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Abstract

Background: The combination of systematic evolution of ligands by exponential enrichment (SELEX) and deep
sequencing is termed high-throughput (HT)-SELEX, which enables searching aptamer candidates from a massive
amount of oligonucleotide sequences. A clustering method is an important procedure to identify sequence groups
including aptamer candidates for evaluation with experimental analysis. In general, aptamer includes a specific target
binding region, which is necessary for binding to the target molecules. The length of the target binding region varies
depending on the target molecules and/or binding styles. Currently available clustering methods for HT-SELEX only
estimate clusters based on the similarity of full-length sequences or limited length of motifs as target binding regions.
Hence, a clustering method considering the target binding region with different lengths is required. Moreover, to
handle such huge data and to save sequencing cost, a clustering method with fast calculation from a single round of
HT-SELEX data, not multiple rounds, is also preferred.

Results: We developed fast string-based clustering (FSBC) for HT-SELEX data. FSBC was designed to estimate clusters
by searching various lengths of over-represented strings as target binding regions. FSBC was also designed for fast
calculation with search space reduction from a single round, typically the final round, of HT-SELEX data considering
imbalanced nucleobases of the aptamer selection process. The calculation time and clustering accuracy of FSBC were
compared with those of four conventional clustering methods, FASTAptamer, AptaCluster, APTANI, and AptaTRACE,
using HT-SELEX data (>15 million oligonucleotide sequences). FSBC, AptaCluster, and AptaTRACE could complete the
clustering for all sequence data, and FSBC and AptaTRACE performed higher clustering accuracy. FSBC showed the
highest clustering accuracy and had the second fastest calculation speed among all methods compared.

Conclusion: FSBC is applicable to a large HT-SELEX dataset, which can facilitate the accurate identification of groups
including aptamer candidates.

Availability of data andmaterials: FSBC is available at http://www.aoki.ecei.tohoku.ac.jp/fsbc/.
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Background
Systematic evolution of ligands by exponential enrich-
ment (SELEX) is an experimental method for identify-
ing aptamers, which bind to specific target molecules
with high affinity and specificity [1, 2]. SELEX is an
iterative method with multiple rounds for the enrich-
ment of aptamers from the initial oligonucleotide ran-
dom library. Each round consists of selection with target
molecules and amplification with polymerase chain reac-
tion(PCR). Aptamers are RNA or short single-stranded
DNA molecules, which fold into a three-dimensional
structure and bind different types of target molecules
such as proteins [3], small molecules [4], toxins [5],
ions [6], and cell surfaces [7]. Owing to the wide vari-
ety of possible target molecules, aptamers are commonly
used for therapeutics [8], clinical diagnostics [9], the
high-throughput multi-protein measurement [10], imag-
ing [11], and biosensors [12].
A next-generation sequencing (NGS), which was orig-

inally developed for whole-genome sequencing, is avail-
able for analysis of large oligonucleotide pools obtained
by SELEX to acquire an enormous sequence dataset
for predicting aptamer candidates. This combined use
of SELEX and NGS is referred to as high-throughput
SELEX (HT-SELEX). It is not reasonable to evaluate the
binding affinity with all observed sequences from NGS.
In general, dozens of candidate aptamers are selected
from the HT-SELEX data for evaluation with experi-
mental analysis considering cost and time-consuming. In
other words, the list of dozens of candidate aptamers is
required from HT-SELEX data for evaluation with exper-
imental analysis. Clustering for HT-SELEX data is an
effective process to identify the sequence groups which
are related to aptamer candidates, or noise sequences
such as non-specific binding sequences, bead-binders,
and PCR biased sequences which are easy to be enriched
by PCR. Clustering is also useful to identify different types
of aptamers such as different binding epitopes and for
understanding the diversity and enrichment of oligonu-
cleotide sequence pools. Figure 1 describes the typical
procedure of selecting different types of aptamer candi-
dates from the clustering results for binding verification
with experimental analysis.
Several clustering methods have been developed for

HT-SELEX data to date, including FASTAptamer [13],
AptaCluster [14, 15], APTANI [16], and AptaTRACE [17].
FASTAptamer generates clusters based on Levenshtein-
distance (LD) which represents the full length of sequence
similarity with highly ranked sequences. AptaCluster first
roughly groups sequences with local sensitive hashing
(LSH) and then generates clusters with the short k-mer
sequence similarity. APTANI and AptaTRACE identify
clusters with short motifs considering the nucleic acid
secondary structure. APTANI estimates motifs from a

single round of SELEX data whereas AptaTRACE esti-
mates motifs by tracing the changes of frequency between
multiple rounds.
It is often observed that the most enriched sequence

does not show the binding affinity to the target molecules.
These noise sequences are likely to be generated by
PCR bias (some oligonucleotide molecules are easy to
be enriched by PCR) or non-specific binding of other
molecules such as beads with charge effect. Typically,
aptamers harbor a specific sequence region, which is
necessary for binding to the target molecules, although
noise oligonucleotide sequences generally do not include
such a target binding region. Hence, determining the
sequence clusters with such a target binding region
could be an effective approach to choose aptamer
candidates. The length of the target binding region
varies according to the target molecules, epitopes,
and/or binding styles. Thus, estimating target binding
regions with different lengths is required. Although
AptaTRACE was designed for detecting the can-
didate motifs as target binding regions, it has a
limitation of the length of motifs and requires
multiple rounds of SELEX data, which increases the
sequencing cost.
To overcome these limitations, we developed the

fast string-based clustering (FSBC) method. FSBC
estimates clusters considering different lengths of
over-represented strings as target binding regions.
FSBC was also designed for fast calculation with
search space reduction of over-represented strings
using only a single round of HT-SELEX data, espe-
cially in the final round of SELEX, considering the
imbalance of nucleobases of the aptamer selection
process. FSBC implemented with R [18] is available at
http://www.aoki.ecei.tohoku.ac.jp/fscb/.

Methods
Overview of the clustering algorithm
FSBC is composed of two parts: selection of over-
represented strings with different lengths and sequence
clustering based on the selected over-represented strings.
For over-represented string selection, we propose a
new score calculation method that considers the imbal-
anced ratios of nucleobases due to the selection pro-
cess of SELEX. Figure 2 shows the outline of the FSBC
algorithm.

String score definition
For a set of nucleobases � = {A,C,G, T(U)}, which rep-
resents adenine, cytosine, guanine, and thymine/uracil,
respectively, the probability of each nucleobase is given as
pj, (j ∈ �), the string is s, the length of the string is |s|, and
the number of nucleobases in the string is ns,j. The prob-
ability of an L-mer oligonucleotide including string s, Ps,L,

http://www.aoki.ecei.tohoku.ac.jp/fscb/
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Fig. 1 Procedure from obtaining clustering results to experimental analysis. HT-SELEX sequence data are grouped into different clusters according
to cluster ranking. Sequences with a high frequency from high-ranked clusters are synthesized and evaluated for binding affinity with experimental
analysis

is then described as the following recurrent equation:

Ps,L = Ps,L−1 + Q

(
1 − Ps,L−|s| −

∑
t∈T

q−1 (
Ps,L−|s|+|t| − Ps,L−|s|+|t|−1

))
,

(1)

Q =
∏
j∈�

pns,jj , q =
∏
j∈�

pnt,jj , L ≥ l,

where T is a set of self-overlapping regions of s, and
nt,j, (t ∈ T ) is the number of nucleobases of the self-
overlapping regions. For example, if string s is “ATATA”,
the set of self-overlapping regions TATATA is {A, ATA}. If
L < |s|, then Ps,L = 0. The terms Ps,L−1, Q, QPs,L−|s|,
and Q

∑
t∈T q−1 (

Ps,L−|s|+|t| − Ps,L−|s|+|t|−1
)
represent the

probability that a sequence has the string from 1 to L −
|s| − 1, a sequence has the string at L− |s|, a sequence has
the string both from 1 to L − |s| − 1 and at L − |s|, and

Fig. 2 Outline of fast string-based clustering (FSBC). The algorithm includes over-represented string selection and clustering based on selected
strings. The upper panel shows the selection of over-represented strings after minimizing the search space and comparing string scores (Z-scores)
of pre- and post- extended strings. The lower panel shows the clustering based on selected strings ranked according to the Z∗-score, which is
normalized Z-score for strings of different lengths
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a sequence has the string at the self-overlapping position,
respectively. Figure S1 shows a graphical representation
of Eq. (1). In stringology, the probability calculation is the
same approach with “missing words in random text” [19],
and the self-overlapping region is the same meaning with
“string overlaps” [20].
The lengths of observed sequences obtained using NGS

vary owing to insertions and/or deletions during the
SELEX process. Stoltenburg and Strehiltz described that
around 78% of sequences had an expected length of ran-
dom regions, while the other 22% of sequences are dif-
ferent from the original length of random region [21].
Therefore, the probability Ps,L was adjusted for different
lengths of sequences using the following equation:

Ps = 1
N

N∑
i=1

Ps,Li , (2)

where N is the number of observed sequences and Li is
the length of the i-th sequence.
Let the frequency of observed sequences including

string s be Fs. Ps follows a binomial distribution. If N is
a large enough number for Fs, a random variable rep-
resenting the difference between Fs and Ps normalized
by the standard deviation of the binomial distribution
then shows an approximate normal Gaussian distribution.
Hence, the Z-score for string s is derived according to the
following equation:

Zs =
Fs
N − Ps√
Ps(1−Ps)

N

. (3)

Selection of over-represented strings
Before selection of the over-represented strings, the prob-
ability of each nucleobase, p̂j, is estimated with the follow-
ing equation:

p̂j = nj∑N
i=1 Li

, j ∈ �, (4)

where nj is the number of observed nucleobases. These
estimated probabilities are then used for calculation of the
Z-scores. Since the ratios of nucleobases in the SELEX
pool can change owing to the systematic selection bias of
SELEX, the Z-score is calculated based on the balance of
nucleobases using Eqs. (1) – (4).
Over-represented strings with lengths ranging from lmin

to lmax are selected while reducing the search space
from all possible combinations by comparing Z-scores.
Selection of over-represented strings is then conducted
according to the following process:

1 Enumerate all lmin-length strings and calculate their
Z-scores. Exclude string whose Z-scores are less than
0.

2 Substitute l ← lmin.

3 Enumerate extended strings by adding a nucleobase
and calculate their Z-scores. Exclude extended
strings whose Z-scores are less than those of the
pre-extended strings.

4 If l + 1 > lmax, then finish the selection of
over-represented strings.

5 Substitute l ← l + 1, and go to 3.

The algorithm for estimating over-represented strings
reduces the search space by comparing of Z-scores
between the post-extended and pre-extended strings.
Thus, the number of selected strings, m, is much smaller
than the exhaustive enumeration of all strings: m �∑lmax

l=lmin
|�|l. This search space minimization provides a

huge reduction in the calculation time for an HT-SELEX
dataset.

Clustering with selected over-represented strings
While extending the string length, the strings with higher
Z-scores are selected for search space reduction. For eval-
uating the different lengths of strings equally, the nor-
malization of the Z-score was performed. The normalized
Z-score for string s, referred to as Z∗

s , is calculated with
the following equation:

Z∗
s = Zs − μ̂|s|

σ̂|s|
, (5)

where μ̂|s| and σ̂|s| are the mean and standard deviation,
respectively, of the Z-score of selected strings with length
|s|. The strings are then ordered byZ∗. Parameters μ̂|s| and
σ̂|s| are estimated with only selected strings. Therefore,
there are no guarantees of Gaussian distribution of Z∗.
The clustering is then achieved according to the following
process:

1 Substitute i ← 1.
2 Extract sequences including the i-th strings from the

sequence dataset, where a set of extracted sequences
is referred to as the i-th cluster. Remove extracted
sequences from the sequence dataset.

3 If there are no sequences remaining, finish the
clustering.

4 Substitute i ← i + 1, and go to step 2.

Data
The publicly available whole-cell SELEX dataset of human
embryonic stem cells [22] was used for comparing the
calculation speed and clustering accuracy. The SELEX
was finished at the fifth round and nineteen sequences
were evaluated for binding affinity with flow cytometry.
According to the binding evaluation, eight of nineteen
sequences showed higher fluorescent intensity and those
sequences were defined as target-binding sequences.
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Calculation time
The sequence data were filtered with different frequency
cut-offs (1, 10, and 100) to vary the size of the dataset. The
numbers of sequences included with frequency cut-offs
of 1, 10, and 100 were 15,327,604 (4,381,160), 8,799,219
(156,587), and 4,947,522 (6,193) with 1, 10, and 100,
respectively; the numbers of non-redundant sequences
are indicated in parentheses.
The five different algorithms, namely FASTAptamer,

AptaCluster, APTANI, AptaTRACE, and FSBC, were
compared with respect to calculation time. The fifth
round HT-SELEX data, which was the last round
of SELEX, were used for FASTAptamer, AptaCluster,
APTANI, and FSBC. The fourth and fifth round HT-
SELEX data were used for AptaTRACE because Apta-
TRACE requires multiple rounds of HT-SELEX data.
FASTAptamer was performed with an edit distance

option of 7 (according to the user guide), and the maxi-
mum cluster number was set to 100 to reduce the calcu-
lation time. AptaCluster was performed with the default
options. The options for APTANI were no-filtering of
frequency, fixed length for HT-SELEX data, and primer
information for estimation of the secondary structure.
There are no further options for reducing the calcula-
tion time except for frequency filtering; thus, we did not
change any options for APTANI. AptaTRACE was per-
formed with the background sequence option as 1,000
because AptaTRACE demonstrated the best accuracy
with that parameter. The options of FSBC were lmin = 5
and lmax = 10.
FSBC was written in R [18] version 3.6.2 with Biocon-

ductor packages [23], and other programs are provided
with scripts and executable files. The computer specifi-
cations were as follows: OS Ubuntu 16.04 (Xenial Xerus)
64bit, Intel(R) Xeon(R) CPU E5-1650v4@3.60GHz, and 64
GB memory.

Clustering accuracy
Filtered data (frequency ≥ 10) of the fifth round, which
was the final round of the SELEX, was applied for com-
paring the accuracy of the clustering methods because

FASTAptamer and APTANI did not complete the cluster-
ing with the entire sequence dataset. The same parameters
indicated in the previous subsection for AptaCluster and
APTANI were applied for evaluating the clustering accu-
racy. The option of the maximum number of clusters for
FASTAptamer was not used for the evaluation of cluster-
ing accuracy. Changing the parameters of LD and motif
length did not improve the accuracy of FASTAptamer
and AptaCluster, respectively. For AptaTRACE, the back-
ground sequence option was set as 1,000 because Apta-
TRACE showed the highest accuracy with that option.
The options for FSBC were lmin = {3, 4, 5} and lmax =
10. FSBC was also applied to the entire sequence dataset
and the filtered data (frequency ≥ 100) to evaluate the
potential bias of frequency filtering, and missing aptamer
sequences due to the sequence frequency filtering.
The sequences with binding/non-binding information

were sorted with cluster ranking for each method. For
evaluating the cluster ranking and binding sequences, the
receiver operating characteristic (ROC) curves were gen-
erated according to the order of cluster ranking with the
binding information. The area under the curve (AUC) val-
ues were calculated based on the area of the ROC curves.
FSBC was also applied to all of the sequence data from
the third and fourth rounds of SELEX to evaluate the
possibility of the detection of aptamers in early rounds.

Comparison with exhaustive enumeration of strings
Due to the search space reduction, there are no guaran-
tees that the top-ranked strings of exhaustive enumeration
are included in the selected strings. Hence, we verified
whether the top-ranked strings of exhaustive enumera-
tion was included in the selected strings or not. The
missing rate of the top ten ranked strings of exhaustive
enumeration was also evaluated for each length.

Results
Calculation time
Table 1 shows the calculation time for each method and
the dataset size. The first column shows the clustering
methods, and the second to seventh columns represent

Table 1 Clustering calculation time for eachmethodwith datasets of different sizes. Sequences (≥ 10) and sequences (≥ 100) represent
filtered data with frequency cutoff. DNF indicates did not finish. DNF1: FASTAptamer did not complete the calculation for the entire
sequence dataset in 7 days. DNF2: APTANI showed a calculation error after the prediction of the secondary structure, which took 25 h

All sequences Sequences (≥ 10) Sequences (≥ 100)

Method Real time CPU time Real time CPU time Real time CPU time

FASTAptamer DNF1 DNF1 5 h 16 m 4 s 5 h 16 m 3 s 10 m 40 s 10 m 40 s

AptaCluster 3 m 45 s 4 m 9 s 33 s 26 s 28 s 17 s

APTANI DNF2 DNF2 32 m 52 34 m 59 s 1 m 47 s 1 m 20 s

AptaTRACE 71 h 38 m 35 s 246 h 15 m 12 s 1 h 1 m 17 s 2 h 2 m 50 s 3 m 52 s 5 m 44 s

FSBC 4 h 40 m 51 s 4 h 40 m34 s 9 m 25 s 9 m 17 s 51 s 46 s
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the actual and CPU time for each size of dataset. Note that
the calculation time of FASTAptamer includes the pre-
processing time, which involves counting the frequency of
sequences, before clustering.
AptaCluster showed the fastest calculation time for

clustering, followed by FSBC. However, FASTAptamer
was the slowest of the five methods and did not complete
the clustering of the entire dataset in 7 days, even when
changing the clustering number option to “-c 100” to
reduce the calculation time. APTANI also could not com-
plete the calculation for the entire dataset due to an error
after the secondary structure prediction, which required
25 h. AptaTRACE calculated clustering with parallel com-
puting, hence the real-time was much smaller than CPU
time.

Accuracy
The clustering result for each algorithm is shown
in Table 2. The columns indicate the oligonucleotide
sequences excluding both ends of the primers, sequence
ID, ranking of frequency, frequency, binding informa-
tion, and cluster ranking for each method. AptaCluster
has a two-ranking system for clustering, including fre-
quency and diversity, corresponding to the frequency
of sequences in the cluster and the number of non-
redundant sequences in the cluster, respectively. APTANI
does not include any functions for ordering clusters;
thus, we used frequency and diversity for this purpose
as performed by AptaCluster. The binding information
was already defined by the verification of experimen-
tal analysis using flow cytometry [22]. Sequence IDs,
seq1 to seq8 are defined as binding sequences whereas
sequence IDs seq9 to seq19 are not the binding sequences.
Sequence ID seq8 was not included since it was filtered
out based on the frequency cut-off before clustering. The
strings selected by FSBC are underlined and in upper-
case in the table. The order of sequences in Table 2 is
based on the ranking of the frequency on binding/non-
binding sequences. FASTAptamer, AptaCluster (fre-
quency/diversity), APTANI (frequency/diversity), Apta-
TRACE and FSBC estimated 2,380, 136,350, 2,348, 13, and
155 clusters, respectively.
Among the five methods, only FSBC and Apta-

TRACE provided a top-ranked cluster that included
binding sequences. By contrast, the top-ranked clus-
ters obtained with FASTAptamer, AptaCluster (fre-
quency), and APTANI, and the second top-ranked cluster
obtained by AptaCluster (diversity) included the top-
ranked sequence of “frequency”, which did not show bind-
ing ability. Similarly, APTANI (diversity) yielded a top-
ranked cluster including sequence ID seq17, which also
did not bind to the target molecules. FASTAptamer, Apta-
Cluster (frequency), AptaCluster (diversity), APTANI
(frequency), and APTANI (diversity) showed 6, 7, 5, 7,

and 290 as the highest ranked clusters including bind-
ing sequences, respectively, and these ranks were all lower
than those with non-binding sequences. FSBC and Apta-
TRACE grouped all binding sequences from sequence
ID seq1 to seq7 into two clusters with cluster ranks 1
and 5. However, AptaTRACE missed sequence ID seq6,
and sequence ID seq7 was grouped with sequence ID
seq17 which did not show the binding affinity. FASTAp-
tamer grouped sequence ID seq2 and seq4 into the same
cluster, which was ranked fifteenth. APTANI (diversity)
showed the same cluster ranking from sequence ID, seq5
to seq8; however, these ranks were simply tied but the
sequences did not group in the same cluster. AptaClus-
ter (frequency/diversity) and APTANI (frequency) did not
group any binding sequences into the same cluster. Table
S1 shows the same result of FSBC with all sequences (no-
filtering with frequency cutoff ) and filtered data (≥100)
under the option lmin = 5. Similar to the result in Table 2,
all binding sequences were in the higher-ranked clus-
ters rather than in the clusters ranked with non-binding
sequences.
FSBC selected a total of 1,003 strings, and the top

24 strings are shown in Table S2. The selected over-
represented strings “ATGGACTTCGG” and “GACTT”,
ranked 1 and 12, respectively, were included in cluster 1
and 5 in Table 2. The selected string “GACTT” is a part
of string “ATGGACTTCGG”. The distribution of the Z-
scores andZ∗-scores of the selected strings for each length
of string is shown in Figure S2.
The relation between cluster ranking and frequency of

oligonucleotide sequences with each method is displayed
in Fig. 3, in which the red, blue, and gray dots represent
binding, non-binding, and non-evaluated sequences to
the targetmolecules, respectively. The top-ranked clusters
obtained by FASTAptamer, AptaCluster (frequency), and
APTANI (frequency) included the non-binding sequence
of the highest frequency. AptaCluster (diversity) and
APTANI (diversity) included the non-binding sequence
of the highest frequency in higher ranked cluster than
those including binding sequences. By contrast, FSBC and
AptaTRACE grouped the binding sequences with lower
frequencies in the top-ranked cluster.
The ROC curve and AUC value for each clustering

method are displayed in Fig. 4. FSBCwith options lmin = 4
and lmin = 5 clearly distinguished binding from non-
binding sequences, i.e. the AUC value equals to 1. The
AUC value was slightly lower (0.96) when the FSBC
options lmin = 3 were applied, because some non-binding
sequences were grouped into the same binding clus-
ter. AptaTRACE also demonstrates a higher AUC value
because AptaTRACE detected the target binding regions
in the higher-ranked clusters. However, the other cluster-
ing methods resulted in lower AUCs because non-binding
sequences with high frequency were included in the
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Fig. 3 Relation between cluster ranking and frequency of sequences. Binding, non-binding, and non-evaluated sequences are shown as red, blue,
and gray dots, respectively

higher-ranked clusters. FSBC with option lmin = 5 also
showed that the AUC value equals to 1 for all sequence
data and filtered data (frequency ≥ 100) in Table S1. The
clustering results for third- and fourth-round data are
summarized in Table S3 and Table S4, respectively. FSBC
could identify aptamer sequences in the third and first
clusters from third-and fourth-round data. AUC values for
the third and fourth rounds are 0.89 and 1, respectively.

Comparison with exhaustive enumeration of strings
The top-ranked over-represented string of exhaustive
enumeration was included in the selected strings for each
length. The missing rate of the top 10 ranked strings of
exhaustive enumeration for each length is shown in Table
S5. Top 10 ranked 10-mer strings of the exhaustive enu-
meration include 6 selected strings. Thus, the missing rate
of the 10-mer string is 0.4.

Discussion
Our newly developed algorithm for clustering, FSBC,
showed the second fastest calculation speed with HT-
SELEX data. AptaCluster displayed a remarkably fastest
calculation time. FASTAptamer and APTANI could not
complete the clustering for all of the sequence data; hence,
only FSBC, AptaCluster, and AptaTRACE are available for
applications with a real HT-SELEX dataset. FSBC selected
a total of 1,003 strings, which was much smaller than all
exhaustive enumeration of strings:

∑10
i=5 4i = 1, 397, 760.

The ratio of the number of selected strings over all combi-
nations is 1, 003/1, 397, 760 = 0.0007175767. Hence, the
minimization of the search space was an effective method
for finding over-represented strings of longer lengths such
as 10-mer. FSBC was designed for handling a single-round
sequence data from SELEX. This approach could also be

helpful to reduce the sequencing cost and the calculation
time compared to other methods such as MPBind [22]
and AptaTRACE[17], which require multiple rounds of
sequence data from SELEX pools.
Importantly, FSBC and AptaTRACE distinguished

binding sequences as high-ranked clusters, whereas
the other clustering methods categorized non-binding
sequences with high frequency under high-ranked clus-
ters. This demonstrates that FASTAptamer, AptaCluster,
and APTANI are more sensitive to the frequency of
sequences rather than to enrichment of over-represented
strings. Thus, if the SELEX pool contains numerous
non-binding sequences due to PCR bias, FASTAptamer,
AptaCluster, and APTANI might place these PCR biased
sequences in the high-ranked clusters. The sequencing
data used for the current study includes enriched strings
among the binding sequences, and FSBC and Apta-
TRACE could accurately detect these strings as the esti-
mated target binding region. AptaTRACE detected bind-
ing sequences with higher-ranked clusters, however, the
cluster of rank 5 includes both binding and non-binding
sequences. Consequently, FSBC showed a better result for
cluster ranking in this study.
This proposed string score calculation method can

be extended to combine with other outcomes. In this
study, we defined the outcome according to nucleobases:
�nucleobase = {A,C,G,T(U)}. However, other outcomes
can also be defined, such as the oligonucleotide secondary
structure: �structure = {H, B, S,M, E, I, G}, which represent
the structure of the hairpin loop, bulge, stem, multi-loop,
external loop, internal loop, and G-quadruplex, respec-
tively. A set of outcomes can be extended as � =
�nucleobase × �structure. If the set is extended to include
the secondary structure, FSBC is available for searching
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Fig. 4 Receiver operating characteristic (ROC) curves of different clustering methods. “Freq.” and “Div.” in the parentheses (after AptaCluster and
APTANI) indicate the cluster ranking with frequency and diversity (the number of non-redundant sequences) in the cluster for the respective
method. AUC indicates the area under the curve

over-represented strings with a specific secondary struc-
ture. However, the calculation time will also increase with
increasing the number of elements of �. Hence, to obtain
the fastest calculation with FSBC, � = �nucleobase is the
reasonable outcome. This string scoring method can also
be used for other types of sequence analysis such as for
amino acid sequences. In other words, if � is defined
based on amino acids, Eq. (1) can be used for finding
over-represented strings among amino acid sequences.
FSBC does not consider insertion/deletions or

degenerated nucleobases, because the method was
designed to reduce the calculation time to enable
estimating longer over-represented strings in a huge
dataset. Since the size of clusters is much smaller
than the size of the entire sequence dataset, other
motif-estimating methods such as MEME [24] can
be used for more accurate estimation of candidate
motifs.
Due to a lack of publicly accessible HT-SELEX data with

binding information, only one HT-SELEX dataset was

used. Sequence data could differ depending on the tar-
get molecules, SELEX methods, and initial bias of SELEX.
Hence, the evaluation with other HT-SELEX data should
be performed. After there will be enough dataset of HT-
SELEX data publicly available for evaluation, the cluster-
ing methods need to be summarized. Moreover, only a
single clustering method cannot cover all types of SELEX
datasets. Thus, the most suitable clustering approach is to
compare and summarize the results of different clustering
methods.

Conclusion
We proposed a new and rapid string-based clustering
method for HT-SELEX data. Our clustering method could
complete the calculation from a huge dataset in a reason-
able time, even though the method is designed to estimate
longer over-represented strings such as 10-mer. Impor-
tantly, our clustering method could identify enriched
strings that were included in binding sequences estimated
as the target binding region of the aptamer. Overall, FSBC
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could be a helpful method to effectively identify aptamers
with HT-SELEX data.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-03607-1.
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