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Abstract

Background: Illumina paired-end reads are often used for 16S analysis in
metagenomic studies. Since DNA fragment size is usually smaller than the sum of
lengths of paired reads, reads can be merged for downstream analysis. In spite of
development of several tools for merging of paired-end reads, poor quality at the 3′
ends within the overlapping region prevents the accurate combining of significant
portion of read pairs. Recently CD-HIT-OTU-Miseq was presented as a new approach
for 16S analysis using the paired-end reads, it completely avoids the reads merging
process due to separate clustering of paired reads. CD-HIT-OTU-Miseq is a set of
tools which are supposed to be successively launched by auxiliary shell scripts. This
launch mode is not suitable for processing of big amounts of data generated in
modern omics experiments. To solve this issue we created CDSnake – Snakemake
pipeline utilizing CD-HIT tools for easier consecutive launch of CD-HIT-OTU-Miseq
tools for complete processing of paired end reads in metagenomic studies. Usage of
pipeline make 16S analysis easier due to one-command launch and helps to yield
reproducible results.

Results: We benchmarked our pipeline against two commonly used pipelines for
OTU retrieval, incorporated into popular workflow for microbiome analysis, QIIME2 -
DADA2 and deblur. Three mock datasets having highly overlapping paired-end 2 ×
250 bp reads were used for benchmarking - Balanced, HMP, and Extreme. CDSnake
outputted less OTUs than DADA2 and deblur. However, on Balanced and HMP
datasets number of OTUs outputted by CDSnake was closer to real number of strains
which were used for mock community generation, than those outputted by DADA2
and deblur. Though generally slower than other pipelines, CDSnake outputted higher
total counts, preserving more information from raw data. Inheriting this properties
from original CD-HIT-OTU-MiSeq utilities, CDSnake made their usage handier due to
simple scalability, easier automated runs and other Snakemake benefits.
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Conclusions: We developed Snakemake pipeline for OTU-MiSeq utilities, which
simplified and automated data analysis. Benchmarking showed that this approach is
capable to outperform popular tools in certain conditions.

Keywords: 16S metagenomics, Operational taxonomic units, Pipeline

Background
Sequencing of 16S rRNA or its fragments is a commonly used method for cost-efficient

characterizing of microbial communities. Illumina paired-end reads are often used as

sequencing method. Since even short variable regions of 16S provide sufficient informa-

tion for microbe identification, sequenced fragment length is often taken smaller than

the sum of lengths of paired reads. Thus reads of pairs can be merged for downstream

analysis, which commonly includes clustering of sequences and matching the resulting

clusters’ representative sequences with annotated database. In spite of the development

of several tools for merging of paired-end reads [1, 2], poor quality sequences at the 3′

ends of both paired-end reads in the overlapping region prevent the correct assembly

of significant portion of read pairs. Incorrectly or uncertainly merged reads either have

to be excluded from downstream analysis or retained with high risk of spurious se-

quences creation.

Recently CD-HIT-OTU-Miseq [3] was presented as a new approach, entirely avoiding

reads merging due to separate clustering of paired reads and discarding of reads voting

for non-matching clusters as chimeric. We considered that this approach could im-

prove important step of OTU table generation, by discarding smaller portion of reads

in process of OTU retrieval. Thus larger portion of source information will be saved

for downstream analysis, and more profound understanding of explored community

structure can be achieved. CD-HIT-OTU-Miseq utilities are command line tools writ-

ten in C++ and Perl. Here we combined CD-HIT-OTU-Miseq utilities into pipeline

using Snakemake [4] workflow. Snakemake is fully portable, as only a Python installa-

tion is required to run Snakefiles, and does not require tight integration of tools into

the workflow system. It provides automatic scalability because it optimizes the number

of parallel processes with respect to provided CPU cores and needed threads and can

make use of single machines as well as cluster engines without modifying the workflow.

Usage of Snakemake makes application of CD-HIT tools easier due to one command

launch of pipeline and provides better reproducibility of the results. Snakemake also al-

lows to resume interrupted work and reports percentage of accomplished tasks, making

large-scale data processing handier.

Implementation
Pipeline takes as input a folder with paired-end reads in form of fastq files and database

of annotated microbial 16S sequences (for instance, Greengenes [5] or SILVA [6]) in

form of fasta files. If quality of reads was preliminarily assessed, the lengths of “good”

parts of R1 and R2 reads can be provided as input parameters. Parameters of “good”

parts depend on overall quality profile of reads and their number, but generally quality

should exceed 25 with no sudden drops. Corresponding parts of reads are considered

for sequences clustering. Default lengths of “good” parts for R1 and R2 are set to 200
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and 180 bp correspondingly. Reads are then put into separate folders for each pairs,

and sample file including names of reads for all pairs is created. 16S-ref-db-PE-splice.pl

utility then used to cut database 16S sequences into fragments corresponding in lengths

and quantities to randomly selected sample. Reads sequences are then filtered by qual-

ity using Trimmomatic [7]. Filtered sequences are clustered at 99% using cd-hit-est

utility to discard chimeric reads. The important feature of CD-HIT-OTU-MiSeq is that

R1 reads of pairs are clustered together, separate form R2 reads, and then clusterization

with same parameters is made for R2 reads. Thus reads of pairs do not need to be

merged or concatenated. Chimeric reads detection is possible when reads from singe

pair vote for non-matching clusters of two clusterizations (and these clusters are large

enough). Remaining reads and fragments from annotated database are then clustered at

97% similarity to yields annotated clusters commonly named Operational Taxonomic

Units, or OTU. 16S reads clustered with 97% similarity result in read groups corre-

sponding to species or close taxonomic levels. Clusters that matched with some se-

quences from annotated database receive the annotation written into output OTU file.

Results
We benchmarked our pipeline against two commonly used pipelines for OTU retrieval,

incorporated into popular workflow for microbiome analysis, QIIME2 [8]. These pipe-

lines are DADA2 [9] and deblur [10].

DADA2 iteratively divides reads into groups until each group is highly likely origi-

nates from central sequence, according to error model for Illumina amplicon reads.

This central sequence is supposed to represent the original genotype, which might be

sequenced with some errors.

Deblur modifies abundances of reads using Hamming distances and subtracting

abundances of reads which are considered to be erroneous version of given read from

this read abundance. Reads which abundances drops to zero are discarded. After that

UCHIME [11] algorithm as implemented by VSEARCH [12] is used for chimeras

filtering.

Merging of paired-end reads stage is incorporated in DADA2 pipeline. Since deblur

doesn’t work with paired-end reads (and processes only R1 reads if paired-end reads

are provided), reads of pairs should be merged prior to running deblur. We used

VSEARCH incorporated in QIIME workflow in “join-pairs” mode to merge reads be-

fore deblur usage.

Three mock datasets having highly overlapping paired-end 2 × 250 bp reads were

used for benchmarking - Balanced [13], HMP [14], and Extreme [9]. The Balanced

community contained 57 bacteria and archaea at nominally equal frequencies, the

HMP community contained 21 bacteria at nominally equal frequencies, and the Ex-

treme community contained 27 bacterial strains at frequencies spanning five orders of

magnitude and differing over the sequenced region by as little as 1 nucleotide (nt). Bal-

anced dataset had higher sequence quality (Mean Q = 35.9 forward/33.5 reverse); Ex-

treme had moderate quality (33.0/29.3); and HMP had lower quality (32.3/28.7). We

also used set of all 3 mock datasets (further referred as “All”) to create input data with

3 samples of varying quality, so each mock dataset there represented separate sample.

Benchmarking results are presented in Table 1. As expected, CDSnake outputted less

OTUs than DADA2 and deblur, since last two tools aim to output sub-OTUs by error
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correction, and OTU-MiSeq doesn’t process errors and tries to output most correct

OTUs using clustering [1]. The exception was HMP dataset of lowest quality, where

deblur outputted less OTUs than CDSnake (53 vs. 59). In this level of errors in input

data clustering of reads by CD-HIT utilities outputted more OTUs than deblur after

his dropping of erroneous sequences. However, on Balanced and All datasets number

of OTUs outputted by CDSnake was closer to real number of strains which were used

for mock community generation, than those outputted by DADA2 and deblur. On Ex-

treme dataset CDSnake, as expected, performed worse than DADA2 and deblur, since

clustering algorithm cannot separate sequencing errors from actual 1-nt differences,

present between strains in this community.

Mechanisms of OTUs annotation differ in CD-HIT-OUT-MiSeq and QIIME2, in

which we testes DADA2 and deblur. CD-HIT-OTU-MiSeq annotation output is binary

– it either has annotation in any taxonomic level or outputs “None” in corresponding

field. QIIME2 classifiers output some taxonomic annotation for each OTU and provide

confidence scores for all annotations. We considered OTUs annotated for QIIME2

pipelines if confidence score exceeded 0.9.

Since we used mock datasets, correct annotations were known for each community.

We considered feature correctly annotated if corresponding genus was present in pub-

lished dataset content. Number of these features is presented in column “OTUs/Fea-

tures correctly annotated” of Table 1. Notably, in some cases several features

corresponded to single microorganism from source dataset. This could indicate that

more genetic complexity was present in microorganism DNA which authors of source

datasets used to create mock community and considered to belong to single strain.

Otherwise, especially in cases when too many features were outputted for one source

strain, this heterogeneity can be artefact of sequencing errors or incorrect work of error

correction algorithms, if they were applied.

Considering such complex mapping of annotated features to known annotations, we

also provide second measure of correctness of annotation – number of microorganisms

Table 1 Benchmarking of DADA2, deblur and CDSnake on three mock community datasets and
set of these datasets, where each mock dataset represented one sample (All row)

actual number
of microbial
strains

pipeline OTUs/
Features
outputted

OTUs/
Features
annotated

OTUs/Features
correctly
annotated

Microorganisms
correctly
discovered

Total count

Balanced 59 dada2 91 67 57 39 29,344

deblur 343 280 244 41 200,317

CDSnake 55 45 31 29 524,604

HMP 21 dada2 68 49 31 19 186,027

deblur 53 36 23 18 175,027

CDSnake 59 21 17 17 214,831

Extreme 27 dada2 30 26 25 18 1,371,591

deblur 18 15 14 13 775,144

CDSnake 12 12 9 8 1,357,589

All ~ 105 dada2 180 134 116 77 1,392,444

deblur 393 317 274 68 224,388

CDSnake 123 31 26 25 2,231,154
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form source community, which received annotation on genus level. Number of these

microorganisms is presented in column “Microorganisms correctly discovered”.

Number of annotated OTUs was generally closer to true number of microbial species

for DADA2 pipeline, and in one case, with HMP dataset, CDSnake outputted better re-

sult. Annotations were generally closer to expected ones for dada2 pipeline.

Total outputted microbial counts for mock datasets were higher for CDSnake than

for DADA2 and deblur. Extreme dataset was an exception here since DADA2 output-

ted more counts than CDSnake in this case, though numbers didn’t differ substantially

(1,371,591 for DADA2 vs. 1,357,589 foe CDSnake). Debur outputted the least counts in

most of cases with exception of Balanced dataset, where DADA2 outputted least

counts.

We benchmarked time of all runs on two cores of Asus Aspire S13 laptop. In

addition to 3 pipelines, DADA2, deblur and CDSnake we added original CD-HIT-

OTU-MiSeq utilities for speed benchmarking (we don’t provide data on original CD-

HIT-OUT-MiSeq utilities in Table 1 since they were identical to results of CDSnake).

Deblur was faster than other tools in all tested cases. On Extreme dataset CD-HIT-

OUT-MiSeq utilities and CDSnake runs took significantly longer than DADA2 and de-

blur. For Balanced and HMP dataset running times were comparable with CDSnake

running faster than DADA2 on HMP dataset and longer on Balanced dataset. Running

time didn’t differ substantially between CD-HIT-OUT-MiSeq utilities and CDSnake

but tend to take slightly longer for CDSnake. This can be explained by usage of add-

itional python components which are necessary to run Snakemake pipelines.

Conclusion
Microbiome research is a complex field with common trade-offs between quality and

quantity of data that could be used for analysis. As shown in Tables 1 and 2, choice of

tool for certain task should depend on most important parameters of output, such as

number of OTUs or total count, as long as time limits. Quality of input data and com-

plexity of studied microbial community also should be considered when tools are se-

lected. CD-HIT-OTU-MiSeq provides one more approach for amplicon analysis

capable to outperform popular tools in certain conditions. We developed Snakemake

pipeline for OTU-MiSeq utilities, which can be helpful for easier automated runs.

Abbreviation
OTU: Operational taxonomic units

Table 2 Time benchmarking of DADA2, deblur, source CH-HIT-OUT-Miseq utilities and CDSnake on
three mock community datasets and set of these datasets (All row)

Time, sec

DADA2 deblur source CD-HIT CDSnake

HMP 4614.8 1371.72 2149.59 2263.83

Balanced 8207.96 2558.82 9345.62 9563.57

Extreme 7362.38 3599.73 47,684.8 43,170.37

All 17,509.9 6376.05 39,775.51 39,891.53
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