thus they need to be improved

further.

In 2018, a combination of three computational algorithms to predict agonist and an-

tagonist activity on AR and thyroid hormone receptor was published [7]. Although the

model predicted nuclear receptor agonist molecules with moderate performance, the

model was not accurate enough to substitute experimental screening methods. To our

knowledge, though there are several reports on docking-based AR agonist prediction

[8, 9], there are no other machine-learning-based in silico approaches to predict AR

agonist activity, which can be virtually carried out at high-throughput.

Generally, in silico approaches to predict biological activity of chemical compounds

firstly converts a molecular structure into thousands of different molecular features [10].

Various molecular features have been introduced including static features such as physi-

cochemical properties, and dynamic features such as molecular fingerprints. Various con-

version methods have been developed for accurate feature generation [11]. Since the

molecular features do not represent all the chemical and physical properties of chemical

compounds, such conversion necessarily accompanies information loss. Thus, developing

a novel conversion method and combining the method with conventional ones could en-

hance the performance of in silico models by minimizing information loss.

Convolutional neural network (CNN) is a class of deep neural network (DNN) algo-

rithm mainly introduced for image classification [12]. CNN models can effectively ex-

tract and learn local features from images with fewer parameters compared with

conventional DNN models, by employing multiple convolution and pooling layers [13].

With such advantages, CNN model has been employed to solve various problems in-

cluding medical image classification [14] and facial expression recognition [15].

In this study, instead of the limited conventional molecular features, we employed

the 2-D structure mimetic diagram of chemical compounds (ball-and-stick models) to

construct a prediction model. CNN algorithm was introduced to classify molecular im-

ages into AR agonists or inactive compounds. We expected CNN model analyzed sub-

structure of input molecules by itself by automatically extracting and learning features

from input images. As a result, the constructed CNN-based in silico model successfully

classified molecular images to AR agonists or inactive compound, which outperformed

previous models in terms of overall accuracy.
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Materials and methods
Construction of training dataset

In Tox21 Data Challenge 2014, training dataset for AR-induced toxicity prediction was

provided (PubChem AID 743040). In this study, we downloaded the dataset from

Tox21 Data Challenge 2014 repository. It contains Simplified Molecular-Input Line-

Entry System (SMILES) [16], NCATS Chemical Genomics Center (NCGC) ID and

agonist activity (active or inactive) of 9362 compounds. After removing duplicate com-

pounds, we obtained 270 active agonists and 7198 inactive chemicals for AR. We used

OpenBabel toolbox (version 2.4.0) [17] to convert compounds from SMILES format to

2-D ball-and-stick structure (Fig. 1). All structures were saved into PNG format, and

further transformed into 200 (width) × 200 (height) × 3 (color channels) array with

RGB values of each pixel.

Model construction

Convolutional neural network (CNN) algorithm was employed to construct a molecular

image classification model for AR agonist screening. We constructed a CNN model

with a feature extraction part and 1 fully connected output layer. Overall model archi-

tecture is shown in Fig. 2.

Feature extraction part consists of convolutional, dropout, pooling and batch

normalization layers. Convolutional layers automatically search and extract representa-

tive features from input images with convolutional filters and activation function. Drop-

out, pooling and batch normalization layers were employed to prevent overfitting and

reduce computational resource usage by reducing the number of features. After extrac-

tion part, representative features will be input features of dense neural network with

single layer. As a result, inputted molecular image will be classified into AR agonist or

inactive compound.

Fig. 1 A 2-D image of a chemical compound (piceatannol)
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Fig. 2 Constructed CNN model architecture

Table 1 Performance (AUC) results of 20 different CNN models

Learning Rate L2 regularization factor AUC Epocha

10−3 0.4 0.881 200

0.6 0.908 50

0.8 0.861 195

1.0 0.915 85

1.2 0.848 51

10−4 0.4 0.893 10

0.6 0.880 70

0.8 0.909 31

1.0 0.905 32

1.2 0.895 137

10−5 0.4 0.861 76

0.6 0.899 84

0.8 0.887 68

1.0 0.881 75

1.2 0.894 46

10−6 0.4 0.878 500

0.6 0.871 494

0.8 0.876 463

1.0 0.902 429

1.2 0.867 469
aEpoch number at which the highest AUC was obtained
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To enhance the overall performance of prediction model, we optimized two factors:

learning rate and L2 regularization factor. Learning rate is a scalar value that deter-

mines training speed of the model and controls the rate of adaptation to changing in-

put data. L2 regularization factor suppresses model from overfitting on training data.

We evaluated with four learning rates (10− 3, 10− 4, 10− 5, 10− 6) and five L2

regularization factors (0.4, 0.6, 0.8, 1.0, 1.2), and constructed 20 different trained

models.

The optimal parameters were determined by AUC, and then the threshold to classify

AR-toxicity was further optimized by Matthews Correlation Coefficient (MCC) since

the training and evaluation datasets were highly unbalanced [18]. However, instead of

selecting the highest AUC, we selected a trained model with high AUC and robust pre-

diction accuracies. A trained model may not display robustness in prediction, so we

traced AUC results epoch-by-epoch and selected a model that showed stable prediction

accuracies and a high AUC.

Model validation

For model evaluation, we collected active and inactive AR agonists from the literature

[7]. The dataset contained agonists, antagonists and inactive compounds for AR. A test

dataset was constructed with 71 active AR agonists and 220 inactive compounds, ex-

cluding duplicated molecules and compounds included in training dataset. Prediction

performance was calculated as MCC, AUC, sensitivity, specificity, accuracy, and posi-

tive predictive value (PPV).

We tested whether our model was able to predict AR agonists with high perform-

ance, which were collected from other bioassay results. Twenty-five compounds ex-

tracted from AR agonist bioassay (AID 639154) were used as a test dataset [19]. The

Fig. 3 Epoch-by-epoch performance (AUC) results of 4 representative models

Table 2 Performance results under optimal threshold

MCC Sensitivity Specificity PPV Accuracy

0.688 0.519 0.998 0.933 0.981
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dataset consisted of two active AR agonists and 23 inactive compounds, separated by a

threshold of IC50 = 10 μ M.

Results and discussion
Training performance

To select the optimal hyperparameters of a CNN model, we constructed 20 models

with different parameters. Prediction performances of the trained models in 10-fold

cross-validation was recorded epoch by epoch. The parameters and resulting AUC

values are shown in Table 1. From the result, the CNN model with learning rate of

10− 3 and L2 regularization factor of 1.0 showed the best AUC value (0.915).

The top four models were also analyzed in terms of robustness. As shown in the Fig. 3,

under certain parameters the trained models showed unstable performances (fluctuation

in AUC value), which represents that the models were overshoot by fast learning rates.

Consequently, a learning rate of 10− 6, a regularization factor of 1.0, and epoch number of

429 were determined, which showed high AUC (0.902) and stable performance as well.

For further optimization, the optimal threshold value to classify active and inactive

agonists was determined in terms of MCC, which is an appropriate index to show per-

formance of classification on imbalanced datasets. The selected best model marked the

highest MCC of 0.688 at the threshold of 0.66 was selected, and other classification

performances under the threshold are listed in Table 2.

Model test

For the model test, we collected 71 active AR agonists and 220 inactive compounds

from the literature [7]. Overall performance values are listed in Table 3. The test results

also showed comparable performance with cross-validation result. Interestingly, PPV

on the test dataset increased up to 0.882, which represents that once a compound is

predicted to be an agonist, then it would be an agonist with high probability.

As another evaluation, we used AR agonist activity screening bioassay record as a test

dataset. Yamamoto S et al. designed and synthesized a series of 4-phenylpyrrole deriva-

tives from known AR antagonists to discover novel orally available AR antagonists as

Table 3 Prediction performance on test dataset

AUC MCC Sensitivity Specificity PPV Accuracy

0.783 0.370 0.211 0.991 0.882 0.800

Fig. 4 Three representative compounds with same backbone structure collected from external dataset.
Compound a is AR agonist, while b and c are inactive compounds

Yu et al. BMC Bioinformatics 2020, 21(Suppl 5):245 Page 6 of 8



effective prostate cancer drugs. Antagonist and agonist activity of synthesized com-

pounds were biologically evaluated and reported as a bioassay record (PubChem AID

639154) [19]. As shown in Fig. 4, most of compounds in the dataset are derived from

1-arylmethyl-4-phenylpyrrole and have almost same 2-D diagram. Although such simi-

larity makes AR agonist detection difficult, our constructed model successfully classi-

fied all compound exactly, showing 100% accuracy. These results proved that our

model can be used to predict AR agonist activity with high accuracy and molecular im-

ages can be another feature for predicting biological activities of chemical compounds.

Conclusion
We introduced a CNN-based model to predict molecular agonist activity for AR with a

novel input data: 2-D chemical structure of molecules. Generally, CNN based image

classification models can solve real-life problems: handwriting recognition, object rec-

ognition, and so on. We also employed the same strategy for image-based AR toxicity

classification. Our model marked high performance (AUC = 0.902) in cross-validation

and AUC of 0.783 on test dataset, outperforming the previous model (AUC = 0.756)

based on classical classification algorithms and classical numerical features in 2018 [7].

We expect our approach can be utilized to predict various biological activities of

chemical compounds, e.g. toxicity classifications, absorption classifications, etc. Our

model proved that images could be another feature for classification.
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