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Abstract

Background: The alignment of character sequences is important in bioinformatics. The
quality of this procedure is determined by the substitution matrix and parameters of the
insertion-deletion penalty function. These matrices are derived from sequence alignment
and thus reflect the evolutionary process. Currently, in addition to evolutionary matrices, a
large number of different background matrices have been obtained. To make an optimal
choice of the substitution matrix and the penalty parameters, we conducted a numerical
experiment using a representative sample of existing matrices of various types and origins.

Results:We tested both the classical evolutionary matrix series (PAM, Blosum, VTML,
Pfasum); structural alignment based matrices, contact energy matrix, and matrix based
on the properties of the genetic code. This study presents results for two test set types:
first, we simulated sequences that reflect the divergent evolution; second, we
performed tests on Balibase sequences. In both cases, we obtained the dependences
of the alignment quality (Accuracy, Confidence) on the evolutionary distance between
sequences and the evolutionary distance to which the substitution matrices
correspond. Optimization of a combination of matrices and the penalty parameters was
carried out for local and global alignment on the values of penalty function parameters.
Consequently, we found that the best alignment quality is achieved with matrices
corresponding to the largest evolutionary distance. These matrices prove to be
universal, i.e. suitable for aligning sequences separated by both large and small
evolutionary distances. We analysed the correspondence of the correlation coefficients
of matrices to the alignment quality. It was found that matrices showing high quality
alignment have an above average correlation value, but the converse is not true.
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Conclusions: This study showed that the best alignment quality is achieved with
evolutionary matrices designed for long distances: Gonnet, VTML250, PAM250, MIQS,
and Pfasum050. The same property is inherent in matrices not only of evolutionary
origin, but also of another background corresponding to a large evolutionary distance.
Therefore, matrices based on structural data show alignment quality close enough to its
value for evolutionary matrices. This agrees with the idea that the spatial structure is
more conservative than the protein sequence.

Keywords: Evolutionary distance, Divergent evolution, Sequence alignment,
Substitution matrix, Penalcty function

Background
Alignment is the most common bioinformatics procedure.A natural quality criterion

for the alignment procedure is the reproducibility of true alignment, i.e., the restoration

of true events at the level of substitutions and insertion-deletions of amino acids in a

symbolic sequence. To be precise, as applied to the scheme of divergent evolution, this

is a comparison of positions in two mutant sequences originating from the same pos-

ition of a common ancestor. Thus, the natural criterion for the matrix performance

should be the effectiveness of the alignment procedure using this matrix.

Classification of matrices according to the principle of obtaining

Existing amino acid substitution matrices can be divided into groups in accordance

with the principles by which they were derived. The most representative group in terms

of the number of matrices and applicability for the alignment procedure should include

matrices of evolutionary nature, i.e. matrices obtained by comparing sequences. The

most famous representatives of this group include matrices of universal application.

These are the matrices series of PAM [1], Blosum [2], as well as VTML [3] and Pfasum

[4]. Matrices which do not form series such as Gonnet [5, 6], Optima [7], and MIQS

[8], can also be assigned to this group.

The matrix constructed on the basis of the model of the Dirichlet mixture of the

probabilities of the amino acid background [9] can also be considered evolutionary and,

therefore, suitable for aligning sequences whose evolutionary distance between them is

not known in advance.

Another branch in the group of evolutionary matrices consists of matrices aimed at

comparing sequences of proteins belonging to a particular family [10, 11].

This study was not limited to the evolutionary matrices specially developed for the

alignment procedure; hence tests were also conducted on matrices created on the basis

of alternative principles, using the alignment quality criterion (see Methods, Substitu-

tion matrices).

As is known, along with the evolutionary matrices constructed by comparing se-

quences, among the known amino acid similarity matrices, there are matrices of a dif-

ferent origin. For example, matrices obtained by comparing three-dimensional

structures [12–14], as well as those obtained on the basis of the physical and chemical

properties of amino acid residues.

In addition, there are known contact energy matrices that reflect the statistics of pair

interactions in a protein globule [15].
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Evolutionary distances of matrices and amino acid sequences

When choosing a matrix for the alignment procedure, it is necessary to take into ac-

count the relationship between the evolutionary distance separating the sequences and

the evolutionary distance to which this matrix corresponds. The question is: should the

exact correspondence between the evolutionary distance of the matrix and amino acid

sequences be fulfilled or should a deviation in one direction or another be permissible?

Therefore, it is necessary to consider all possible combinations of evolutionary dis-

tances characterizing matrices and sequences.

As for the origin of the matrixes of the weights of substitutions, according to the hy-

pothesis of Benner et al. [16], for sequences separated by a small evolutionary distance,

amino acid substitutions are determined by the genetic code. Due to the structure of

the code, substitutions of physico-chemically dissimilar amino acids, i.e. “bad” substitu-

tions (for example, R-W, R-C), but the situation as a whole will not be fatal, since there

are few such substitutions, due to the small number of events (substitutions), obviously,

as a result of selection.

For sequences separated by a large evolutionary distance, the total number of events

is large, but the number of “bad” mutations should remain quite small, as a result of

which the overwhelming number of substitutions must occur while maintaining the

similarity of physical and chemical properties. Therefore, despite the large number of

substitutions (low degree of homology), these substitutions are not fatal.

Thus, it is of interest to know how universal the matrices are, what combinations of

evolutionary distances of compared sequences and matrices are optimal, as well as

comparisons of the efficiency of matrices obtained on the basis of sequences or three-

dimensional structures.

Matrix efficiency in terms of alignment quality and matrix correlation coefficient

As a possible additional way of predicting matrix efficiency by evaluating a formal

measure of the similarity of two matrices, we used the correlation coefficient. First of

all, it was necessary to examine whether there is a relationship between the high correl-

ation coefficient of the substitution matrices and the coincidence of alignment quality

obtained using these matrices.

Evolution modeling as a way to evaluate matrix performance

To evaluate the efficiency of the matrices, it is considered advisable to carry out the

alignment of sequences of various origins. We used both model sequences constructed

according to the scheme of divergent evolution [17] (see Methods, Test sequences), and

real sequences from Balibase [18, 19]. To generate model sequences, we chose the

Dayhoff evolution model [1] for various evolutionary distances.

Thus, in our work, we propose an evolutionary model where a random occurrence of

mutations in an arbitrary position of the sequence without any restrictions is assumed.

This means that, along with the sequence, the structure of the protein can also change.

An example of an evolutionary model involving the preservation of fold is presented in

[20]. The main features of the given model are the loss of recognizable similarity of the

mutated sequence obtained as a result of long evolution, with the original sequence,

while maintaining, basically, the original structure. The model includes restrictions on
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the introduced mutations in order to preserve thermodynamic characteristics of the

protein, such as hydropathy, on which the stability of the overall structure depends.

Results
In general, the alignment procedure is determined by the substitution matrix and the

penalty function, which determines the contribution of insertion-deletions to the

weight of an optimal alignment. In our study, we used a linear penalty function, which

includes two parameters – a penalty for opening and continuing of insertion-deletion.

We performed alignment with local [21] and global [22] algorithms. The quality of al-

gorithmic alignment was evaluated by two parameters (see Methods, Alignment quality

assessment).

General tendencies of the quality changes in the alignment studied for the majority of

the matrices, depending on the type of algorithm and the values of the penalty function,

are presented in the example of PAM120 and Pfasum050 matrices in Figs. 1, 2, 3 and 4.

In the case of local alignment in all test sets, the numerical values of Accuracy are higher

than Confidence at all points of the penalty function parameter area. Moreover, the

Fig. 1 Dependence of the local alignment quality indicators Accuracy and Confidence with the PAM120
matrix on the values of the penalty function parameters. In the 120 PAM test set, the difference between
the values of the two quality indicators reaches the largest value
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difference between the characteristics of alignment quality for small values of the penalty

function parameters is rather small, and for the highest values of the penalty parameters

(GOP = 20, GEP = 8) this difference attains a significant value. This means that the num-

ber of comparisons in the reference alignment is greater than in the algorithmic local

alignment for all values of penalty parameters. At the same time, for the global alignment

the difference between Accuracy and Confidence values is significantly smaller, which indi-

cates a negligible difference in the number of comparisons in the reference and in the al-

gorithmic global alignments. Further, in all test sets for small values of the penalty

function parameters, the Confidence values are greater than the Accuracy values, and for

the largest values of the penalty parameters, this difference changes its sign.

The selection of an optimal value of penalty parameters was carried out as follows:

of the two alignment characteristics (Accuracy, Confidence), the minimum was se-

lected, then the maximum was selected from the set of obtained values. The values of

the optimal alignment characteristics and the corresponding values of the penalty pa-

rameters for all the considered substitution matrices are shown in Tables 1 and 2. A

Fig. 2 Dependence of the global alignment quality indicators with the PAM120 matrix on the values of the
penalty function parameters. In all test sets, the absolute value of the difference between the Accuracy and
Confidence values is noticeably smaller than in the case of local alignment, and varies little over most of the
region of the penalty function parameters
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full set of alignment quality values for the entire set of tested parameters is given in

Additional files 1, 2: Table S1, Table S2.

Trends in the optimal penalty for opening insertion-deletions depending on the

evolutionary distance between sequences

Local alignment

Let us consider the tendency of change of optimal penalty for gap opening depending

on the increase in the evolutionary distance between the sequences and the increase in

the evolutionary distance for which the matrix was constructed, using the example of

PAM matrices. Table 1 shows that when using short distance matrices (PAM30,

PAM60), with an increase in the evolutionary distance between the compared se-

quences from 30 to 120 PAM, the optimal gap opening penalty (GOP) decreases. Thus,

the optimal GOP values for the PAM30 and PAM60 matrices are (19, 8, 3) and (16, 14,

4) for evolutionary distances of 30, 60, and 120 PAM, respectively.

Fig. 3 Dependence of the quality indicators of local alignment on the values of the penalty function parameters with
the matrix Pfasum050. As in the case of the PAM120 matrix, at all points of the penalty function parameter area,
Accuracy values exceed Confidence values. But the difference between Accuracy and Confidence in the case of
Pfasum050 is less than in the case of PAM120 matrix
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Further, when aligned with the PAM120 matrix, the decrease in optimal GOP values

is not so noticeable (10, 10, 6). Finally, when aligned with the PAM250 matrix, on the

contrary, with an increase in the evolutionary distance between sequences, the optimal

gap opening penalty increases: GOP = 8, 11, 12.

Other matrices constructed for large evolutionary distances behave similarly to the

PAM250 matrix: Gonnet250: GOP = 8, 10, 11; Gonnet_p: GOP = 7, 8, 11; VTML250:

GOP = 9, 11, 11; MIQS: GOP = 10, 12, 12.

The remaining matrices give the worst values of accuracy and confidence; hence we

did not discuss them.

Global alignment

In this case, a simpler pattern was observed: with an increase in the evolutionary distance

between sequences, the optimal penalty for gap opening increased (or does not decrease)

for almost all tested matrices (see Table 2). As for gap extension penalties (GEP), their

value was considered small for both local and global algorithms, and there was a monot-

onous increase in the penalty with increasing evolutionary distance between sequences.

Fig. 4 Dependence of global alignment quality indicators on the values of the penalty function parameters
with the Pfasum050 matrix
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Table 1 Accuracy and Confidence values of local alignment

Data set 30 PAM 60 PAM

Matrix Gap
open

Gap
extention

Accuracy Confi-
dence

Gap
open

Gap
extention

Accuracy Confi-
dence

PAM30 19.0 0.2 0.9672 0.9883 8.0 1.0 0.6768 0.8781

PAM60 16.0 0.2 0.9776 0.9881 14.0 0.2 0.8635 0.9507

PAM120 10.0 0.1 0.9816 0.9876 10.0 0.5 0.9244 0.9519

PAM250 8.0 0.1 0.9821 0.9862 11.0 0.2 0.9353 0.9489

Blosum45 10.0 0.1 0.9803 0.9861 14.0 0.2 0.9246 0.9439

Blosum50 14.0 0.1 0.9802 0.9862 13.0 0.5 0.9227 0.9436

Blosum62 13.0 0.1 0.9802 0.9862 17.0 0.5 0.9216 0.9479

Gonnet250 8.0 0.1 0.9828 0.9862 10.0 0.2 0.9329 0.9437

Gonnet_p 7.0 0.1 0.9852 0.9839 8.0 0.1 0.9390 0.9336

Optima 9.0 0.1 0.9814 0.9861 17.0 0.5 0.9138 0.9421

VTML250 9.0 0.1 0.9808 0.9854 11.0 0.1 0.9293 0.9426

MIQS 10.0 0.1 0.9813 0.9860 12.0 0.2 0.9287 0.9433

Pfasum050 10.0 0.1 0.9808 0.9860 14.0 0.2 0.9271 0.9444

Pfasum100 10.0 0.1 0.9800 0.9864 12.0 0.2 0.9200 0.9452

Crooks 11.0 0.1 0.9777 0.9859 14.0 0.2 0.9098 0.9457

CCF53 10.0 0.2 0.9796 0.9862 12.0 0.2 0.9195 0.9453

Moll60 11.0 0.1 0.9793 0.9862 11.0 0.5 0.9142 0.9440

Johnson 15.0 0.1 0.9795 0.9866 17.0 0.5 0.9139 0.9465

Prlic 16.0 0.1 0.9811 0.9853 21.0 0.1 0.9251 0.9394

Blake 23.0 0.1 0.9797 0.9841 25.0 1.0 0.9188 0.9318

Benner 8.0 0.2 0.9803 0.9834 10.0 0.1 0.9197 0.9316

Miyazawa 15.0 0.1 0.9749 0.9821 17.0 0.2 0.8941 0.9307

Data set 120 PAM Bali Base

Matrix Gap
open

Gap
extention

Accuracy Confi-
dence

Gap
open

Gap
extention

Accuracy Confi-
dence

PAM30 3.0 1.0 0.1648 0.2826 4.0 1.0 0.3207 0.4471

PAM60 4.0 1.0 0.2781 0.4016 3.0 2.0 0.3928 0.5026

PAM120 6.0 1.0 0.5310 0.6969 7.0 0.5 0.4823 0.5624

PAM250 12.0 0.5 0.7251 0.8039 8.0 0.5 0.5427 0.5821

Blosum45 13.0 0.5 0.6514 0.7664 10.0 0.5 0.5621 0.6121

Blosum50 11.0 1.0 0.6244 0.7482 11.0 0.5 0.5494 0.6050

Blosum62 12.0 1.0 0.5794 0.7378 11.0 0.5 0.5375 0.6019

Gonnet250 11.0 0.5 0.7210 0.7769 8.0 1.0 0.5779 0.6103

Gonnet_p 11.0 0.1 0.7659 0.7538 7.0 0.1 0.6433 0.6338

Optima 10.0 0.5 0.6424 0.7352 9.0 0.5 0.5625 0.6107

VTML250 11.0 0.5 0.7212 0.7757 6.0 1.0 0.5719 0.6025

MIQS 12.0 0.5 0.6969 0.7660 9.0 0.5 0.5729 0.6079

Pfasum050 13.0 0.5 0.6731 0.7602 10.0 0.5 0.5668 0.6090

Pfasum100 9.0 0.5 0.5849 0.7343 7.0 0.5 0.5384 0.5958

Crooks 7.0 1.0 0.4902 0.6733 8.0 0.5 0.5206 0.5958

CCF53 9.0 0.5 0.5819 0.7395 8.0 0.2 0.5358 0.5980

Moll60 7.0 1.0 0.5314 0.6721 8.0 0.5 0.5289 0.6003

Johnson 8.0 2.0 0.4898 0.6623 12.0 0.5 0.5122 0.5917
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Dependence of the alignment quality on the ratio of evolutionary distances between

sequences and evolutionary distances for which matrices are designed

Local alignment

Consider the case when the evolutionary distances between sequences and the evolu-

tionary distances for which the matrix was constructed do not coincide. As can be seen

from Table 1, the alignment quality of sequences separated by a large evolutionary dis-

tance using matrices for a small evolutionary distance is significantly lower compared

to the case of alignment of the same sequences using matrices for a large evolutionary

distance. This property is clearly seen in the example of matrices of the PAM series

(see Table 1, test set 120 PAM). Here, the Accuracy, Confidence alignment quality indi-

cators for the PAM250 matrix are approximately 4 and 3 times higher compared to the

PAM30 matrix. A similar dependence was observed for matrices of the Blosum series.

It should be noted that the considered Blosum matrices cover a narrower range of evo-

lutionary distances, and therefore, their efficiency changes less depending on the matrix

number. When aligning sequences from the 120 PAM test set, the Blosum45 matrix is

most effective, followed by Blosum50 and Blosum62. For Balibase sequences, this trend

persists, but is less noticeable. Note that, unlike PAM matrices, a lower Blosum matrix

number corresponds to a larger evolutionary distance.

On the contrary, the quality of alignment of sequences spaced a short evolutionary dis-

tance using matrices for a large evolutionary distance is not lower (and in some cases

slightly higher) than when matrices are used for a small evolutionary distance. For ex-

ample, on the 30 PAM test set, the alignment quality using the PAM250, Gonnet250, and

Gonnet_p matrices is slightly higher compared to the PAM60 matrix (see Table 1).

Global alignment

For this type of alignment, in the case of remote sequences, the advantage of matrices

for long distance over matrices for short distance is not as significant as in the case of

local alignment. Therefore, on the 120 PAM test set (see Table 2), the PAM250 matrix

shows the best result, followed by the PAM120 and PAM60 matrices. The PAM30

matrix is only slightly inferior to the Gonnet250 and VTML250 matrices. This super-

iority of the PAM matrices for global alignment on this test set is most likely due to

the evolutionary model used (see Methods, Test sequences). The efficiency of the con-

sidered matrices of the Blosum series on the 120 PAM test set, as well as on Balibase

sequences, is practically independent of the matrix number.

Meanwhile, the quality of global alignment of sequences with high homology is even

less dependent on the type of substitution matrix than in the case of local alignment.

Table 1 Accuracy and Confidence values of local alignment (Continued)

Data set 30 PAM 60 PAM

Matrix Gap
open

Gap
extention

Accuracy Confi-
dence

Gap
open

Gap
extention

Accuracy Confi-
dence

Prlic 19.0 1.0 0.6714 0.7377 16.0 1.0 0.5741 0.6098

Blake 25.0 4.0 0.6781 0.7396 21.0 1.0 0.5762 0.6016

Benner 12.0 0.5 0.6296 0.6877 8.0 0.5 0.5215 0.5480

Miyazawa 11.0 1.0 0.4928 0.6324 10.0 1.0 0.4826 0.5395
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Table 2 Accuracy and Confidence values of global alignment

30 PAM 60 PAM

Matrix Gap
open

Gap
extention

Accuracy Confi-
dence

Gap
open

Gap
extention

Accuracy Confi-
dence

PAM30 18.0 2.0 0.9910 0.9907 25.0 2.0 0.9604 0.9600

PAM60 17.0 1.0 0.9916 0.9911 21.0 1.0 0.9610 0.9607

PAM120 13.0 1.0 0.9914 0.9908 13.0 1.0 0.9621 0.9599

PAM250 9.0 1.0 0.9901 0.9894 13.0 1.0 0.9610 0.9575

Blosum45 15.0 1.0 0.9901 0.9893 14.0 1.0 0.9559 0.9531

Blosum50 14.0 1.0 0.9902 0.9895 17.0 1.0 0.9563 0.9533

Blosum62 16.0 1.0 0.9906 0.9900 19.0 1.0 0.9575 0.9549

Gonnet250 11.0 1.0 0.9899 0.9890 11.0 1.0 0.9551 0.9514

Gonnet_p 7.0 1.0 0.9879 0.9864 10.0 1.0 0.9460 0.9398

Optima 10.0 1.0 0.9899 0.9891 14.0 1.0 0.9557 0.9520

VTML250 10.0 1.0 0.9894 0.9885 12.0 1.0 0.9555 0.9515

MIQS 11.0 1.0 0.9897 0.9888 15.0 1.0 0.9564 0.9527

Pfasum050 14.0 1.0 0.9899 0.9890 16.0 1.0 0.9574 0.9542

Pfasum100 11.0 1.0 0.9901 0.9892 14.0 1.0 0.9573 0.9542

Crooks 13.0 1.0 0.9900 0.9893 17.0 1.0 0.9555 0.9524

CCF53 11.0 1.0 0.9900 0.9892 13.0 1.0 0.9563 0.9534

Moll60 12.0 1.0 0.9900 0.9893 16.0 1.0 0.9564 0.9531

Johnson 18.0 1.0 0.9904 0.9899 23.0 1.0 0.9564 0.9547

Prlic 18.0 1.0 0.9896 0.9889 24.0 1.0 0.9532 0.9503

Blake 22.0 1.0 0.9880 0.9879 30.0 1.0 0.9468 0.9458

Benner 9.0 1.0 0.9878 0.9867 12.0 1.0 0.9452 0.9407

Miyazawa 21.0 1.0 0.9864 0.9855 22.0 1.0 0.9432 0.9408

Data set 120 PAM Bali Base

Matrix Gap
open

Gap
extention

Accuracy Confi-
dence

Gap
open

Gap
extention

Accuracy Confi-
dence

PAM30 30.0 4.0 0.8065 0.7991 24.0 4.0 0.6257 0.6215

PAM60 26.0 3.0 0.8174 0.8080 20.0 3.0 0.6301 0.6236

PAM120 19.0 1.0 0.8189 0.8152 16.0 2.0 0.6287 0.6205

PAM250 17.0 1.0 0.8325 0.8241 11.0 2.0 0.6310 0.6240

Blosum45 22.0 1.0 0.7949 0.7855 13.0 1.0 0.6495 0.6473

Blosum50 21.0 1.0 0.7925 0.7866 16.0 2.0 0.6523 0.6433

Blosum62 24.0 2.0 0.7972 0.7877 19.0 2.0 0.6533 0.6455

Gonnet250 16.0 1.0 0.8129 0.8037 11.0 1.0 0.6592 0.6541

Gonnet_p 13.0 1.0 0.7870 0.7729 7.0 1.0 0.6470 0.6353

Optima 17.0 1.0 0.7907 0.7830 13.0 1.0 0.6515 0.6463

VTML250 15.0 1.0 0.8110 0.8017 11.0 1.0 0.6544 0.6486

MIQS 18.0 1.0 0.8046 0.7964 13.0 1.0 0.6518 0.6479

Pfasum050 21.0 1.0 0.8015 0.7939 15.0 2.0 0.6599 0.6507

Pfasum100 18.0 1.0 0.7973 0.7891 12.0 1.0 0.6527 0.6499

Crooks 18.0 2.0 0.7921 0.7823 14.0 2.0 0.6553 0.6470

CCF53 18.0 1.0 0.7923 0.7841 14.0 1.0 0.6488 0.6429

Moll60 19.0 1.0 0.7819 0.7762 12.0 2.0 0.6484 0.6403

Johnson 29.0 2.0 0.8011 0.7935 19.0 3.0 0.6524 0.6456
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On the 30 PAM test set (see Table 2), the PAM60 matrix shows the best result,

followed by the PAM120, PAM30, PAM250 and the Blosum series matrices. However,

there is an insignificant difference in the quality of indicators.

Thus, the universality of the matrix for a large evolutionary distance in terms of the

alignment efficiency of sequences with different evolutionary distances is revealed both

with local and global alignment. However, with local alignment, the advantage of the

matrix for large distances is greater [6].

Efficiency of matrices of various evolutionary distances in the case of local or global

alignment

Consider the general quantitative patterns found in the previous section.

PAM matrices exhibited the greatest dependence on algorithm type. Therefore, when

aligning the sequences of the test set 120 PAM using the PAM30 matrix, the ratio of

the quality parameters of global and local alignments Accuracy and Confidence were

approximately 5 and 3, respectively; for the PAM60 matrix, these ratios were approxi-

mately 3 and 2. For the PAM120 matrix, these ratios were about 1.5 and 1.2, and for

the PAM250 matrix, they were close to one (see Table 3, test set 120 PAM).

Thus, with increasing evolutionary distance for which PAM matrices are designed,

their performance for local alignment approaches that of global alignment. The same

trend was observed for alignments of Balibase sequences.

The considered Blosum matrices showed a similar tendency, but it was less pro-

nounced, since the evolutionary distance between Blosum62 and Blosum45 was less

than the evolutionary distance between PAM30 and PAM250 (see Table 3).

On the 120 PAM test set, the matrices Gonnet_p, Gonnet250 and VTML250 showed the

least dependence on the type of alignment algorithm; on Balibase sequences, the least depend-

ence on the type of algorithm was shown by the Gonnet_p, MIQS, and Gonnet250 matrices.

Thus, matrices designed for a greater evolutionary distance and for providing better

alignment quality also show less dependence on the type of algorithm.

Discussion
Interpretation of matrix test results

Let us explain the observed dependencies, taking into account the specifics of the sub-

stitution matrices for different evolutionary distances and the differences in sequences

separated by one or another evolutionary distance.

Table 2 Accuracy and Confidence values of global alignment (Continued)

30 PAM 60 PAM

Matrix Gap
open

Gap
extention

Accuracy Confi-
dence

Gap
open

Gap
extention

Accuracy Confi-
dence

Prlic 13.0 1.0 0.7870 0.7729 18.0 2.0 0.6476 0.6427

Blake 30.0 4.0 0.7608 0.7547 24.0 3.0 0.6444 0.6419

Benner 16.0 1.0 0.7385 0.7282 10.0 1.0 0.5917 0.5848

Miyazawa 30.0 2.0 0.7539 0.7449 20.0 3.0 0.6024 0.5936

The optimal values of the alignment quality (Accuracy, Confidence) with the corresponding values of the penalty function
parameters (GOP, GEP) are given. Data were obtained for all matrices examined, on test sets of the generated sequences:
30 PAM, 60 PAM, 120 PAM, and on Balibase [18] sequences. A full set of alignment quality values for the entire set of
tested GOP and GEP parameters is given in Additional files 1, 2: Table S1, Table S2
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Matrices for small evolutionary distances are characterized by a relatively large

value of diagonal elements (from 6 to 13) and a small value outside the diagonal

elements (from − 15 to 2 for the matrix PAM30). This is because matrices for

small evolutionary distances are designed to compare sequences containing a large

proportion of matching characters. The alignment of sequences spaced a small evo-

lutionary distance should have many symbol mappings and few deletion inserts,

and to eliminate the occurrence of unnecessary insertion-deletions, a large penalty

value is necessary (GOP about 19.0). At the same time, when aligned using both

global and local algorithms, due to the large number of matches, maximum goal

function is achieved over the entire length of the sequences (without dropping

areas of low homology), and local alignment practically coincides with the global

one. Since global alignment is the reference in our model for all evolutionary dis-

tances and types of algorithms, it gives a good quality of alignment.

In the case of alignment of distant sequences with a local algorithm with the matrix

for small evolutionary distances, a large value of the penalty which leads to the max-

imum goal function will be found, most likely on the fragment than on the whole se-

quence, which results in a mismatch with the reference global alignment.

The fact that, when aligning with a local algorithm with large values of the penalty

function, alignments of the local type are obtained, leads to a much smaller number of

comparisons in the algorithmic alignment compared to the standard alignment. This is

equivalent to the inequality Accuracy <Confidence (see Methods, Alignment quality as-

sessment), which is clearly illustrated in Figs. 1 and 3.

When considering the population of the aligned pairs, we can see that the low value

of the average accuracy and reliability is the result of a large number of pairs with a

complete mismatch with the reference alignment. When aligned using local algorithm,

by reducing the penalty, as the calculation shows, it is possible to obtain the alignment

Table 3 The ratio of local and global alignment quality parameters on 120 PAM test suite
sequences and Balibase sequences

Matrix 120 PAM Balibase

Global / Local Global / Local

Accuracy Confidence Accuracy Confidence

PAM30 4.8938 2.8277 1.9510 1.3901

PAM60 2.9392 2.0120 1.6041 1.2407

PAM120 1.5422 1.1698 1.3035 1.1033

PAM250 1.1481 1.0251 1.1627 1.0720

Blosum45 1.2203 1.0249 1.1555 1.0575

Blosum50 1.2692 1.0513 1.1873 1.0633

Blosum62 1.3759 1.0676 1.2154 1.0724

Gonnet250 1.1275 1.0345 1.1407 1.0718

Gonnet_p 1.0275 1.0253 1.0058 1.0024

Optima 1.5409 1.3453 1.6990 1.5589

VTML250 1.1245 1.0335 1.1443 1.0765

MIQS 1.1545 1.0397 1.1377 1.0658

Pfasum050 1.1908 1.0443 1.1643 1.0685

Pfasum100 1.3631 1.0746 1.2123 1.0908
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of the global type, but with a large number of gaps and significantly different from the

reference (Accuracy = 0.165, Confidence = 0.283, see Table 1, test set120PAM, matrix

PAM30). The observed inequality Accuracy < Confidence indicates a trend in the differ-

ence between algorithmic and reference alignments, expressed in a significant number

of local type alignments in a set of algorithmic alignments.

Matrices for a large evolutionary distance are characterized by a relatively smaller value of

the diagonal and a larger value outside the diagonal elements (2..12 and− 8..7 for PAM250).

The local alignment of sequences spaced by a small and medium evolutionary distance, with

such matrices and gap opening penalty< 12, has enough similarities with global alignment,

which explains the high similarity with reference alignment (average Accuracy > 0.93, Confi-

dence > 0.94). With a large evolutionary distance between sequences (120 PAM), with penal-

ties of GOP> 3, GEP > 2, the alignments obtained by the local algorithm have less similarity

to the global alignment. However, the trend of increasing optimum value GOP with increas-

ing evolutionary distances between sequences was observed.

Global alignment is characterized by an increase in the optimal penalty for gap open-

ing with increasing distance between sequences. This trend is present in trials with all

matrices. This is due to the fact that in the applied evolution model with increasing dis-

tance, the increase in the number of insertions-deletions is slower than the accumula-

tion of mutations.

Global alignment is characterized by an increase in the optimal penalty for opening

an insertion-deletion with an increase in the distance between sequences. This trend is

present in trials with all matrices. This is explained by the fact that in the applied

model of evolution with increasing distance, the rate of increase in the number of inser-

tions is slower than the accumulation of mutations.

Thus, we concluded that matrices corresponding to large evolutionary distances are univer-

sal. They not only align sequences best separated by large evolutionary distances, but align

evolutionarily close sequences no worse than they align with matrices of the corresponding

evolutionary distance. Calculations showed that among matrices corresponding to a large evo-

lutionary distance, the Gonnet250 matrix gives the most stable alignment quality. The Gon-

net_p matrix [6] obtained from this matrix gives good alignment quality in the case of a local

algorithm. The high PAM250 matrix score on the 120 PAM test set can be largely due to the

evolutionary model used (seeMethods). The ranking of the considered matrices by the average

value of two parameters of the alignment quality is given in Table 4.

Investigation of the relationship between the correlation coefficient and matrix

performance

The use of simple methods for comparing matrices, such as calculating the correlation

coefficients a priori, seems unpromising. Indeed, a comparison of the Table of correl-

ation coefficients (see Additional file 3: Table S3) with the data on alignment quality

(Tables 1 and 2) does not allow us to reveal obvious trends in the relationship between

the alignment quality and the correlation coefficients.

Naturally, matrices belonging to the same family (e.g., PAM, Blosum) show high cor-

relation coefficients.

Further, it is significant that large distance matrices of evolutionary type, such as

PAM250, Gonnet, MIQS, VTML250, and Pfasum050, recorded the highest correlation
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coefficient between each other (0.895 < r < 0.995), over the entire sample of matrices con-

sidered, despite the fact that the methods of their construction and initial data are differ-

ent. It should be recalled that these same matrices showed the best alignment quality.

The situation is different with matrices obtained on the basis of structural alignment

(Johnson, Prlic, Blake). Here, on the contrary, in the case of Johnson and Prlic matrices,

the maximum correlation coefficient for the entire sample was achieved with matrices

of evolutionary origin (Blosum50, Ppfasum050, respectively). The Blake matrix re-

corded the best correlation with the Johnson matrix. Thus, the correlation was partial,

the generality of trends was not observed.

More complex dependencies were also observed. Since the structure was more con-

servative than the sequence, it can be assumed that matrices based on structural align-

ment are suitable for aligning sequences separated by large evolutionary distances.

From Table 2 (test set PAM120), it follows that this assumption is valid for the Johnson

matrix in the case of the global algorithm (Accuracy = 0.8011, Confidence = 0.7935), but

it does not hold for the local algorithm for which the quality of alignment is noticeably

lower (Accuracy = 0.4898, Confidence = 0.6623, see Table 1, test set PAM120). In con-

trast, for the Prlic and Blake matrices, the alignment quality characteristics for the glo-

bal and local algorithms are quite close: (0.6714, 0.7377) for the Prlic matrix and

(0.6781, 0.7396) for the Blake matrix in the case of the local algorithm, and accordingly

(0.7870, 0.7729), (0.7608, 0.7547) - for the global algorithm (Tables 1, and 2, test set

PAM120).

It should be noted that the correlation coefficients of the above-mentioned structural

matrices with large distance evolutionary matrices (Pfasum050, Optima) are also quite

high. Nevertheless, it would be incorrect to identify the tendency of coincidence in the

quality of alignment with a high correlation coefficient. The correlation coefficient

score cannot compete with the alignment quality criterion.

Conclusion
In this paper, we investigated the correspondence between the evolutionary distances

of amino acid substitution matrices and the sequences to be aligned. It has been shown

that, although at first glance one can limit the use of matrices with an evolutionary dis-

tance coinciding with the assumed evolutionary distance between sequences, a

complete study of all combinations of matrices and sequences results in nontrivial con-

clusions. It was shown that the result of the alignment of sequences is separated by a

Table 4 Matrices ranging by alignment quality

Local Alignment Global Alignment

120 PAM Balibase 120 PAM Balibase

PAM250 0.7645 Gonnet_p 0.6386 PAM250 0.8283 Gonnet250 0.6567

Gonnet_p 0.7599 Gonnet250 0.5941 Gonnet250 0.8083 Pfasum050 0.6553

Gonnet250 0.7490 MIQS 0.5904 VTML250 0.8064 VTML250 0.6515

VTML250 0.7485 Pfasum050 0.5879 MIQS 0.8005 MIQS 0.6499

MIQS 0.7315 VTML250 0.5872 Pfasum050 0.7977 Optima 0.6489

Pfasum050 0.7167 Optima 0.5866 Optima 0.7869 Gonnet_p 0.6412

Optima 0.6888 PAM250 0.5624 Gonnet_p 0.7800 PAM250 0.6275

Matrices are presented that show the best quality of local and global alignment on the 120 PAM and Balibase test sets.
Ranking in descending order is based on the average value of the Accuracy and Confidence parameters
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greater evolutionary distance than the evolutionary distance of the substitution matrix.

This shows a significant discrepancy between algorithmic and reference alignment.

Conversely, in the case when the evolutionary distance between sequences is less than

the evolutionary distance of the matrix, the coincidence of the obtained alignment with

the reference is much higher.

So for the main criterion of the quality of alignment, matrices corresponding to

large evolutionary distances have a significant advantage. In contrast to the matri-

ces for close distance, matching mainly equal coincident symbols in the alignment,

matrices for long distance are able to match a. a. residues assembled by physical

and chemical properties. Thus, not the literal coincidence of characters is pre-

served, but physical and chemical properties, of which hydrophobicity is the main

one, as shown in [20].

We examined the following question: Is there a relationship between the high correl-

ation coefficient of the substitution matrices and the coincidence of alignment quality

obtained with these matrices? It was noted that matrices corresponding to a high evolu-

tionary distance, for which a high level of alignment quality is achieved, show a higher

correlation coefficient between each other. Further, matrices corresponding to a small

evolutionary distance, showing poor alignment quality, are characterized by lower cor-

relation both between themselves and with matrices corresponding to a large evolution-

ary distance. Nevertheless, it would be incorrect to always identify the tendency of

coincidence in alignment quality with a high correlation coefficient. Estimation by the

correlation coefficient cannot compete with the criterion by the quality of alignment.

The results obtained can serve as a recommendation for the practical use of the

alignment procedure, especially in those cases when the evolutionary distance between

sequences cannot be estimated.

Methods
Test sequences

To evaluate the performance of substitution matrices for different evolutionary dis-

tances, the alignments of sequences of various origins were performed. We used both

model sequences corresponding to different evolutionary distances and a sample of real

pairs of sequences from Bali base [18, 19].

The test sets of generated model sequences contained 1000 pairs of amino acid se-

quences in a 20-letter alphabet. Three sets were constructed using the same method-

ology, which differ in the values of evolutionary distance. Three sets were constructed

using the same methodology, which differ in the values of the evolutionary distance. In

the test pair, both sequences S1 and S2 were generated from the original sequence S0

(“ancestor”). Thus, the process of generating a test pair consisted of two steps: generat-

ing a common ancestral sequence; generation of test sequences in accordance with the

value of the PAM parameter (PAM = 30, 60, 120) [1].

The ancestral sequence S0 was generated as a random Bernoulli sequence with a

length of 200 a.a., comparable with the typical length of the polypeptide chain, with the

frequency of amino acids occurrence in accordance with [1].

According to the same procedure, the sequences S1 and S2 were constructed inde-

pendently of one another. This procedure consisted of two stages. At the first stage,
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insertions and deletions were introduced into the ancestral sequence. For this, each

position of the ancestral sequence S was checked for the occurrence of an insert before

this position or deletion, starting from this position, with the probability of an event,

according to [23]:

P indelð Þ ¼ 0:0224� 0:0219 � e −0:01168∙PAMð Þ;

where PAM is a number characterizing the evolutionary distance between the ances-

tral and mutant sequences.

The insertion or deletion length was randomly selected from the Zipf distribution,

which, according to [23], does not depend on the value of the evolutionary distance.

At the second stage, point mutations were introduced into the sequence obtained at the

first stage. Thus, mutations were introduced only in areas left over from the ancestral se-

quence. One cycle of introducing mutations was that in each position with a certain prob-

ability a substitution can be made, while the probability of a new symbol in this position is

determined by the probability matrix PAM1 [1]. This cycle was repeated a number of

times equal to the value of the PAM parameter. Figure 5 shows a typical relationship be-

tween the average percentage of matches between the ancestral and mutant sequences (%

id) and the value of the PAM parameter (according to Tables 2 and 3 from [1]). The value

of the share of matches (id) for two random sequences with an alphabet of length n and

the same distribution of frequencies of characters occurrence (f1, …,fn) in the first and sec-

ond sequences is defined as:
Pn

i¼1

1
f 2i
(see for example [24]).

For the distribution of amino acid frequencies from Dayhoff et al. [1] this value is

0.0601 and lies at the left border of the domain of definition of this function. The area

of highest growth of the first derivative of the function falls on the so-called “twilight

zone”, corresponding to the values of sequence identity 20% ≤ id ≤ 35% according to

[6], or 10% ≤ id ≤ 30% according to [25].

Fig. 5 Correspondence of the values of the PAM parameter to the average percentage of identity in the
positions of the ancestral and mutant sequences (%id). In a mutant sequence, only substitutions are
allowed. Note that the maximum PAM value shown in Table 23 of [1] is 328 and corresponds to %id = 15%.
For %id values less than 15%, PAM values are added by polynomial approximation at six points
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To determine the evolutionary distance between the modified sequences, on the basis

of these alignments, the alignment of sequences S1 and S2 was constructed in such a

way that positions originating from a common ancestor in sequence S0 were compared

to each other.

An example of text sequences shown in Fig. 6 illustrates the obtaining of alignment

corresponding to the scheme of divergent evolution from two alignments of sequential

evolution.

Table 5 shows the values of alignment parameters obtained for two evolutionary

schemes. As can be seen from Table 5, the reference alignment obtained by superim-

posing the second rows of pairs has different PAM values defined for mutations and

deletion insertions (columns PAM (id) and PAM (indel)). This is due to the fact that

with a sufficiently large number of accepted substitutions, the proportion of “visible”

substitutions decreases.

In Fig. 5, this is seen in the growth of PAM with a decrease in id. Thus, in the result-

ing alignment, the number of “visible” substitutions corresponds to the sum of the sub-

stitutions made in the initial alignments, but does not equal the sum of the “visible”

substitutions in them. At the same time, the total length of insertions and deletions in

the resulting alignment, due to their small length relative to the total length of the se-

quences, is approximately equal to the sum of deletion inserts in the original align-

ments (which corresponds to a larger PAM value).

Note that in the described procedure, test pairs of sequences were built accord-

ing to the “descendant1 - descendant2” scheme, and not according to the “ances-

tor-descendant” scheme. The first scheme better models the comparison of real

sequences. However, the PAM parameter traditionally used to characterize the evo-

lutionary distance is oriented to the second scheme. Thus, the actual PAM value

for the second circuit is approximately two times greater than the specified value.

This evolutionary model was used by the authors in [8] to generate homologous

cores of the compared sequences. Earlier, a similar method of modeling evolution

was applied in [6, 26].

Fig. 6 Using fragments of pairwise alignments as an example, we present a scheme for generating a
reference alignment in accordance with the model of divergent evolution. Here, the pairs (S0, S1) and (S0,
S2) denote the generated alignments of the ancestral sequence S0 with the mutant sequences S1 and S2
generated from it, corresponding to an evolutionary distance of 120 PAM; (S1, S2) is the resulting pair
alignment corresponding to the scheme of divergent evolutionFurther, for simplicity, the distance between
S1 and S2 is denoted by the corresponding distance of sequential evolution (in this example, 120PAM),
although the true distance between S1 and S2 is almost two times greater (see Table 5).
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Alignment quality assessment

We were interested in how close algorithmic alignments are to reference alignments,

i.e. alignments in which positions originating from the same position of the ancestral

sequence are matched. To assess the degree of this proximity (“alignment quality”), we

used the Accuracy and Confidence measures described in [6, 25, 27]:

Accuracy = I/R, Confidence = I/A, where I is the number of matching comparisons in

the reference and algorithmic alignments, R is the total number of comparisons in the

reference alignment, A is the total number of comparisons in algorithmic alignment.

Alignment

The alignment of all sequences was performed by two algorithms: the local Smith –

Waterman algorithm [21], and the global Needleman-Wunsch algorithm [22] with an

affine penalty function for insertion-deletions. The parameters of the penalty function

were tested as follows: the penalty for gap opening (GOP) ranged from 3 to 30, while

the penalty for gap extension (GEP) ranged from 0.1 to 8.

Substitution matrices

We examined matrices of various types and origin in order to evaluate their perform-

ance in restoring the reference alignment, i.e. one in which positions originating from

the same position in a common ancestral sequence are matched. Table 6 lists the tested

matrices.

Table 5 Id and Indel values for sequential and diverging evolution models

Test sets
parameters

Sequential evolution

id id id indel indel indel

N PAM (S0, S1) (S0, S2) Average (S0, S1) (S0, S2) Average

1000 30 0.7481 0.7499 0.7490 0.0324 0.0343 0.0334

1000 60 0.5788 0.5796 0.5792 0.0526 0.0560 0.0543

1000 120 0.3758 0.3770 0.3764 0.0740 0.0754 0.0747

10,000 30 0.7504 0.7501 0.7503 0.0330 0.0336 0.0333

10,000 60 0.5804 0.5807 0.5806 0.0526 0.0511 0.0519

10,000 120 0.3767 0.3762 0.3765 0.0755 0.0762 0.0759

Test sets
parameters

Divergent evolution

id PAM (id) indel PAM (indel)

N PAM (S1, S2) (S1, S2) (S1, S2) (S1, S2)

1000 30 0.5793 60.55 0.0662 68.56

1000 60 0.3756 122.25 0.1072 202.14

1000 120 0.2009 245.08 0.1473 > 830

10,000 30 0.5804 60.31 0.0661 68.30

10,000 60 0.3773 121.53 0.1023 170.52

10,000 120 0.2025 243.45 0.1490 > 830

N is the number of sequences in the test set, id is the identity fraction, indel is the proportion of insertion-deletions.
Rows correspond to different values of the PAM parameter. In the “Sequential evolution” block, the id (S0, S1) and id
(S0, S2) columns show the proportion of matching positions in the alignments of the ancestor sequence with the
descendant sequences; the indel (S0, S1) and indel (S0, S2) columns show the fraction of inserts for the same sequences.
The “Divergent evolution” block in the columns id (S1, S2) and indel (S1, S2) shows the alignment characteristics of
descendant sequences. The data are for sets of 1000 pairs of sequences and 10,000 pairs, the results differ by tenths of
a percent
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Further, the matrices considered are described in more detail.

Evolutionary matrices

Pam [1]

Point accepted mutations matrix series became the first kind of evolutionary matrix. In

order to obtain it, Dayhoff et al. estimated amino acid substitutions in 72 groups of

closely related proteins (id> 85%), consisting of more than 1300 sequences. PAM1

matrix was obtained as a result of the calculation of amino acid residues substitutions

Table 6 Tested substitution matrices

Matrix Reference Description

Evolutionary matrices

PAM 30, 60,
120, 250

Dayhoff et al.
[1]

Evolutionary model of point substitutions

Blosum45, 50,
62

Henikoff et al.
[2]

Series based on the alignment of segments of related sequences from
protein families grouped into blocks

Gonnet250 Gonnet et al.
[5]

Matrix based on substitutions in protein families on an extended database for
long evolutionary distances

Gonnet_p Vogt et al. [6] Later modification of Gonnet250

Optima Kann et al. [7] Detection of differences between homologues and non-homologues for a
large evolutionary distance

VTML250 Muller et al.
[3]

Improved evolutionary model based on maximal likelihood method (for
distant homologue detection)

MIQS Yamada et al.
[8]

Data derived on the basis of principal component analysis of the previously
known matrices (Blosum, VTML, Benner)

Pfasum 50,
100

Keul et al. [4] Model based on modern data covering a large and diverse sequence space.

Matrix based on Dirichlet mixture model

Crooks Crooks et al.
[9]

The model takes into account the difference in the dynamics of substitutions
depending on the time of evolution.

Evolutionary matrices for special protein families

CCF53 Brick et al.
[10]

Search for homologues in families of related proteins, taking into account the
bias of the amino acid composition characteristic for proteins of two species
of the genus Plasmodium.

MOLLI60 Lemaitre
et al. [11]

General method for constructing matrices focused on a certain bias of amino
acid composition, based on the example of bacteria proteins of the Mollicutes
class.

Matrices based on the structural alignment

Johnson Johnson et al.
[12]

Obtained by calculating the substitutions of amino acid residues in the
structural alignment of proteins from homologous families with a low level of
sequence identity.

Prlic Prlic et al.
[13]

Obtained on the basis of superposition of pairs of proteins having a similar
structure, but low sequence identity.

Blake Blake et al.
[14]

Based on structural superposition data, taking into account differences
in arrays of amino acid residues substitutions for distant and closely related
homologs.

Genetic code matrix

Benner Benner et al.
[16]

Based on the number of nucleotide substitutions required for a given amino
acid substitution.

Contacts energy matrix

Miyazawa Miyazawa
et al. [15]

Based on the assessment of the distribution of contacts in three-dimensional
protein structure.

Polyanovsky et al. BMC Bioinformatics 2020, 21(Suppl 11):294 Page 19 of 25



frequencies. It corresponds to an evolutionary distance unit of 1PAM, at which 1% of

residues are substituted. The remaining PAM matrices were obtained from the original

PAM1 matrix by raising it to the power, which is the value of the evolutionary distance.

The remaining PAM matrices can be obtained from the original PAM1 matrix due to

its exponentiation, which is also an evolutionary distance value. Thus, matrices with a

larger number correspond to a larger evolutionary distance. Note that with an increase

in the number of the PAM matrix, the relative value of the diagonal terms decreases

and approaches the average value of the off-diagonal terms. Further, from the substitu-

tion frequency matrices, the substitution weight matrices were obtained, whose ele-

ments are the logarithm of the ratio of the substitution frequency to the product of the

frequencies of occurrence of the corresponding amino acids.

Blosum [2]

Blosum series matrices were developed on the basis of multiple comparison (alignment

without gaps) of relative motifs segments contained into blocks. Single block presents

conservative protein series zone as relative segments of individual proteins, which are

located one below the other. In other words, this single block presents a two-

dimensional array, where each line is a protein sequence segment, and each column

shows the position of leveled balance.

In total, about 2000 blocks of aligned sequence segments were defined characterizing

more than 500 groups of related proteins. Then these blocks were combined into groups

in accordance with the identity of their segments. To decrease the dependence on amino

acid matching frequency, these sequences were grouped in the clusters inside blocks. Each

cluster was considered as one sequence, when matching of pairs was calculated. Based on

the substitutions frequency in each group, its own Blosum matrix was built. A matrix

number means the amount (percentage) of identities, which is typical for the group.

Thus, unlike PAM matrices, Blosum series matrices are obtained on the basis of dir-

ect data, and not by extrapolation from a small evolutionary distance to a large one. In

this case, a larger number corresponds to a smaller evolutionary distance.

Gonnet250 [5]

Gonnet250 matrix was developed with almost the same methods as PAM series matrices,

but significantly larger data sets were used. This provides it with better validity compared

to PAM matrices. Therefore, the total length of the sequences from the database was

more than 8 million amino acid residues. Each sequence was compared with the entire

database, as a result of which 1.7 million alignments were obtained. On this basis, a matrix

was constructed corresponding to the evolutionary distance of 250 PAM.

Gonnet_p [6]

The matrix was obtained from the Gonnet250 matrix by increasing all its elements by a

constant value to get positive values for all elements of the resulting matrix.

Optima [7]

This evolutionary matrix can be interpreted as the matrix of the “third generation”. To

create a new matrix intended to remote homologues recognition, a test set based on
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the Cluster of Orthologs Groups (COG) [28] was built. This was unlike Gonnet and

PAM series matrices, which were built on the basis of substitution frequencies obtained

for all considered sequences from the database. Based on the alignment of homologous

and non-homologous sequences, the weight function was optimized to distinguish be-

tween homologous and non-homologous pairs.

VTML [3, 29]

The matrices of the VTML series are a later development of the model originally im-

plemented in the matrices of the PAM series [1] and then continued by such matrices

as [5, 7]. The VTML matrix series was originally designed to better detect remote ho-

mologs, but is also used to build high quality multiple alignments [30]. VTML matrices

were constructed by iteratively estimating evolutionary distances and substitution rates

from a set of pairwise sequence alignments using maximum likelihood estimation. In

order to build the initial matrix approximation, the Dayhoff model was used. Pairwise

alignments were obtained by random selection of two pre-aligned sequences from each

protein family of the SYSTERS database [31]. This data set is much larger and more di-

verse compared to the set on the basis of which PAM matrices were obtained, which al-

lows VTML matrices to provide more reliable detection of remote homologs.

MIQS [8]

This matrix is based on information associated with existing matrices condensed into a

new matrix that can detect more distant homologues. For this purpose, matrices of Blo-

sum, and VTML series; designed by Benner et al. [16] were selected. The new matrix was

developed by applying principal component analysis to the existing matrices, using the ap-

propriate benchmarks SCOP [32], and CATCH [33]. Based on these data, a special test

set, CATH20-SCOP, consisting of 1754 sequences, was built. The resulting matrix was

tested using SSEARCH. Comparison was made with existing general purpose matrices.

Pfasum [4]

Matrices of this series were obtained from multiple alignments of the sequences of

seeds of the families of the Pfam protein database (version 29.0) [34], which are a small

set of representative members of each family. Each multiple sequence alignment in the

Pfam seed dataset was processed separately, the calculated substitution frequencies

were accumulated in a separate matrix and then subsequently converted to final

rounded values.

Thus, Pfasum matrices are based on modern data, covering a large and diverse se-

quence space of 47.3 billion amino acid pairs in 16,295 multiple alignments. In

addition, most existing substitution matrices are derived only from highly conservative

or filtered sequence data by excluding regions containing gaps or ambiguous amino

acids. By contrast, the PFASUM matrices design takes into account all information.

Matrix based on Dirichlet mixture model

Crooks [9]

This research was inspired by the fact that the dynamics of substitutions in amino acid

sequences at large and small evolutionary distances are different. Previously, this matter
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was considered in [3, 5, 16]. The problem is that the PAM and VTML series matrices

were built on the assumption that the initial distribution of amino acids in the se-

quences is the same in all positions; in reality, it may differ, while remaining stable in a

separate position, over a long evolutionary time. A dynamic model of amino acid sub-

stitutions is proposed, which suggests that each site in the protein sequence has its

own amino acid background, which in turn, fits the distribution of “backgrounds”.

Evolutionary matrices for special protein families

CCF53 [10]

The aim of this study was to improve the search for homologues in families of related

proteins, taking into account the bias of the amino acid composition characteristic for

proteins of specific species. For this purpose, a substitution model based on “fuzzy”

clustering is proposed, in contrast to the hierarchical clustering used in the construc-

tion of the Blosum series matrices. To calculate the matrices, 1834 multiple alignments

were used from the BLOCKS database, corresponding to the amino acid composition

characteristic of the proteins of two species of the genus Plasmodium. The use of these

matrices reduces the number of false positive hits when searching for homologues.

MOLLI60 [11]

This paper presents a general method for constructing matrices focused on a certain bias

of amino acid composition. As initial data, proteins of bacteria belonging to the Mollicutes

class were used, with genome biased towards A + T. Of the 14 bacterial genomes of the

Mycoplasma species, by finding the greatest similarity (the standard method of bidirec-

tional search BDBH for the best match was applied), 247 orthologous protein families

were selected. To construct the matrix, the approach described in [2] was applied.

Matrices based on the structural alignment

Johnson [12]

This matrix is based on the calculation of substitutions of amino acid residues in the

structural alignments of 235 proteins from 65 homologous families. Most of the data

used have a relatively low sequence identity of 15 to 40%.

Prlic [13]

Matrices were obtained on the basis of superposition of pairs of proteins having a similar

structure, but low sequence identity, and are intended to compare evolutionarily distant

proteins. Since structural alignments have several solutions, especially with low sequence

identity, the following question arises: which of them is the most believable in terms of

evolution? To build the matrices, alignments with the largest number of matching resi-

dues were used. Matrices obtained both on the basis of only homologous pairs and the en-

tire set of structural alignments, including homologues and analogues, were considered.

Blake [14]

The study is based on two observations: data on structural superposition give a training

sample to improve the alignment of distant homologs; and the main substitutable ar-

rays of amino acid residues for distant homologs differ from those for closely related
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proteins. Based on the data of structural superpositions, a set of matrices of amino acid

residue substitutions was constructed. These matrices use a known structural homology

as the characteristics of the impact of evolution on the residue substitution profiles

characterizing multiple alignment.

Genetic code matrix

Benner [16]

The matrix was calculated on the assumption that for protein sequences spaced 1 PAM

distance, the genetic code is the only factor leading to a drift in the amino acid com-

position. In other words, the influence of the code (i.e., the similarity of triplets) can

occur either at the smallest evolutionary distances or in parts of the tertiary structure

that have no effect on the function of the protein. To build the initial matrix, a database

was used, including 1.7 million pairs of sequences. Further, the resulting matrix was ex-

trapolated to a distance of 250 PAM by raising to the appropriate degree.

Contacts energy matrix

Miyazawa [15]

The matrix is based on an estimation of the distribution of contacts in three-

dimensional protein structures. The coordination number per residue is optimized in

order to find the best fit between the observed and predicted partial energy. These new

contact energies make it possible to improve their ability to discriminate the native

structure from non-native folds in the dragging procedure.
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