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Abstract
Background: High-throughput technologies enable the cost-effective collection and
analysis of DNA methylation data throughout the human genome. This naturally entails
missing values management that can complicate the analysis of the data. Several
general and specific imputation methods are suitable for DNA methylation data.
However, there are no detailed studies of their performances under different missing
data mechanisms –(completely) at random or not- and different representations of
DNA methylation levels (β andM-value).

Results: Wemake an extensive analysis of the imputation performances of seven
imputation methods on simulatedmissing completely at random (MCAR),missing at
random (MAR) andmissing not at random (MNAR) methylation data. We further
consider imputation performances on the popular β- andM-value representations of
methylation levels. Overall, β-values enable better imputation performances thanM-
values. Imputation accuracy is lower for mid-range β-values, while it is generally more
accurate for values at the extremes of the β-value range. The MAR values distribution is
on the average more dense in the mid-range in comparison to the expected β-value
distribution. As a consequence, MAR values are on average harder to impute.

Conclusions: The results of the analysis provide guidelines for the most suitable
imputation approaches for DNA methylation data under different representations of
DNA methylation levels and different missing data mechanisms.

Keywords: Imputation, DNA methylation, M-value, β-value, Missing data mechanisms,
MCAR, MAR, MNAR

Background
Epigenomics is currently a very active research area aiming to shed light on the mod-
ifications in gene expression that are both independent from DNA mutations and still
inheritable (mitotically and meiotically) [1, 2].
We focus here on DNA methylation, involving the covalent addition of a methyl group

to the 5’-carbon cytosine in dinucleotide cytosine phosphate guanine (CpG dinucleotide).
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The relevance of DNA methylation spans several domains in biology, from embryonic
development [3, 4] to physiological ageing, cancer [5–7] and shaping of the immune
system [8], including vaccination [9]. For these reasons, a deep understanding of the
fittest metrics and statistics to model methylations’ activity is important to offer a reliable
assessment of its role as a potential biomarker.
Further, methylation data are stable and reproducible and offer a large amount of

publicly available data, thanks to the cost-effectiveness of methylation arrays (Illumina
Human Infinium Beadchips 27k, 450k and now 850k). This publicly available abundance
of data, in turn, enables meta-analyses to advance discovery, thanks to numerous (ad hoc)
preprocessing approaches [10].
Infinium assays utilize a pair of probes to measure the intensities of the methylated and

unmethylated alleles at each CpG site. The methylation value is then computed based on
the measured intensities of this pair of probes, across all cells of the sampled tissue. Two
metrics are defined to indicate methylation levels: the β-value (ranging from 0 to 1), and
theM-value (ranging from −∞ to ∞). The relationship between the two representations
is a logit trasformation [11]. β-values at the extreme of their range (i.e. close to 0 and
1) have been shown to suffer from severe heteroscedasticity [11] , differently from M-
values. However, despite the desirable homoskedasticity of theM-value, in particular for
differential analyses [12], β-value remains the predominantly used metric owing to its
intuitive biological interpretation, and it is recommended by array producers [11]. As a
result, both metrics are used across the literature, mostly depending on the background
of the investigators.
Experimental methylation data often contain multiple missing values, that can affect

downstream analyses. Examples include epigenetic clocks that estimate biological age
from small sets of pre-selected age-correlated CpG sites [13–16], recently proven to be
highly sensitive to small perturbations of methylation levels [17], as well as more general
purpose differential analyses. Hence, accurate imputation of missing data is required for
improving the quality of DNA methylation downstream analysis.
Missing data can be organized into three classes [18]: i) missing completely at random

(MCAR) values, if the probability of being missing is totally independent of both the
observed and unobserved variables; ii) missing at random (MAR) values, if the probabil-
ity of a value of being missing does not depend on the value itself but may depend on the
observed variables; iii)missing not at random (MNAR), if the probability of being missing
depends on the missing value itself. When dealing with missing values, MNAR mecha-
nisms are usually considered not ignorable since the imputation process needs to model
explicitly the missing data mechanism in order to avoid biased estimations [18]. On the
contrary, MCAR and MAR mechanisms are considered ignorable and are often used as
underlying assumption of most imputationmethods. However, there is no assessed statis-
tical way to detect the specific missingness mechanism in the data [19], and assumptions
need to bemade based on the knowledge of the specific data and its sources of acquisition.
Unfortunately, to the best of our knowledge, there is no study that addresses the missing-
ness patterns in DNA methylation data generated with Illumina Beadchips. As such, our
work will comprise the study of all three patterns.
We recently introduced a novel regression-based imputation method, methyLImp,

specifically designed for methylation data, and compared its performances, under
the MCAR assumption, with six other general purpose imputation methods [17],
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namely: i) two mean-value imputation approaches, the basic mean imputation approach
and impute.knn [20]; ii) three iterative soft-thresholding approaches, softImpute [21],
imputePCA [22] and SVDmiss [23]; iii) one regression-based approach, missForest [24].
Here we further extend the assessment and comparison of imputation performances
of the seven benchmarked methods (see “Benchmark imputation software” section) on
the same benchmark set of DNA methylation data used in [17], which includes 58
datasets with healthy and disease samples on a variety of different tissues and ages (see
“Benchmark data” section). In particular, we extend the performance comparison in two
directions: i) by considering β- and M-values data representations of the DNA methyla-
tion levels; ii) by explicitly considering and simulating the three different types of missing
data mechanisms, a characterization still missing in literature for DNA methylation data
(see “Missing values simulation procedure” section for details). In particular, we model
MCAR values as missing values that are a direct consequence of random errors in experi-
mental measurements, MAR values as consequence of CpG-specific probes that are more
likely to fail to capture the target sequences, and MNAR values as missingness patterns
that depend on the specific methylation level. In this latter case, we consider separately
three different ranges of methylation levels: low-range MNAR missing values, for which
we assign a higher probability of being missing to values in the [ 0, 0.2] β-value range,
mid-range MNAR for which we assign a higher probability of being missing to values in
the [ 0.4, 0.6] range, and high-range MNAR that cover the [ 0.8, 1] β-value range.
The results of this extensive analysis highlight issues and limitations of DNA methy-

lation data imputation, and provide suggestions for the most appropriate imputation
approaches. In particular, as already noticed in [17], our tests show that mid-range β-
values are harder to impute than β-values at the extremes (i.e. close to 0 and 1). Sampled
MAR values appear to be more compressed in the mid-range and less in the lower-range
than the expected β-value distribution. The negative consequence of such a scenario
is that methylation levels of CpGs that frequently present missing values are harder to
impute accurately. Furthermore, in principle one could expect the (more homoscedastic)
M-values to be more suitable for imputation than the (more heteroscedastic) β-values,
at least for regression-based imputation methods. However, contrary to this expectation,
β-values appear to be the most suitable representation for methylation level imputa-
tions. Remarkably, these results hold true irrespective of the specific imputation method,
although regression-based method have, on the average, better performances.

Results
We compare the imputation accuracy of seven benchmarked methods on simulated
missing values with respect to the M-value and β-value measures and with respect to
MCAR, MAR and MNAR simulated missing values (see “Missing values simulation pro-
cedure” section for details and rationale about the sampling procedure). For performance
comparison, the same simulated missing values have been imputed independently by first
using the M-value and then the β-value representation of the data. In order to directly
compare M- and β-value imputation performances, all imputed M-values have been
converted into β-values before evaluation. The amount of simulated missing values intro-
duced in each test is equal to 3% of the size of the dataset, which corresponds to the
average number of real missing values observed in our benchmark set (see Table 1). Impu-
tation performance are measured using two metrics (see “Evaluation metrics” section):
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Table 1 Benchmark datasets

ID GEO ID Tissue Disease status # Samples # Missing
values (21k)

% Missing
values (21k)

D1 GSE32146 Colon mucosa Crohn’s disease 10 175 0.08%
D2 GSE32146 Colon mucosa Ulcerative colitis 5 161 0.15%
D3 GSE32146 Colon Normal 10 171 0.08%
D4 GSE32148 Blood Normal 19 325 0.08%
D5 GSE40005 Blood Normal 12 324 0.13%
D6 GSE42921 Colon mucosa Crohn’s disease 5 192 0.18%
D7 GSE42921 Colon mucosa Ulcerative colitis 6 331 0.26%
D8 GSE42921 Colon Normal 12 874 0.34%
D9 GSE43091 Liver Cancer 50 1,980 0.19%
D10 GSE43091 Liver Normal 4 125 0.15%
D11 GSE44684 Cerebellum Normal 6 67 0.05%
D12 GSE49393 Prefrontal Cortex Normal 25 54,000 10.11%
D13 GSE51388 Blood Normal 60 292,200 22.79%
D14 GSE52113 Blood Normal 24 0 0.00%
D15 GSE53051 Breast Cancer 14 0 0.00%
D16 GSE53051 Colon Cancer 35 0 0.00%
D17 GSE53051 Colon, Pancreas Normal 9 0 0.00%
D18 GSE53051 Lung Cancer 9 0 0.00%
D19 GSE53051 Pancreas Cancer 29 0 0.00%
D20 GSE53051 Thyroid Cancer 70 0 0.00%
D21 GSE53162 Brain,

Cerebellum,
Prefrontal Cortex

Normal 21 0 0.00%

D22 GSE53740 Blood Normal 165 0 0.00%
D23 GSE57360 Brain Normal 5 0 0.00%
D24 GSE61151 Blood Normal 184 7,544 0.19%
D25 GSE61257 Adipose Non-alcoholic

fatty liver disease
(NAFLD)

8 88 0.05%

D26 GSE61257 Adipose Non-alcoholic
steatohepatitis
(NASH)

9 142 0.07%

D27 GSE61257 Adipose Normal 15 241 0.08%
D28 GSE61258 Liver Non-alcoholic

fatty liver disease
(NAFLD)

14 370 0.12%

D29 GSE61258 Liver Non-alcoholic
steatohepatitis
(NASH)

7 218 0.15%

D30 GSE61258 Liver Normal 32 966 0.14%
D31 GSE61258 Liver Primary biliary

cholangitis (PBC)
12 251 0.10%

D32 GSE61258 Liver Primary
sclerosing
cholangitis (PSC)

14 352 0.12%

D33 GSE61259 Muscle Non-alcoholic
fatty liver disease
(NAFLD)

9 90 0.05%

D34 GSE61259 Muscle Non-alcoholic
steatohepatitis
(NASH)

7 49 0.03%

D35 GSE61259 Muscle Normal 10 96 0.04%
D36 GSE61380 Brain Normal 15 2,4671 7.70%
D37 GSE62003 Blood Normal 35 0 0.00%
D38 GSE64495 Blood Normal 106 32 0.00%
D39 GSE67477 Liver Cancer 6 461 0.36%
D40 GSE67484 Liver,

Intestine-Small
Normal 4 45 0.05%

D41 GSE69502 Brain, Spinal Cord Normal 20 37,781 8.84%
D42 GSE71955 Blood Normal 62 260,245 19.64%
D43 GSE73103 Blood Normal 268 1,005,268 17.55%
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Table 1 Benchmark datasets (Continued)

ID GEO ID Tissue Disease status # Samples # Missing
values (21k)

% Missing
values (21k)

D44 GSE73747 Brain Normal 9 7,069 3.68%
D45 GSE79122 Brain Normal 7 99 0.07%
D46 GSE80970 Prefrontal Cortex Normal 68 1,324 0.09%
D47 GSE82218 Blood Normal 25 398 0.07%
D48 GSE84003 Blood Normal 6 275 0.21%
D49 GSE88821 Colon, Rectum Cancer 63 36,995 2.75%

D50 GSE88821 Colon, Rectum Normal 8 4,680 2.74%
D51 GSE88821 Liver Cancer 4 2,349 2.75%
D52 GSE89093 Blood Normal 46 65,044 6.62%
D53 GSE89472 Blood Normal 5 245 0.23%
D54 GSE89702 Cerebellum Normal 17 49,572 13.65%
D55 GSE89703 Hippocampus Normal 13 37,557 13.52%
D56 GSE89705 Putamen Normal 17 49,215 13.55%
D57 GSE89706 Putamen Normal 28 78,736 13.16%
D58 GSE97362 Blood Normal 123 2,333 0.09%

mean absolute error (MAE) and root mean square error (RMSE). Since β-values are lim-
ited in the [ 0, 1] range, both metrics are also limited in [ 0, 1], where a value close to 0
means (almost) perfect imputation.
The full range of tests is run, for computational efficiency reasons (see

“Methods” section), for all datasets on the CpGs in the intersection between the 27k and
450k Human Beadchips (Type I probes). A reduced number of tests on the complete
450k benchmark data (in Additional file 3) show that there are no relevant differences
between imputation accuracy on complete (450k) and restricted (21k) datasets.
We use the Wilcoxon signed-rank test to detect statistically significant difference

between MAE and RMSE performances (see “Wilcoxon-testing procedure to assess sta-
tistically significantly better performances” section for more details). In particular, we
use the Wicoxon test to assess whether a single method performance is statistically sig-
nificantly better on the β-value or M-value representation (the best results are marked
with ∗ in the report tables). We also use the Wilcoxon test to asses whether there are
best performing methods for some missingness mechanism (the best methods, if any, are
highlighted in bold in the report tables). In this latter case, we define best performing
methods as those whose performances are never statistically significantly worse than any
other method.

Imputation of MCAR values

The average imputation performances on healthy and disease samples under the MCAR
assumption are summarized in Table 2a and b, respectively. Due to the well-known
methylation heterogeneity in disease samples (e.g. tumour) [25, 26], the imputation accu-
racy is consistently lower in disease than in control (healthy) samples, independently of
the specific imputation method. This confirms the results already reported in [17] for the
specific subset of (353) CpGs used in Horvath’s epigenetic clock [15].
Furthermore, the regression-based imputation methods are the best performing among

the benchmarked ones. In particular, according to the Wilcoxon signed-rank test, the
imputation performances of methyLImp on β-values are never worse than those of the
other methods on both β andM-values.
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Table 2MCAR missing values

MAE RMSE

Method M-value B-value M-value B-value

(a) Healthy datasets

mean 0.030±0.001∗ 0.030±0.001 0.051±0.001 0.050±0.001∗

impute.knn 0.039±0.007∗ 0.059±0.012 0.079±0.015∗ 0.112±0.019

softImpute 0.031±0.002 0.032±0.006∗ 0.055±0.004 0.059±0.017∗

imputePCA 0.025±0.001∗ 0.025±0.001 0.045±0.001 0.043±0.001∗

SVDmiss 0.035±0.001 0.027±0.001∗ 0.063±0.002 0.048±0.002∗

missForest 0.026±0.001 0.026±0.001∗ 0.044±0.003 0.043±0.002∗

methyLImp 0.029±0.001 0.025±0.001∗ 0.050±0.002 0.047±0.002∗

(b) Disease datasets

mean 0.048±0.001∗ 0.048±0.001 0.080±0.002 0.079±0.002∗

impute.knn 0.059±0.008∗ 0.082±0.013 0.107±0.014∗ 0.142±0.018

softImpute 0.050±0.004 0.051±0.010∗ 0.084±0.007 0.091±0.026∗

imputePCA 0.041±0.001∗ 0.041±0.001 0.072±0.002 0.070±0.002∗

SVDmiss 0.055±0.001 0.045±0.001∗ 0.093±0.002 0.080±0.003∗

missForest 0.042±0.001∗ 0.042±0.001 0.071±0.002 0.070±0.002∗

methyLImp 0.043±0.001 0.037±0.001∗ 0.074±0.002 0.066±0.002∗

Average Mean Average Error (MAE) and Root Mean Square Error (RMSE) imputation performance ± standard deviation. For each
method, the ∗ symbol indicates the measure (eitherM-value or β-value) for which the Wilcoxon signed-rank test p-value is
< 0.05. Best results per metric with respect to the Wilcoxon signed-rank test are highlighted in bold

Note that for healthy samples, the average performances of imputePCA and missFor-
est with respect to the RMSE metric are better than those of methyLImp, although the
Wilcoxon test detects statistically significant differences in favour of the latter (Table 2).
This behaviour can be explained by observing the detailed results per dataset in Addi-

tional file 1. In short, 3% MCAR missing values in large datasets imply that there is at
least onemissing value for almost every CpG. SincemethyLImp uses only complete obser-
vations for regression, this implies that in large datasets the regression is done on the
average on just few tens of variables (see Table 2 in Additional file 2), which are usually
not enough to build an appropriate regression model. This is the reason whymethyLImp’s
performance on the larger datasets (e.g. D22-GSE53740, D24-GSE61151, D38-GSE64495
in Additional file 1) are much worse than those of the baselinemean approach. However,
since Wilcoxon test draws statistical inference from the rank sum instead of the mean,
the average methyLImp performances are still detected as significantly better than those
of the other methods. Anyway, we remark that in real methylation datasets such situation
is quite unlikely since we typically have thousands of completely observed variables (see
Table 1 in Additional file 2).
We can also notice that methyLImp, SVDmiss and softImpute benefit from the β-value

representation, impute.knn is definitely more accurate on the M-value representation,
while there is no clear preference for the remaining methods (MCAR tests in Tables 2a
and b). The accuracy of impute.knn (originally designed for gene expression data impu-
tation) on high-range values is clearly affected by the β-value representation (average
RMSD w.r.t. β-value range in Fig. 1). On the contrary, impute.knn performances are more
uniform for the M-value representation, although still not satisfactory in comparison to
those of the other methods, highlighting once more the peculiarity of epigenetic versus
transcriptional signals. The same trend is visible also in the disease datasets (Figure 4 in
Additional file 1).
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Fig. 1 Healthy datasets. Average RMSE with respect to β-value range. Average RMSE forM-value and β-value
imputation with respect to different β-value ranges and with respect to the MCAR, MAR, MNAR (low, mid,
high) missing data mechanisms
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To conclude, we can notice that, except for impute.knn, imputation errors are not
equally distributed over the range of β-values, being smaller at the extremes (aver-
age RMSD w.r.t. β-value range in Fig. 1). As already pointed out in [17], this can be
explained by the well-known heteroscedasticity of β-values [12]. The behaviour of the
mean approach is a clear evidence of such variability at the extremes.

Imputation of MAR values

The average imputation performances on healthy and disease samples under the MAR
assumption are summarized in Table 3a and b, respectively. We notice that the over-
all imputation accuracy of MAR missing values is significantly lower than that on
MCAR values. This is very likely a consequence of the sampled MAR β-value dis-
tribution, which is shifted more toward the middle-range than the expected β-value
distribution (Figs. 2 and 3). As discussed above, middle-range β-values are harder to
impute due to their higher variability (see, for example, the mean performance) and,
thus, the overall imputation accuracy for MAR missing values is, not surprisingly, lower.
Since the MAR missing values have been sampled by using real data probability dis-
tribution, the average results in Table 3a and b (MAR tests) are probably a better
indication of the expected imputation accuracies than the results on MCAR missing
values.
Although the average imputation error is larger for MAR missing values, we can

notice the same general performance trend, as observed in the MCAR tests: i) β-value
imputation is generally more accurate than M-value imputation with the exception
of impute.knn; ii) regression-based methods are on the average the best perform-
ing; iii) imputation accuracy is significantly better on healthy samples than on disease
samples.

Table 3MAR missing values

MAE RMSE

Method M-value B-value M-value B-value

(a) Healthy datasets

mean 0.041±0.001 0.040±0.001∗ 0.073±0.002 0.070±0.001∗

impute.knn 0.043±0.004∗ 0.061±0.009 0.082±0.009∗ 0.110±0.015

softImpute 0.042±0.002∗ 0.043±0.007 0.077±0.005 0.082±0.017∗

imputePCA 0.037±0.001 0.036±0.001∗ 0.069±0.002 0.066±0.002∗

SVDmiss 0.043±0.001 0.036±0.001∗ 0.079±0.003 0.067±0.002∗

missForest 0.035±0.001 0.035±0.001∗ 0.064±0.002 0.061±0.002∗

methyLImp 0.037±0.001 0.033±0.001∗ 0.068±0.002 0.063±0.002∗

(b) Disease datasets

mean 0.060±0.001 0.060±0.001∗ 0.101±0.002 0.097±0.002∗

impute.knn 0.067±0.005∗ 0.087±0.010 0.115±0.009∗ 0.144±0.014

softImpute 0.062±0.003 0.065±0.011 0.106±0.006∗ 0.116±0.026

imputePCA 0.054±0.001 0.053±0.001∗ 0.095±0.002 0.090±0.002∗

SVDmiss 0.067±0.001 0.057±0.001∗ 0.114±0.003 0.104±0.004∗

missForest 0.053±0.001 0.053±0.001∗ 0.093±0.002 0.088±0.002∗

methyLImp 0.053±0.001 0.049±0.001∗ 0.092±0.002 0.089±0.002∗

Average Mean Average Error (MAE) and Root Mean Square Error (RMSE) imputation performance ± standard deviation. For each
method, the ∗ symbol indicates the measure (eitherM-value or β-value) for which the Wilcoxon signed-rank test p-value is
< 0.05. Best results per metric with respect to the Wilcoxon signed-rank test are highlighted in bold
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Fig. 2 β-value distributions of different missingness mechanisms. Comparison of the β-value distribution
against the distribution of simulated MCAR, MAR and MNAR missing values

Imputation of MNAR values

The average imputation performances on healthy and disease samples under the
low-range MNAR assumption are summarized in Table 4a and b, respectively, those on
the mid-range MNAR assumption in Table 5a and b, and those on the high-range MNAR
assumption in Table 6a and b.
The imputation performances on low-range and high-range MNAR values are statisti-

cally significantly better than those on MCAR values, while the imputation performances
on mid-range MNAR values are even worse than those on MAR. This behaviour can
again be explained as a consequence of the standard deviations of the β-values being
compressed in the low and high ranges. In fact, we remark that β-values at the extreme
of the range (either close to one or zero) correspond to situations where all or none of
the copies of the CpG sites are methylated, indicating a very robust biological condition,
which seems easier to predict than conditions where methylation status is diversified
across cells. As a further evidence, the plots related to the MCAR assumption are basi-
cally indistinguishable from those related to the (low-range, mid-range and high-range)
MNAR assumption (Fig. 1). The good performances shown in Table 4a and b (low-range
MNAR tests) are thus only a consequence of the fact that a high number of missing val-
ues are in the low-range (see also Fig. 2). The same argument can be used for the results
in Table 6a and b (high-range MNAR tests). On the contrary, the worse MAE and RMSE
performances are a consequence of the high number of missing values in the mid-range
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Fig. 3 β-value distributions of CpGs with frequently missing values . Comparison of the β-value distribution
against the β-value distribution of CpGs with missing values on > 20%,> 25%,> 30% samples. MAR
simulated distribution included

(Tables 6a, b and Figure 2). We also remark that, although the MNAR tests may appear
purely theoretical and not related to a real-word cases, they can still give us a picture of
what we should expect in an extreme scenario. In particular, the take home message here
is that, if for some reason we can assumeMNARmissing values in DNAmethylation data,
we need to model explicitly such missing mechanism only if they are of type mid-range
MNAR. All other cases can be considered as ignorable.
To conclude, note that in Table 4 (low-range MNAR tests on healthy samples) there are

several good average performances and no method is highlighted in bold, which means
that it is not possible to unambiguously identify the best performing method. Anyway, a
closer look at the results of theWilcoxon test shows that methyLImp and imputePCA per-
form better than the remaining approaches (data not shown). Also, differently from the
other cases, we can see that M-value imputation are more accurate than β-value impu-
tation according to the Wilcoxon test (low-range MNAR tests in Table 4a and b). On the
other hand, except for this specific case, we can observe the same general performance
trend previously discussed for both the MAR and MCAR tests.

Discussion
In this work we have covered three different types of missing data mechanisms for DNA
methylation data, represented with the two popular M and β-value representations, and
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Table 4MNAR:low missing values

MAE RMSE

Method M-value B-value M-value B-value

(a) Healthy datasets

mean 0.022±0.001∗ 0.023±0.001 0.043±0.001∗ 0.044±0.001

impute.knn 0.041±0.012 0.033±0.006∗ 0.086±0.021 0.077±0.014∗

softImpute 0.026±0.002 0.023±0.003 0.052±0.006 0.046±0.010∗

imputePCA 0.019±0.001∗ 0.020±0.001 0.039±0.002∗ 0.039±0.001

SVDmiss 0.029±0.001 0.021±0.001∗ 0.061±0.003 0.041±0.002∗

missForest 0.019±0.001∗ 0.020±0.001 0.037±0.002∗ 0.038±0.001

methyLImp 0.022±0.001∗ 0.019±0.001 0.040±0.002∗ 0.039±0.002

(b) Disease datasets

mean 0.036±0.001∗ 0.037±0.001 0.068±0.002∗ 0.069±0.002

impute.knn 0.063±0.014 0.048±0.008∗ 0.120±0.020 0.102±0.015∗

softImpute 0.040±0.005 0.036±0.004∗ 0.076±0.010 0.072±0.013∗

imputePCA 0.031±0.001∗ 0.032±0.001 0.061±0.002∗ 0.062±0.002

SVDmiss 0.047±0.001 0.035±0.001∗ 0.089±0.003 0.070±0.003∗

missForest 0.031±0.001∗ 0.032±0.001 0.060±0.002∗ 0.061±0.002

methyLImp 0.032±0.001 0.028±0.001∗ 0.063±0.003 0.058±0.002∗

Average Mean Average Error (MAE) and Root Mean Square Error (RMSE) imputation performance ± standard deviation. For each
method, the ∗ symbol indicates the measure (eitherM-value or β-value) for which the Wilcoxon signed-rank test p-value is
< 0.05. Best results per metric with respect to the Wilcoxon signed-rank test are highlighted in bold

we have compared the performances of seven computationally efficient imputationmeth-
ods that are available under the popular R framework. The analysis essentially provides
three general pieces of information.

1. Missing values lying in the mid-range methylation level are harder to impute than
missing values close to the extremes of the range, i.e. values indicating that (almost)

Table 5MNAR:mid missing values

MAE RMSE

Method M-value B-value M-value B-value

(a) Healthy datasets

mean 0.053±0.001 0.051±0.001∗ 0.082±0.001 0.076±0.001∗

impute.knn 0.041±0.002∗ 0.050±0.004 0.067±0.005∗ 0.085±0.010

softImpute 0.051±0.001 0.050±0.006∗ 0.078±0.003 0.080±0.012∗

imputePCA 0.045±0.001 0.043±0.001∗ 0.072±0.001 0.067±0.001∗

SVDmiss 0.052±0.001 0.043±0.001∗ 0.081±0.002 0.069±0.002∗

missForest 0.044±0.001 0.042±0.001∗ 0.068±0.001 0.064±0.001∗

methyLImp 0.044±0.001 0.040±0.001∗ 0.068±0.001 0.064±0.001∗

(b) Disease datasets

mean 0.076±0.001 0.072±0.001∗ 0.109±0.001 0.101±0.001∗

impute.knn 0.060±0.002∗ 0.073±0.006 0.091±0.005∗ 0.116±0.010

softImpute 0.075±0.002 0.072±0.010∗ 0.108±0.003 0.111±0.021∗

imputePCA 0.066±0.001 0.062±0.001∗ 0.098±0.001 0.091±0.001∗

SVDmiss 0.075±0.001 0.064±0.001∗ 0.112±0.002 0.100±0.002∗

missForest 0.066±0.001 0.062±0.001∗ 0.098±0.001 0.090±0.001∗

methyLImp 0.065±0.001 0.057±0.001∗ 0.095±0.002 0.088±0.001∗

Average Mean Average Error (MAE) and Root Mean Square Error (RMSE) imputation performance ± standard deviation. For each
method, the ∗ symbol indicates the measure (eitherM-value or β-value) for which the Wilcoxon signed-rank test p-value is
< 0.05. Best results per metric with respect to the Wilcoxon signed-rank test are highlighted in bold
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Table 6MNAR:high missing values

MAE RMSE

Method M-value B-value M-value B-value

(a) Healthy datasets

mean 0.026±0.001∗ 0.026±0.001 0.044±0.001∗ 0.044±0.001

impute.knn 0.054±0.013∗ 0.092±0.020 0.103±0.022∗ 0.152±0.023

softImpute 0.028±0.002∗ 0.033±0.010 0.049±0.005∗ 0.063±0.026

imputePCA 0.022±0.001∗ 0.022±0.001 0.039±0.001 0.038±0.001

SVDmiss 0.032±0.001 0.025±0.001∗ 0.056±0.004 0.043±0.002∗

missForest 0.023±0.001∗ 0.023±0.001 0.039±0.001 0.038±0.001∗

methyLImp 0.027±0.001 0.022±0.001∗ 0.044±0.001 0.039±0.002∗

(b) Disease datasets

mean 0.041±0.001∗ 0.043±0.001 0.069±0.002∗ 0.069±0.002

impute.knn 0.085±0.017∗ 0.134±0.025 0.148±0.023∗ 0.203±0.024

softImpute 0.044±0.005∗ 0.053±0.018 0.075±0.009∗ 0.098±0.043

imputePCA 0.035±0.001∗ 0.036±0.001 0.061±0.002∗ 0.061±0.002

SVDmiss 0.050±0.001 0.041±0.001∗ 0.084±0.002 0.073±0.003∗

missForest 0.036±0.001∗ 0.038±0.001 0.062±0.002∗ 0.062±0.001

methyLImp 0.037±0.001 0.032±0.001∗ 0.062±0.002 0.057±0.002∗

Average Mean Average Error (MAE) and Root Mean Square Error (RMSE) imputation performance ± standard deviation. For each
method, the ∗ symbol indicates the measure (eitherM-value or β-value) for which the Wilcoxon signed-rank test p-value is
< 0.05. Best results per metric with respect to the Wilcoxon signed-rank test are highlighted in bold

all the copies of the CpG site are uniformly methylated or uniformly non methylated.
This is very likely a consequence of the higher variance of the methylation values in
the intermediate ranges. Such scenario can have a deep impact in terms of perfor-
mance expectations, if we assume that in our data a large number of missing values are
of type MNAR and, in particular, lie in the β-value mid-range. In this case, imputa-
tion approaches for DNAmethylation data need to model explicitly such missingness
pattern. Unfortunately, we do not have any evidence assessing whether this is true or
not in real DNA methylation data.

2. Since M-values show lower heteroscedasticity than β-values, we would expect over-
all better imputation performances on M-values than on β-values, at least for those
imputation approaches that rely on linear models. However, despite this desirable
statistical properties of the M-value representation, there is no immediate benefit in
M-value imputation.

3. Methylation levels of CpGs that come with a higher probability of having a missing
value (i.e. MAR type missing values) are generally harder to impute accurately. This
seems to be a consequence of the β-value distributions of such (highly missing) CpGs,
which are, again, more compressed into the mid-range in comparison to the expected
β-value distribution. Due to such statistics, we can speculate that MAR missigness
mechanisms need to be assumed for DNA methylation data. It is however hard to
quantify the amount of MAR missing values in the data, since these cannot be easily
distinguished from MCAR missing values. Furthermore, we can observe highly vari-
able percentages of missing values in DNAmethylation datasets (see Table 1), making
it hard to even determine howmanymissing values in general we should expect in real
data. However, we can suggest that DNA methylation applications that rely on highly
missing CpGs (easily identified by statistical analysis of available data) need to expect
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imputation accuracy lower that average for such CpGs. Also in this case, M-value
imputation does not offer any benefit.

These three general indications hold independently from the specific imputation
method adopted. On the other hand, some methods seem to be more suitable than
others for DNA methylation data imputation. In particular, in terms of imputation accu-
racy, performance comparison shows that, among the benchmarked approaches, the
regression-based methods (i.e.methyLimp and missForest) are the best performing ones.
In particular, the overall results in Table 7, averaged over all 57 (healthy and disease)
benchmark datasets and over all missing value mechanisms, show thatmethyLImp is sta-
tistically significantly best performing, closely followed by missForest and imputePCA.
More generally, as it can be seen in Tables 2a, b, 3a, b, 4a, b, 5a, b, and 6a, b, (all
missingness models tests),methyLImp is statistically significantly better performing with
respect to all types of missingness mechanisms. However, we remark that themethyLImp
approach is not suitable on DNA methylation datasets that have a limited number of
variables (CpGs) with complete observations, although this is unlikely to happen in real
methylation data (see statistics in Table 2 in Additional File 2). It is not completely triv-
ial to quantify the minimum amount of complete CpGs needed by methyLImp to achieve
good performance, since sample size has also some influence in regression accuracy.
However, by observing the performances in our tests, we can empirically state that at least
few thousands of complete observations are needed to achieve a good level of imputation
accuracy.
Furthermore, data imputation is generally more accurate when DNAmethylation levels

are expressed as β-values. This holds true essentially for all benchmarked methods but
impute.knn, which undoubtedly benefits more from the M-value representation. How-
ever, even on M-values, the general performances of impute.knn are often less accurate
than those of the baseline mean approach. This leads us to conclude that impute.knn,
although a good general imputation method, is not suitable for DNA methylation data
imputation.
All these results hold for the 21k CpGs in the intersection between the 27k and the

450k Human Beadchips. It is thus natural to ask whether there is a significant differ-
ence between imputation performances on complete datasets (i.e. 450kHuman Beadchips
data, which include both Type I and Type II probes) and their 21k restriction (which
include Type I probes only). Due to the large computational times required to process

Table 7 Global imputation performances across all datasets (healthy and disease) and all
missingness mechanisms

MAE RMSE

Method M-value B-value M-value B-value

mean 0.041±0.001∗ 0.040±0.001 0.068±0.001 0.066±0.001∗

impute.knn 0.052±0.008∗ 0.068±0.011 0.095±0.014∗ 0.119±0.016

softImpute 0.042±0.003 0.043±0.008∗ 0.072±0.006 0.077±0.020∗

imputePCA 0.035±0.001 0.035±0.001∗ 0.062±0.002 0.059±0.001∗

SVDmiss 0.046±0.001 0.037±0.001∗ 0.079±0.003 0.065±0.002∗

missForest 0.036±0.001 0.036±0.001∗ 0.061±0.002 0.059±0.002∗

methyLImp 0.037±0.001 0.033±0.001∗ 0.062±0.002 0.058±0.002∗

For each method, the ∗ symbol indicates the measure (eitherM-value or β-value) for which the Wilcoxon signed-rank test p-value
is < 0.05. Best results per metric with respect to the Wilcoxon signed-rank test are highlighted in bold
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complete datasets, for comparison purposes we performed only a restricted number of
tests (see Additional file 3). There are some clearly visible trends in such comparison
tests:

• impute.knn performances are significantly lower on the complete datasets, irrespec-
tively of the missingness model (MCAR, MAR, low/mid/high-range MNAR), data
representation (M-value or β-value) and metric used for performance assessment
(MAE or RMSE).

• For the remaining methods, MAE and RMSE do not highlight a clear improvment
or worsening of the results when using the complete or the restricted datasets.
Wilcoxon’s test shows that better performances with MAR missingness model are
achieved on the complete datasets and with MNAR:mid on the restricted datasets.
However, the absolute differences obtained with the two types of datasets are negli-
gible in all cases (in the order of 10−3), i.e. biologically unimportant per se [27] and
irrelevant with respect to downstream computations [17].

As a general conclusion, these comparisons indicate that the imputation performances
on the restricted datasets can be considered as representative of the imputation perfor-
mances on the complete datasets.
To conclude, in terms of computational resources, the mean-value based approaches

are the best performing, both in terms of running time and memory requirements, while
the regression-based approaches are the more demanding in terms of running time. In
particular, the average running time and memory requirements summarized in Table 8
show that SVDmiss and missForest are the two most demanding methods in terms of
memory usage and computation time, respectively. Both methods are virtually unusable
for multiple imputations on complete DNA methylation datasets.

Conclusions
In conclusion, the consolidated and manufacturer encouraged practice to use β-value
seems appropriate for DNA methylation data imputation. The choice of the best impu-
tation method is somewhat more subtle and depends essentially on the available com-
putational resources and the amount of missing values. Independently of the expected
missingness mechanisms, regression-based methods provide on average more accu-
rate estimates of the missing values. However, imputations with regression methods in
the presence of limited computational resources can be a rather challenging task. In
such cases, the simple mean approach can surprisingly be a better choice than more
sophisticated methods.

Table 8 Average time and memory usage

Method Avg time Avg RAM

mean < 1s 27MB

impute.knn 2s 81MB

softImpute < 1s 74MB

imputePCA 19s 204MB

SVDmiss 2m 4GB

missForest 18h 280MB

methyLImp 21m 129MB
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Methods
Benchmark data

Benchmark datasets are taken from our previous study [17]. In short, we analysed 58
datasets from healthy (37 datasets, overall 1495 samples) and diseased (21 datasets, over-
all 386 samples) individuals on a variety of different tissues and ages. All the samples
are from Illumina 450k Human Beadchip platform (GPL13534 in GEO) and have been
obtained from the NCBI database Gene Expression Omnibus (GEO, [28]), see Table 1 for
details.
The 450k Human Beadchips incorporates two different chemical assays, Type I and

Type II probes, which exhibit different technical characteristics. As already done in [17],
due to the high computational time required by some imputation methods, we pre-
filtered all datasets in order to consider only the methylation sites in the intersection
between the Illumina 27k and 450k Human Beadchips (approximatively 21k sites), all of
Type I. In order to assess whether the 21k restriction is representative for the whole 450k
Human Beadchip, we performed a reduced (owing to the computational costs of such
tests) number of tests on the complete 450k benchmark data (Additional file 3).

Benchmark imputation software

Benchmark imputation tools include: mean, impute.knn, SVDmiss, softImpute,
ImputePCA, missForest, methyLImp, selected according to the following criteria: i) repre-
sentative of the major imputation techniques described in literature; ii) requiring limited
computational resources; iii) available as R implementations. The benchmarked methods
can be roughly classified into three groups:

• mean-value imputation approaches: average observed values.

– mean: replaces the missing value of a variable by averaging all the known val-
ues for that variable. This is the baseline imputation method for continuous
variables. We use our own R implementation.

– impute.knn [20]: replaces a missing element for a variable by averaging the non-
missing values of its nearest neighbours. Originally designed for gene expression
data imputation.We use the implementation available in the R ’impute’ package
[29].

• iterative soft-thresholding approaches: replace missing values with some initial
guess and then iteratively update, up to convergence, the missing elements with values
generated by low-rank approximation of the input matrix.

– SVDmiss [23]: uses soft-thresholding singular value decomposition (SVD) of
the input matrix. General purpose imputation algorithm (tested on air pollution
data) for continuous variables. We use the implementation available in the R
’SpatioTemporal’ package [30].

– softImpute [21]: uses soft-thresholding singular value decomposition (SVD) of
the input matrix. General purpose imputation algorithm (tested on artificial
data) for continuous variables. We use the implementation available in the R
’softImpute’ package [31].

– imputePCA [22]: implements a low-rank approximation version of the iterative
principal component analysis (PCA) algorithm. General purpose imputation
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algorithm for continuous variables. We use the implementation available in the
R ’missMDA’ package [32].

• regression-based imputation approaches: build a regression model from observed
data.

– missForest [24]: builds random forests regression trees. General purpose impu-
tation algorithm (tested on a variety of biological datasets) that can deal with
both continuous and categorical variables.We use the implementation available
in the R ’missForest’ package [33].

– methyLImp [17]: builds a linear model with observed data. Specifically designed
for methylation data. Rationale of the approach: exploits the high degree of
inter-sample correlations of methylation levels. We use the implementation
available in the R ’methyLImp’ package [34].

The running times andmemory requirements of the benchmarked tools are quite differ-
ent among different classes (see Table 8). In general, the mean-based approaches are less
demanding than the regression-based approaches. There are, however, also some within-
classes differences. For example, all soft-thresholding methods require matrices decom-
position (in particular, both softImpue and SVDmiss use SVD decomposition), which can
be expected to be computationally intensive on large matrices. However, given the high
variability of computational performances observed within such class, we conclude that
computational performances are mostly affected by the specific implementation and not
by the approach itself.
In our tests we used the R implementations of the benchmarked methods with default

parameters and we did not make any prior assumption about the missingness patterns in
the data. Furthermore, since there are situations that fail to produce imputation results,
the general strategy was to ignore those values in performance evaluation.We remark that
values that could not be imputed are quite rare in our tests, thus ignoring them does not
significantly affect performance scores. In the following we review in detail the specific
limitations of each imputation method and the rationale we consequently adopted for
input pre-processing.

• mean: trivially, it cannot impute a missing CpG value if such CpG value is missing in
all samples.

• impute.knn: same limitations as above for the mean approach. There may be other
cases but these are not documented. When a value cannot be imputed it is set by
default to zero. We tested impute.knn performances by removing all the zero impu-
tations without noticing any dramatic improvement in performance accuracy. Thus,
since it is quite complex to detect zero values that represent a failed imputation (the
implementation does not state explicitly which are these values), we decided to ignore
this problem. Such cases, overall, rarely occur into the set of tested CpGs.

• SVDmiss: same limitations as above for the mean approach. By default, in such sit-
uation the method stops without performing imputation. We preprocessed the input
matrix by removing all completely missing columns.

• imputePCA: does not perform imputation if one column (observation) of the matrix
has zero variance (after excluding missing values). We preprocessed the input matrix
by removing all zero variance columns.
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• softImpute: exactly the same behaviour as mean.
• missForest : can apparently perform imputation in all possible situations, including

the case of matrices with entirely missing observation for one variable (CpG). How-
ever, surprisingly, it does not perform imputation on matrices containing a variable
with only one observed value. We preprocessed the input matrix by removing all such
variables.

• methyLImp: cannot impute values in the same situation as described for the mean
approach. Furthermore, it cannot perform any imputation if the matrix has at least
one missing value per column (never occurred in our tests).

Definition of β-value andM-value

The Illumina Infinium Assay [35] utilizes a pair of probes to measure the intensities of
the methylated and unmethylated alleles at each CpG site. The methylation level is then
estimated by measuring the intensities of this pair of probes, across all cells in the sample
tissue. The two measures commonly used to quantify methylation levels are: β-value and
M-value.
The β-value is defined as the ratio between the methylated probe intensity and the

overall intensity of both methylated and unmethylated alleles. Following the notation in
[12], the β-value for an i-th interrogated CpG site is defined as:

βi =
max

(
xmeth
i , 0

)

max
(
xmeth
i , 0

)
+ max

(
xunmeth
i , 0

)
+ α

(1)

where xmeth
i and xunmeth

i are the intensities measured by the i-th methylated and unmethy-
lated probes, respectively, and α is a constant offset (by default, α = 100) used to
regularize the β-value when both xmeth

i and xunmeth
i intensities are low. By definition, β-

values can range between 0 and 1. A β-value equal to zero implies that all the copies of
the CpG site in the sample are completely unmethylated, while a β-value equal to one
indicates that all the copies are methylated.
The M-value is defined as the log2 ratio between the intensities of methylated and

unmethylated probes:

Mi = log2

⎛
⎝ max

(
xmeth
i , 0

)
+ α

max
(
xunmeth
i , 0

)
+ α

⎞
⎠ (2)

where the constant offset α (by default 1) prevents large perturbations for small values of
xmeth
i and xunmeth

i . TheM-values can range from −∞ to +∞.
As introduced already, the β-value measure provides a more intuitive interpretation of

the methylation status thanM-values and it is recommended by array producers [11]. On
the other hand, the M-value representation has been proven more suitable for conduct-
ing differential methylation analyses, due to the severe heteroscedasticity of β-values for
highly methylated or unmethylated CpG sites [12], i.e. the standard deviations of β-values
are compressed in the low and high ranges and larger in the middle ranges. In [12] the
authors show that for typical values of xmeth

i and xunmeth
i the offsets α in Eqs. (1) and (2)

have negligible effect on both the β-value andM-value measures. Thus, by simply ignor-
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ing the α offsets, the relationship between the β-value and M-value measures is a logit
transformation.

βi = 2Mi

2Mi + 1
(3)

and

Mi = log2
(

βi
1 − βi

)
(4)

Missing values simulation procedure

Given the DNA methylation datasets in Table 1, we randomly added 3% missing values
under the MCAR, MAR or MNAR missingness assumptions. The 3% amount has been
chosen by considering the average percentage of missing values in our benchmark set (see
Table 1). Figure 2 compares the β-value distribution in our 57 benchmark sets against the
distribution of simulated missing β-values under different missingness assumptions. The
exact missing value simulation procedure for each missingness model and the rationale
behind it is detailed in the following.
MCAR. We assume that MCAR missing values are the direct consequence of random

errors in experimental measurements, hence we simply randomly select 3% CpG sites
from the DNA methylation data matrix. Figure 2 shows that, as expected, the β-values
distribution of artificially introduced MCAR values coincides perfectly with the β-values
distribution in the benchmark sets.
MAR. We assume that MAR missing values are the effect of CpG-specific probes that

are more likely to fail to capture the target sequences. That is, the missing value proba-
bility depends on the (observed) CpG site but not on its (unobserved) methylation level.
Indeed, statistical analysis of missing data in our benchmark set shows that there exist
CpGs with a higher probability of observing missing values. For instance, on the 21k
dataset restriction, 11%CpGs havemissing values onmore than 20% samples, 7% onmore
than 25% samples and 1% on more than 30% (observed frequencies). Using this observa-
tion as a starting point, we estimated from the observed frequencies in our benchmark
data the probability for a CpG-specific value of being missing and used such probability
distribution to randomly sample 3% positions in the DNA methylation matrix. Figure 2
shows the distribution of the sampled MAR values in comparison to the β-value distri-
bution on the entire dataset. MAR missing values are slightly more dense in the [ 0.4, 0.8]
interval and slightly less in [ 0, 0.2]. Such trend is more evident in Fig. 3, where we consider
the β-values distribution of CpGs with frequently missing values. In Fig. 3, it is clear that
β-values of CpGs that are more likely to present missing values are more concentrated
in the [ 0.4, 0.8] interval and much less in the [ 0, 0.2] interval in comparison to both the
β-value and sampled MAR distributions.
MNAR. We assume that MNAR missing values are a consequence of the methylation

level. In order to efficiently simulate MNAR missing values we limited our investiga-
tion to three different ranges of methylation values, visibly distinct: low-range with
β-value between 0 and 0.2 (MNAR:low), mid-range with β-value between 0.4 and 0.6
(MNAR:mid) and high-range with β-value between 0.8 and 1 (MNAR:high). For each
range, we randomly sampled 3% positions in the DNA methylation data matrix assum-
ing 70% missing probability for the chosen range. For instance, a sampled position in the



Lena et al. BMC Bioinformatics          (2020) 21:268 Page 19 of 22

low-rangeMNARmodel has 70% probability of being in the [ 0, 0.2] β-value range. The β-
value distributions of such MNAR models are clearly distinguishable in Fig. 2. Although
70% missing probability may seem unrealistic, we remark that in practice we do not have
any strong evidence of MNAR missing data in DNA methylation datasets, thus the cho-
sen probability, as well as the chosen ranges, are adopted to test imputation performances
in extreme MNAR scenarios.
For comparison purposes, the same artificially introduced missing values have been

imputed both in the β-value andM-value representations. For amore robust performance
assessment, we repeated 100 times the artificial introduction of missing values for each
missingness model. Thus, for each dataset our tests required a total of 1000 imputations,
500 with respect to β-values and 500 with respect toM-values.

Evaluation metrics

Performance evaluation has been done based on two accuracy measures.
The RMSE (Root Mean Square Error) metric measures the difference between the

predicted/estimated, P, and true values, T.

RMSE(P,T) =

√√√√√
n∑

i=1
(Pi − Ti)2

n

TheMAE (Mean Absolute Error) metric measures the absolute difference between the
predicted and true values.

MAE(P,T) =

n∑
i=1

|Pi − Ti|
n

Recall that, by Jensen’s inequality RMSE≥MAE. Although the twometrics seem almost
equivalent, they are in fact complementary. Indeed, the RMSE metric is more suitable
for performance ranking, since it gives higher weight than MAE to large errors, which
are particularly undesirable in DNA methylation data imputation. On the other hand,
MAE provides a more immediate interpretation of the results in comparison to RMSE. In
particular, MAE gives an indication on the average error to be expected on the imputed
value.

Wilcoxon-testing procedure to assess statistically significantly better performances

We use the Wilcoxon signed-rank test [36] to assess whether there is a statistically
significant difference between the performances of a pair of methods. The Wilcoxon
signed-rank test is a nonparametric statistical hypothesis test that can be used to compare
two related (i.e. paired) samples to assess whether their population mean ranks differ. It
is an alternative to the paired Student’s t-test when it is not possible to assume that the
distribution of the differences between two samples is normal. As nearly all rank tests,
the Wilcoxon test is not transitive. We use the Wilcoxon test to assess the statistical
significance of two distinct comparisons:

1. intra-method comparison: we compare the performances of the same imputa-
tion method on β-value vs M-value representations of the data, in order to detect
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whether there is a better performing data representation method-wise. The statis-
tically significant results with better performance are marked with ∗ in the result
tables.

2. inter-method comparison: we compare the performances of two distinct methods,
on either β-value or M-value representations of the data. Table-wise, we highlight in
bold the results of the method with the best performance. This was identified as the
method whose performance is always statistically significantly higher than or compa-
rable to that of other methods. We remark that, in many cases, when comparing two
performances the Wilcoxon test does not detect a statistically significant difference.
Thus, there is no case in which (table-wise) a performance is detected as statistically
significantly better than all other performances. Therefore, we relaxed the defini-
tion of best performance by defining it as the performance that is never statistically
significantly worse within a table.

Both in comparisons 1 and 2, theWilcoxon test has been applied separately onMAE and
RMSE. In order to compute the Wilcoxon signed-rank test we used the (paired) average
(MAE or RMSE) performances of the imputationmethods on the one hundred repetitions
of the imputation tests. Additionally, we performed a p-value adjustment for multiple
comparisons with the Benjamini-Hochberg (BH) procedure.
We remark that, since the Wilcoxon test draws statistical inference from the rank sum

instead of the mean, it can happen that a performance is detected as statistically signif-
icantly better than another although the average performances of the former are worse
than those of the latter. This typically happens when there are just few outliers that affect
the overall average performance score but not the rank sum test.
We further remark that, since theWilcoxon test is not transitive, when we use it to asses

a comparison between multiple methods there can be cases where no method can be
termed as best performing, even with our relaxed definition (one example is performance
assessment in Table 4).
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