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Abstract

Background: Cancer is a highly heterogeneous disease with varying responses to
anti-cancer drugs. Although several attempts have been made to predict the anti-
cancer therapeutic responses, there remains a great need to develop highly accurate
prediction models of response to the anti-cancer drugs for clinical applications
toward a personalized medicine. Patient derived xenografts (PDXs) are preclinical
cancer models in which the tissue or cells from a patient’s tumor are implanted into
an immunodeficient or humanized mouse. In the present study, we develop a
bioinformatics analysis pipeline to build a predictive gene expression model (GEM)
for cancer patients’ drug responses based on gene expression and drug activity data
from PDX models.

Results: Drug sensitivity biomarkers were identified by performing an association
analysis between gene expression levels and post-treatment tumor volume changes
in PDX models. We built a drug response prediction model (called PDXGEM) in a
random-forest algorithm by using a subset of the drug sensitvity biomarkers with
concordant co-expression patterns between the PDXs and pretreatment cancer
patient tumors. We applied the PDXGEM to several cytotoxic chemotherapies as well
as targeted therapy agents that are used to treat breast cancer, pancreatic cancer,
colorectal cancer, or non-small cell lung cancer. Significantly accurate predictions of
PDXGEM for pathological response or survival outcomes were observed in extensive
independent validations on multiple cancer patient datasets obtained from
retrospective observational studies and prospective clinical trials.

Conclusion: Our results demonstrated the strong potential of using molecular
profiles and drug activity data of PDX tumors in developing a clinically translatable
predictive cancer biomarkers for cancer patients. The PDXGEM web application is
publicly available at http://pdxgem.moffitt.org.

Keywords: Patient-derived xenograft model, PDX, Gene expression, Predictive cancer
biomarker, Chemotherapy, Targeted therapy, Drug response prediction

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Kim et al. BMC Bioinformatics          (2020) 21:288 
https://doi.org/10.1186/s12859-020-03633-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03633-z&domain=pdf
http://orcid.org/0000-0002-2307-0330
mailto:Youngchul.kim@moffitt.org
mailto:Youngchul.kim@moffitt.org
http://pdxgem.moffitt.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Cytotoxic chemotherapy and targeted therapy play important roles in the treatment of

cancer, alongside with surgery, radiotherapy and a recent breakthrough immunother-

apy. Responses of cancer patients to drugs of those anticancer therapies vary widely be-

cause of the substantial heterogeneity in the molecular characteristics of their tumors

even with a histologically same subtype of cancer [1]. Although a considerable number

of novel anticancer drugs have been introduced during the past few decades, overall

survival (OS) and quality of life of cancer patients have not been improved much,

mainly because of the unselective use of these drugs in the presence of heterogeneous

tumor characteristics and drug responses [2]. Hence, it is necessary to develop a per-

sonalized anticancer therapy that can help guide individual patients with heterogeneous

tumors to anticancer drugs with the most therapeutic benefit. Successful personalized

anticancer therapy will then greatly depend on the identification of predictive cancer

biomarkers that can be used to accurately select patients who will benefit from treat-

ment with the anticancer drugs [3].

For a predictive cancer biomarker discovery, it is considered most desirable to

analyze molecular profiling data and clinical outcome data of cancer patients that were

obtained before and/or after a treatment with anticancer drugs of interest from a pro-

spective randomized clinical trial [4]. However, it is not straightforward to develop can-

cer biomarkers in this manner due to extremely huge cost and time spent in the

process of the clinical trial. Because of these limitations, many cancer biomarker studies

rely on testing anticancer drugs in preclinical cancer models including immortalized

cancer cell lines and animal models [5].

Cancer cell lines cultured in vitro are cancer cells that keep dividing and growing

over time, under certain conditions in a laboratory. Human cancer-derived cell lines

have been widely used to understand molecular characteristics and drug activity mech-

anism of tumor cells. For instance, two large cancer cell line panels, Genomics of Drug

Sensitivity in Cancer and Cancer Cell Line Encyclopedia, were established to develop

new anticancer drugs and to identify new molecular drug targets and predictive bio-

markers by interrogating pharmacogenomic mechanisms in more than 1000 cancer cell

lines [6, 7]. We and many other research teams have been developing techniques to

translate cancer cell line-driven biomarkers into prediction models of cancer patients’

anticancer drug responses [8–13]. Despite these efforts, there still remains a lack of

well-validated biomarkers and methods for further biomarker discoveries.

A patient-derived xenograft (PDX) is a promising preclinical model of cancer in

which the tissue or cells from a patient’s tumor are implanted into an immunodeficient

or humanized mouse. It is used to create an environment that allows for the natural

growth of cancer, its monitoring, and the corresponding treatment evaluations of the

original patient. Recently, large PDX-based studies, such as National Cancer Institute

MicroXeno project, Novartis PDX panel, and EuroPDX consortium study, have interro-

gated molecular characteristics. These studies, which were based on multiplex molecu-

lar platforms including gene expression and genetic mutation, reported that PDXs can

retain the distinct characteristics of different tumors from different patients and there-

fore can effectively recapitulate the intra- and inter-tumor heterogeneity that represents

human cancer [14–17]. These novel and unprecedented PDX resources have the poten-

tial to provide an opportunity to discover highly predictive cancer biomarkers that can
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be used to help guide cancer patients to highly beneficial anticancer therapeutics and

to accelerate the process of new drug development. However, very few attempts have

been made and no analytic tool for developing a PDX-based predictive gene expression

model (GEM) is yet available. To address this, we have developed a new pharmacogen-

omics pipeline, so-called PDXGEM, that can be used to construct a highly predictive

GEM of clinical responses of cancer patients to anti-cancer drugs on the basis of pre-

treatment gene expression profiles and posttreatment drug screening data of the pre-

clinical PDX tumors.

In the present study, we provide a full description of the PDXGEM pipeline and dem-

onstrate its predictive utility by applying it to several cytotoxic and targeted therapeutic

agents and validating the prediction performance of resultant multi-gene expression

models on independent external cancer patient cohorts with well-annotated clinical

outcomes. We have also created a publicly available web-based application with an ini-

tial inventory of the data of the Novartis PDX panel and cancer patient cohorts that

were used to develop and validate our PDXGEM.

Results
The PDXGEM pipeline consists of four subsequent steps, 1) drug sensitivity biomarker

discovery, 2) concordant co-expression analysis (CCEA), 3) multi-gene expression

model training for drug response prediction, and 4) model validation (Fig. 1; see Mate-

rials and Method). To demonstrate the utility of the PDXGEM, we applied the

PDXGEM to building predictive GEMs of cancer patients’ responses to each of three

chemotherapy agents and three targeted therapy drugs: paclitaxel and trastuzumab for

breast cancer, 5-fluorouracil (5FU) and cetuximab for colorectal cancer (CRC), gemci-

tabine for pancreatic cancer, and erlotinib for non-small cell lung cancer (NSCLC). Ex-

ternal validations of the resultant GEMs were conducted using publicly available gene

expression data and clinical outcome data of independent cancer patient cohorts from

prospective clinical trials or observational studies.

PDXGEM for predicting paclitaxel response in breast cancer patients

Paclitaxel, combined with FAC (fluorouracil, doxorubicin, and cyclophosphamide) is a

cornerstone of the current standard chemotherapy used for treating breast cancer pa-

tients. We applied PDXGEM to build a multi-gene expression model to predict who

may achieve a pathological complete response (pCR) to paclitaxel. Six hundred probe-

sets were first identified as initial drug sensitivity biomarkers that exhibited differential

expressions between three breast cancer PDXs with shrunken tumor volumes and ten

breast cancer PDXs with increased tumor volumes after receiving paclitaxel (t-test

nominal P < 0.05, Fig. 2a). The pattern of co-expression among the drug sensitivity

genes, as measured by a gene-gene correlation coefficient, in the breast cancer PDXs

were then quite distinct from that in breast cancer patients (Fig. 2b). This finding is in

line with that of a previous study, which showed an inherent biological gap between

PDX tumors and their origin cancer patient tumors because of different growth envi-

ronments surrounding the tumors.

The CCEA showed that concordance co-expression coefficients (CCECs) ranged from

− 0.191 to 0.464 for all drug sensitivity biomarkers. Supplementary Figure 1 shows the
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distribution of all CCECs and scatter plots of gene-gene correlation coefficients for

drug sensitivity biomarkers with varying CCEC values. 147 (24.5%) of the drug sensitiv-

ity biomarkers showed significantly positive CCECs, ranging from 0.204 to 0.464 be-

tween those breast cancer PDXs and a cohort of 251 breast cancer patients (GSE3494

[18]), and we hereafter referred to as the concordant co-expression (CCE) biomarkers.

The CCE biomarkers showed more concordant co-expression patterns with two com-

mon clusters of genes between the breast cancer PDXs and patients and also had an in-

creased median CCEC of 0.272 (Fig. 2b; bottom) compared with all drug sensitivity

biomarkers that did not have common clusters and yielded a median CCEC of 0.09

(Fig. 2b; top).

A random forest (RF) predictor was then trained using the gene expression data of

the breast cancer PDXs for all the CCE biomarkers as a model training set. A resultant

RF predictor consisted of 145 CCE biomarkers with a positive variable importance

value (Supplementary Fig. 2). Prediction scores of the RF predictor, hereafter referred

to as PDXGEM score, was tightly correlated with the observed tumor volume changes

in the PDX training dataset (r = 0.982, n = 13; P < 0.01; Fig. 2c).

To ensure the predictive performance of the RF predictor, we validated it on seven

independent gene expression datasets of breast cancer patients that were collected

through four randomized clinical trials (GSE20271 [19], GSE22226 [20], GSE41998

[21], GSE42822 [10]), two prospective observational studies (GSE25065 [22], GSE32646

[23]), and one retrospective study cohort (GSE20194 [24]). Notably, there were signifi-

cant differences in prediction scores between patients with pCR and those with residual

Fig. 1 Schema of the patient-derived xenograft based gene expression model (PDXGEM). a In the drug
sensitivity gene discovery step, correlation analysis and differential expression analysis of gene expression
data and drug-activity data in patient-derived xenograft (PDX) tumors are conducted. b Concordant co-
expression analysis identifies a drug sensitivity gene (g1) that is concordantly co-expressed with 3 other
genes (g2, g3, and g4) between PDX tumors and pretreatment cancer patients’ tumors. c A multi-gene
expression model of drug response is trained on PDX data using the random-forest algorithm. d The
performance of the multi-gene expression model is validated by contrasting prediction scores between the
responsive (R) and the non-responsive (NR) patients to a drug in cancer patient cohort
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of disease (RD) after paclitaxel-based chemotherapy in all the breast cancer cohorts

(P < 0.05; Supplementary Fig. 3A-G). In addition, area under the receiver-operating

characteristic (ROC) curve (AUC) as an overall classification accuracy ranged from

0.653 to 0.789 (Fig. 2d). To further determine whether the RF predictor is predictive of

paclitaxel-specific response, we tested it in 87 breast cancer patients in the GSE20271

clinical trial cohort who did not receive paclitaxel but only FAC combination chemo-

therapy. There was no significant difference in prediction scores, suggesting that our

predictor is predictive of response specifically to paclitaxel (AUC = 0.589, P = 0.44; Sup-

plementary Fig. 3H).

To examine the utility of CCEA, we trained a RF predictor using all 600 initial drug

sensitivity biomarkers that did not undergo CCEA. Although this predictor was ap-

proximately three times complex as the above final RF predictor, there was no signifi-

cant difference in its prediction scores between pCR and RD groups in four breast

cancer cohorts (Supplementary Fig. 4). Furthermore, decreased AUCs were observed in

Fig. 2 Development of PDXGEM for paclitaxel response prediction in breast cancer patient. a Volcano plot
with log2 fold change of differential gene expressions (x-axis) in paclitaxel-sensitive and paclitaxel-resistant
patient-derived xenograft (PDX) models and –log10 P-value (y-axis). Black dots display the initial drug
sensitivity probesets and red circles further indicate concordantly co-expressed biomarkers between the
PDX models and breast cancer patients. b Clustering heatmap depicts correlation matrices of drug
sensitivity genes in PDX models (left panel) and pretreatment cancer patients (right panel) before (top
panel) and after (bottom panel) concordant co-expression. c The Pearson’s correlation coefficient between
observed percent change in PDX tumor volumes (x-axis) and PDXGEM prediction scores for breast cancer
PDX models (y-axis) was 0.982. d Receiver-operating characteristics curves of paclitaxel PDXGEM on seven
different breast cancer data sets
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the remaining validation sets, suggesting that the CCEA lead to a parsimonious gene

expression signature with a more accurate prediction performance.

Lastly, gene ontology (GO) analyses, which were performed to understand the

biological functions of 145 biomarkers of our final paclitaxel response predictor,

showed that COL1A1, RPH3AL, and THSD4 were the most significantly associated

with breast neoplasm function (false discovery rate (FDR) P < 0.001). In addition,

DNA replication proteins and mismatch repair were the top two representative

pathways (Supplementary Table 1).

PDXGEM for Trastuzumap-specific response in breast cancer patients

Trastuzumab is a monoclonal antibody used to treat human epidermal growth factor

receptor 2- (HER2-) positive breast cancer by itself or in combination with other anti-

cancer therapeutics [25]. To construct a gene signature predictive of response to the

trastuzumab in breast cancer patients, we applied the PDXGEM to data on pretreat-

ment gene expression and post-treatment tumor volume changes in 13 breast cancer

PDXs that underwent a monotherapy with trastuzumab. We identified 1333 drug sensi-

tivity biomarkers with significant Spearman rank correlation relationships (nominal P-

value < 0.05) between gene expression levels and the tumor volume changes. We then

further screened 515 CCE biomarkers with significant CCECs ranging from 0.201 to

0.509. Finally, an optimal predictor was constructed with 480 CCE biomarkers posses-

sing positive variable importance in RF model training analysis and the predictor

yielded a strong correlation coefficient of 0.977 (p < 0.01, n = 13) between predicted and

observed tumor volume changes in the breast cancer PDX models. We then performed

an independent validation of this RF predictor using data from the US Oncology 02–

103 breast cancer trial (GSE42822 [10]), in which 25 patients with stage II-III HER2-

positive breast cancer received trastuzumab. We observed a borderline significant dif-

ference in prediction scores between 12 patients with pCR and 13 patients with RD

after treatment with trastuzumab (AUC = 0.712, P = 0.074). Considering the large num-

ber of the biomarkers involved in the predictor and the encouraging AUC value, we set

the more stringent threshold value of 0.3 for CCEC at the CCEA step of the PDXGEM

pipeline to yield a less complex GEM with more concordantly co-expressed biomarkers

between the breast cancer PDXs and patients. As expected, a new RF predictor was

constructed with 193 CCE biomarkers and yielded a more significant difference in pre-

diction scores between pCR and RD response groups in the breast cancer trial cohort

(AUC = 0.737; P = 0.025) (Fig. 3a). To assess the specificity of the RF predictor for tras-

tuzumab, we validated the RF predictor on 34 HER2-positive and 54 HER2-negative

breast cancer patients who did not receive trastuzumab in the same clinical trial. In

both HER2 strata, we observed no difference in prediction scores between pCR and RD

response groups (AUC = 0.533 and P = 0.877 for the HER2 positive breast cancer;

AUC = 0.493 and P = 0.696 for the HER2 negative breast cancer; Fig. 3b). When the

predictor was further tested using other available breast cancer patient cohorts treated

with paclitaxel-based (not trastuzumab-based) chemotherapy, none of the breast cancer

cohorts showed any significant difference in prediction scores, strongly suggesting that

the RF predictor is predictive of trastuzumab-specific response in breast cancer patients

(Supplementary Fig. 5).
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Finally, GO analysis of the 193 biomarkers in the final predictor identified the most

significant pathways including miRNA targets in extraceullar matrix and membrane re-

ceptors, the focal adhesion-PI3K-Akt-mTOR-signaling pathway, the inflammatory re-

sponse pathway, and the apoptosis-related network due to altered Notch3 (FDR P <

0.05; Supplementary Table 1). In particular, the PI3K-Akt-mTOR-signlaing pathway is

a downstream pathway of HER2 and is well known to be responsible for promoting cell

proliferation and angiogenesis [26]. In addition, COLTA1 gene had the second highest

variable importance in the RF model training analysis and was reported in the genomic

study of a phase 3 clinical trial for trastuzumab to be a key gene in integrin signaling

pathway which was linked to a decreased recurrence-free survival time after adjuvant

trastuzumab therapy [27].

PDXGEM for predicting response to gemcitabine in pancreatic cancer patients

Gemcitabine is currently used as a backbone in a first-line or second-line treatments

for pancreatic ductal adenocarcinoma (PDA), which carries a dismal prognosis with a

typical overall survival (OS) of 6 months from diagnosis [28]. Although only six pancre-

atic cancer PDXs were available for tumor volume changes after receiving gemcitabine

treatment in the Novartis PDX panel, we used PDXGEM to develop a gene signature

predictive of response to gemcitabine.

We screened 965 drug sensitivity biomarkers using t-test to contrast the expression

levels of an individual probeset between two PDXs with shrunken tumor volumes and

four PDXs with increased tumor volumes after receiving gemcitabine (nominal P <

0.05). We further selected 404 CCE biomarkers from CCEA using pretreatment gene

expression data of 39 patients with PDA (GSE15471 [29]). In a RF model training ana-

lysis of the PDX dataset, the final prediction model consisted of 298 CCE biomarkers.

A high correlation coefficient of 0.959 was observed between predicted scores and ob-

served percent changes in PDX tumor volumes.

Fig. 3 PDXGEM prediction scores for trastuzumab in breast cancer patients by HER2 status. Distributional
plot of PDXGEM prediction scores between patients with pathological complete response (pCR) and
patients with residual of disease (RD) after receiving trastuzumab (a) in HER2 positive breast cancer patients,
(b) in HER2 positive breast cancer patients who did not receive trastuzumab but did receive other
chemotherapy and (c) HER2 negative breast cancer patients who did not receive Trastuzumab. Red center
lines represent the mean of prediction scores
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As an external validation of the prediction performance of the final model, we col-

lected gene expression data and survival outcome data from a retrospective study co-

hort of 63 patients with stage I/II PDA who received gemcitabine (GSE57495 [30]). For

a comparative analysis of the survival outcomes, we defined two patent subgroups ac-

cording to whether patients’ prediction scores were higher or lower than the median

prediction score. The low-score group then showed a significantly better OS (median

OS = 31.7 months, 95% CI = 19.5 ~ not reached) than the high-score group (median

OS = 7.7 months, 95% CI = 13.5–28.3, log-rank P = 0.023) (Fig. 4a). To assess the pre-

diction ability of the final model for gemcitabine-specific response, we analyzed in a

similar manner survival outcome data from a prospective observational study cohort of

30 patients with PDA who did not receive adjuvant chemotherapy (M-MEXP-2780

[31], ArrayExpress). No significant difference was observed in OS, but the low-score

group had more promising OS than the high-score group (Fig. 4b; median OS = 22.9

months for the low-score group and 10.9 months for the high-score group; log-rank

P = 0.18), implying that our PDXGEM signature was predictive of gemcitabine response

and partly prognostic. To further confirm the prognostic value of the predictor, we analyzed

two additional cohorts of patients with PDA (GSE17891 [32];n = 29) and the International

Cancer Genome Consortium [33] (ICGC;n = 82) even though their chemotherapeutic treat-

ment records were not available. In the GSE17891 cohort, we observed slightly better OS in

the low-score group but not significant (P = 0.6, Fig. 4c). In addition, a multivariable Cox re-

gression analysis showed that higher prediction score was significantly associated with a

Fig. 4 PDXGEM for gemcitabine in pancreatic cancer patients. a-d Kaplan-Meier curves of overall survival
between pancreatic cancer patients with a higher (gray) and lower (black) PDXGEM score than the median
prediction score in (a) GSE57495, (b) M-MEXP-2780, (c) GSE17891, and (d) ICGC cohort. P-value was
calculated using log-rank test
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higher risk of death (hazard ratio (HR) = 1.087, 95% confidence interval (CI) = 1.01–1.161,

p = 0.01), independent of known demographic and clinical prognostic factors of PDA in-

cluding age at surgery, tumor stage, and molecular subtypes of PDA. For the ICGC cohort,

there was a better OS in the low-score group than in the high-score group (log-rank test

P = 0.06; median OS = 25.6 in the low-score group and 13.7 in the high-score group; Fig.

4d), and the raw prediction score was again significantly associated with OS (HR = 1.026,

95%CI = 1.001–1.051), independent of age and tumor stage. Although a further validation

analysis of patient’s drug treatment data is needed, our observations suggested that the

PDXGEM predictor is predictive of response to gemcitabine, but may have a prognostic

value in terms of predicting long-term outcome OS in patients with PDAC.

PDXGEM for predicting response to 5FU in colorectal cancer patients

5-fluorouracil (5FU) is widely used to treat solid tumors, including colorectal, breast,

and head and neck cancer. Using PDXGEM, we built a gene signature to predict re-

sponse to 5FU among patients with colorectal cancer (CRC) by analyzing data of 16

colorectal cancer PDXs on gene expression and percent of change in tumor volumes

after treatment with 5FU. At the drug sensitivity biomarker discovery step, expression

levels of 848 probesets were significantly correlated with the percent of change in

tumor volumes (nominal P < 0.05). We next identified 332 CCE biomarkers from the

CCEA of the PDXs and a cohort of metastatic CRC (mCRC) patients (GSE14095 [34];

n = 189). In the following RF prediction training step, all the CCE biomarkers displayed

positive variable importance and a resultant RF predictor yielded an almost perfect cor-

relation coefficient of 0.978 between PDXGEM scores and observed tumor volume

changes in all the 16 PDX models. According to a gene ontology analysis of the bio-

markers, the most significantly enriched function was amino acid catabolic process,

which is in agreement with that 5-FU drug pathway is regulated via a complex network

of anabolic and catabolic genes [35] (Supplementary Table 1).

As an external validation for the prediction performance of the RF predictor, we

tested the RF predictor by using two gene expression datasets of CRC patients. The

first dataset (GSE62322 [36]) was obtained from a phase 2 clinical trial, in which a per-

cent of change in lesion size was assessed among 20 patients with liver metastatic CRC

after receiving FOLFIRI (leucovorin calcium, 5FU, and irinotecan). Our RF predictor

produced prediction scores with a significantly large difference between 9 responders

and 11 non-responders (Fig. 5a; AUC = 0.788, 95% CI = 0.56–0.99, P = 0.035). The other

validation dataset was collected from a retrospective study (GSE39582 [37]) and con-

sisted of two CRC patient cohorts: 1) 75 primary CRC patients treated with 5FU mono-

therapy, and 2) 69 primary and 20 mCRC patients who received 5FU as either FOLFIRI

or FOLFOX (leucovorin calcium, 5FU, and oxaliplatin) combination therapies [37]. We

divided patients into three balanced groups (low-, intermediate-, and high-score

groups) by separating their PDXGEM scores into tertiles and examined survival trends

across the three groups. In the 5FU monotherapy cohort, there was a trend of longer

OS in primary CRC patients with lower PDXGEM scores; however, this trend was not

statistically significant, which might be due to a low event rates (trend test P = 0.319)

(Fig. 5b). In the combination therapy cohort, we observed a significant trend of a lower

score toward an enhanced survival (Tarone’s trend test P = 0.03; median OS = 41, 22,
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and 20months for high-, intermediate-, and low-score strata, respectively; see Fig. 5c).

In a pairwise comparison of survival between the three groups, we observed a signifi-

cant difference between the low-score group and the intermediate-score groups (log-

rank test P = 0.033) and a borderline significant difference between the low-score group

and the high-score group (P = 0.063). No significant difference was observed between

the intermediate- and high-score groups (P = 0.56). However, a completely reversed

survival trend was observed among the 69 patients with primary, reflecting a known

fact that adjuvant FOLFIRI is ineffective in treating resected primary cancer but effect-

ive in treating metastatic disease [38, 39] (Fig. 5d).

Finally, we examined the prediction performance of the RF predictor for 5-FU spe-

cific response using data obtained from a cohort of mCRC patients in a prospective

clinical trial of cetuximab monotherapy (GSE5851 [40]). No significant difference in

prediction scores was found (AUC = 0.59; P = 0.51), which shows that the PDXGEM

predictor is predictive of 5FU-specific response (Fig. 5e).

PDXGEM for predicting Cetuximab response in colorectal cancer patients

Cetuximab is a monoclonal antibody that targets the epidermal growth factor receptor

(EGFR). It was approved for treating patients with EGFR-expressing mCRC without

Fig. 5 PDXGEM for 5FU response prediction in colorectal cancer patients. a Distribution of PDXGEM scores
(Y-axis) between responsive and non-responsive patients after at a treatment with 5FU-based
chemotherapy. b-d Kaplan-Meier curves of overall survival for the high (dotted gray), intermediate (gray),
and low (black) score group in (b) primary colorectal cancer (CRC) patients receiving 5-FU monotherapy in
GSE39581 (c), and metastatic CRC patients receiving FOLFIRI monotherapy in GSE39581 (d) and primary
CRC patients receiving FOLFIRI in GSE39581. Prediction scores were broken down at their tertiles. The P
value was calculated using a survival trend test. e Distribution of PDXGEM scores (y-axis) of CRC patients
who did not received 5-FU. The P value was calculated using Tarone’s trend test
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KRAS mutations. Given that around 40% of patients with KRAS wild-type tumors are

unresponsive to this targeted therapy, there is an unmet need to identify additional

relevant predictive biomarkers beyond KRAS mutations status [41]. To address this

need, we used the PDXGEM to construct a predictive multi-gene signature of cetuxi-

mab response in patients with mCRC.

We selected 997 differentially expressed probesets via unpaired t-test analyses of nine

sensitive and seven resistant PDXs after receiving cetuximab therapy (nominal P <

0.05). We then screened 670 biomarkers that were concordantly co-expressed across

the PDXs and a cohort of mCRC patients (GSE14095 [34]). We constructed an optimal

RF predictor based on 585 CCE biomarkers and observed a strong correlation coeffi-

cient of 0.98 (P < 0.01, n = 16) between prediction scores and observed percent of

change in tumor volumes in the PDX training dataset.

We proceeded to conduct an external validation study using data from 68 mCRC pa-

tients who received cetuximab monotherapy in a phase 2 clinical trial (GSE5851 [40]). We

observed a significant difference in prediction scores between 6 responders and 62 non-

responders (AUC= 0.699, P = 0.041; Fig. 6a). When patients’ survival outcomes were ana-

lyzed as described in the prior 5FU PDXGEM study, the high-score group showed worse

progression-free survival with 6-months PFS rate of 3.7%, compared with the low- and

intermediate-score groups, which had 6-months PFS rates of 18.5 and 19.2%, respectively

(Supplementary Fig. 6A; log-rank P = 0.085). Moreover, in a subgroup analysis restricted

to patients with wild-type KRAS, a significant difference in PDXGEM score was observed

between responders and non-responders (p = 0.038; Fig. 6b).

Because EGFR-expressing mCRC patients with wild-type KRAS is a part of the drug

indication of cetuximab, we examined whether the PDXGEM score was associated with

either EGFR expression level or the mutation status of the KRAS gene in the GSE5851

cohort. There was no significant correlation between the PDXGEM score and EGFR

expression level (r = − 0.103, P = 0.41, Supplementary Fig. 6b). No significant difference

was observed in PDXGEM scores between patients with wild-type KRAS and those

with mutant KRAS (P = 0.941, Fig. 6c).

To determine whether the predictor has cetuximab specificity, we validated it using

data from an independent cohort of mCRC patients (GSE62322 [36]) who received

FOLFIRI but not cetuximab. No significant difference was seen in PDXGEM scores be-

tween 9 responders and 10 non-responders (AUC = 0.444; P = 0.72; Fig. 6d), suggesting

that the predictor is specifically predictive of response to cetuximab.

PDXGEM signature predictive of Erlotinib response in NSCLC patients and cell clines

Erlotinib is an EGFR tyrosine kinase inhibitor that was approved for the treatment of

non-small cell lung cancer (NSCLC), but its overall therapeutic efficacy is minimal [42].

We constructed a multi-gene expression signature to predicting response to the erloti-

nib by analyzing data on the pretreatment gene expression profiles and percent of

changes in tumor volume in 8 NSCLC PDXs following erlotinib administration.

We screened 1624 initial drug sensitivity biomarkers were screened using an unpaired

t-test that compared three PDXs with tumor shrinkage to five PDXs with tumor

growth. Among them, 112 biomarkers showed concordant co-expression patterns be-

tween the PDXs and a cohort of 150 NSCLC patients (GSE43580 [43]). Finally, a 106-
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gene based RF predictor predictive of post-erlotinib treatment tumor volume change

was trained with all the PDXs. PDXGEM score from the RF predictor was significantly

correlated with the observed percent of change in tumor volume in the PDX training

set (r = 0.973 and P < 0.01; n = 8).

To validate the prediction performance of the RF predictor, we generated PDXGEM

scores for in vitro erlotinib-treated NSCLC cell lines (GSE31625 [44]; n = 46). There

was a significantly large difference in PDXGEM scores between 18 erlotinib-sensitive

cell lines and 28 erlotinib-resistant cell lines (AUC = 0.708 and P = 0.006; see Fig. 7a).

We next validated the RF predictor on data from a prospective clinical trial cohort of

41 refractory NSCLC patients who received the first-line treatment with erlotinib in

combination with bevacizumab (GSE37138 [45]). We observed a significant difference

in PDXGEM scores between 5 responders and 36 non-responders (AUC = 0.689 and

P = 0.016; Fig. 7b). To examine whether the RF predictor is also predictive of treatment

response at recurrent disease settings, we further validated the predictor on data from

Fig. 6 PDXGEM prediction for response to Cetuximab in metastatic colorectal cancer patient. a Distribution
of PDXGEM scores (y-axis) is compared between metastatic colorectal cancer patients with complete
response (CR) or partial response (PR) and those with stable of disease (SD) or progressive disease (PD) after
treatment with cetuximab. Blue and red dots are subjects with or without positive epidermal growth factor
receptor (EGFR) expression, respectively. b PDXGEM scores stratified by KRAS mutation status. c Kaplan-
Meier curves of overall survival in metastatic colorectal cancer patients who did not receive cetuximab
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26 patients with relapsed or metastatic NSCLC who had EGFR mutation and received

erlotinib as second-line treatment (GSE33072 [46]). Although our predictor yielded the

highest prediction scores for 2 patients with the shortest PFS, there was no significant

difference in PFS between the high-score group and the low-score group (Fig. 7c and

Supplementary Fig. 7A), indicating that our predictor may not be predictive at the sec-

ond line treatment setting.

To determine whether the PDXGEM predictor has erlotinib-specificity, we produced

PDXGEM scores for 20 patients with the NSCLC subtype lung squamous carcinoma

who did not receive erlotinib or other EGFR inhibitors (GSE68793). There was no sig-

nificant association between prediction scores and PFS or OS (Supplementary Fig. 7B

and 7C), showing that the predictor is specifically predictive of response to erlotinb.

However, additional studies are needed to further confirm its erlotinib-specificity in pa-

tients with other subtypes of NSCLC.

Collectively, our validation results showed that our PDXGEM predictor was predict-

ive of response to erlotinib in refractory NSCLC patients in the first line treatment set-

ting, but not in the second line treatment setting.

Discussion
Predictive cancer biomarkers are necessary toward a personalized cancer therapy, by

which a cancer patient will likely to be treated with the most effective anti-cancer drugs

available.

In this study, we developed a statistical bioinformatics pipeline, PDXGEM, to build a

multi-gene expression signature as a quantitative cancer biomarker for predicting can-

cer patients’ responses to a single anti-cancer drug on the basis of data on pretreatment

gene expression profiles and posttreatment outcomes in preclinical PDX models. We

demonstrated that PDXGEM can build a predictive gene expression signature for can-

cer patients’ responses to chemotherapy and targeted therapy agents.

Because the PDX tumors can alter the biological characteristics of their origin patient

tumors to adapt to new growth environments, we devised CCEC statistics to quantify

the degree of concordance of co-expression patterns between preclinical PDX tumors

Fig. 7 PDXGEM prediction for response to erlotinib in non-small cell lung cancer (NSCLC) patient. PDXGEM
scores (a) between erlotinib-sensitive and erlotinib-resistant NSCLC cell lines, and (b) between the NSCLC
patients who were responsive and those who were nonresponsive to erlotinib in the first line setting (c)
Progression-free survival curves in metastatic NSCLC patients who receive erlotinib as the second-line
treatment setting
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and cancer patient tumors. Although drug sensitivity biomarkers obtained directly from

a correlative or differential expression analysis of data from preclinical PDX models

could serve as predictive biomarkers by themselves, we showed that a subset of them

with significant CCEC was able to induce a more translatable predictor, thereby yield-

ing a better performance of predicting therapeutic outcomes in cancer patients as

shown in our examples.

Notably, the PDXGEM does not use any patients’ outcome data during the develop-

ment of a prediction model whereas various strategies for developing predictive gene

signatures by analyzing data of preclinical models often uses patients’ outcome data for

screening biomarkers or training a prediction model. The PDXGEM only uses pretreat-

ment gene expression data of cancer patients at the CCEA step. Therefore, the

PDXGEM can build gene signatures for even unapproved anti-cancer drugs for patients

with a certain type of cancer. Although CCEA was introduced to improve GEMs that

are trained by only using PDX model data, PDXGEM still can build a gene expression

signatures by skipping the CCEA step in the absence of available pretreatment patient

data.

The results of our PDXGEM application showed that significantly predictive GEMs

can be developed from a small cohort of PDX models. For example, the PDXGEM for

erlotinib only uses 8 PDX models but validation analyses of this model on NSCLC can-

cer cell lines and on patients with this disease yielded statistically significant prediction

performance. This level of predictive performance is a highly desirable and encoura-

ing feature when there is a limited number of available preclinical PDX models.

Indication of targeted therapy agents highly depends on the status of their known tar-

get companion biomarkers in patient tumors. Our PDXGEM predictor for cetuximab is

able to differentiate the responsive from the nonresponsive even in mCRC patients with

wild-type KRAS genes, demonstrating that Integrative usage of PDXGEM along with

known companion biomarkers of a targeted therapy has a potential for improving clin-

ical outcomes and thereby the quality of life of a targeted cancer patient population.

Moreover, PDXGEM has the potential of being used to develop a predictor of response

to a recent breakthrough immunotherapy. Several immune-oncology studies have

begun to create and investigate PDX mouse models with human immune system [47].

Data collected from these humanized mice will enable our PDXGEM pipeline to de-

velop predictive cancer biomarkers of response to the immunotherapy.

Many cancer drugs, including those used in our study, are multi-indication drugs that

can be used for treating more than one cancer type. For instance, paclitaxel is currently

a standard chemotherapy drug for treating breast cancer and ovarian cancer. There is

great interest in identifying a new treatment indication of existing anti-cancer therapy

agents. We have recently introduced a drug repositioning approach (CONCORD) to

translating predictive cancer biomarkers from one cancer type to another [13]. The

CONCORD framework was used to analyze the gene expression and drug sensitivity

data of a large panel of cancer cell lines with different types of cancer. Similarly, given

that more PDX panels that span multiple types of cancer are becoming publicly avail-

able, there will be great interest in using PDXGEM to explore a drugs’ potential for

anti-cancer drug repositioning by testing prediction values of a predictive gene expres-

sion signature across multiple types of cancer.
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There are clear challenges and opportunities in developing the PDXGEM pipeline. A

PDXGEM predictor for only one drug may just provide limited information on whether

a patient will be likely to be cured with the drug or not. However, if PDXGEM predic-

tors are built for a multitude of FDA-approved anticancer drugs and then be used sim-

ultaneously for evaluating comparative effectiveness among drugs, it may enable to

choose most beneficial drug to treat a cancer patient in advance.

In the drug sensitivity gene discovery step, we performed t-test to identify differen-

tially expressed genes between PDXs with shrunken tumor volumes and PDXs with in-

creased tumor volumes because we presumed that these genes would bear biologically

reliable information regarding the pharmacogenomic mechanism that inhibits tumor

growth and kills tumor cells. When a group sample size was less than three, we used a

correlation analysis instead of t-test, as this test can lose a statistical power in micro-

array data analysis due to small sample sizes. However, this approach may not be opti-

mal. More sophisticated bioinformatics methods such as limma [48] or recent popular

deep-learning algorithms that do not involve any feature selection step may provide a

better set of candidate predictive genes. Evaluating their performances in developing an

optimal biomarker discovery method or guideline would constitute exciting future re-

search topics.

The results of our concordant co-expression analysis were dependent on a pretreat-

ment gene expression data set of cancer patients that represented a cancer type of

interest. Although we used the largest gene expression dataset available, in terms of the

number of patients and the coverage of histological cancer subtypes, merging multiple

independent gene expression datasets would allow for a more comprehensive gene ex-

pression dataset of individual cancer subtypes. We built a multi-gene expression model

using the RF modeling algorithm to handle a larger number of gene biomarkers than

the smaller sample size of the PDX data as a model training data. However, other stat-

istical prediction modeling and machine learning algorithms such as penalized linear

regression and support vector machine analyses could also be used to build more ac-

curately predictive models [49]. The majority of gene expression datasets we analyzed

was profiled on microarray platforms. We validated the PDXGEM signature for gemci-

tabine on gene expression data that were profiled using RNA sequencing (RNAseq)

platform (ICGC cohort). However, validating the signature’s cross-platform prediction

performance on other next generation sequencing datasets is warranted. Furthermore,

a recent pharmacogenomics study of cancer cell lines reported that transcript-level ex-

pression data profiled on the RNAseq platform could lead to more predictive bio-

markers than gene-level expression data. The application of PDXGEM to RNAseq

transcriptional profiling data may also lead to a better performing predictive cancer

biomarker.

In developing a predictive biomarker, it is important to evaluate whether the bio-

marker is specifically predictive of a drug of interest. We thus validated the final

PDXGEM of a drug on patients who were not treated with the drug. However, we were

unable to perform the validation study on multiple datasets due to a lack of available

data; the majority of drugs analyzed in our study are core components of current stand-

ard of care regimens. Furthermore, although many cancer treatment regimens are com-

binations of multiple chemotherapy drugs, but our current PDXGEM study is limited

to the prediction of response to a single drug. Further research is warranted to develop

Kim et al. BMC Bioinformatics          (2020) 21:288 Page 15 of 21



a drug predictor of response to combination chemotherapy based on data obtained

from PDXs treated with a single drug.

It will be useful to investigate whether PDXGEM can be extended to different mo-

lecular platform data such as genome-wide genetic variant data, proteomics data, and

metabolomics data. The mathematical framework of PDXGEM will be broadly applic-

able to these different molecular platforms. However, one may need to carefully exam-

ine whether large, reliable patient data resources are available and whether predictive

therapeutic biomarkers can be obtained from such molecular profile data. Another

promising research focus is to predict in advance a post-treatment adverse events (AEs)

on the basis of gene expression data; in cancer treatment, an AE is also an important

post-treatment outcome along with response and survival. A part of our PDXGEM

pipeline, such as an initial biomarker (feature) selection and multi-gene expression

model training, will be directly applicable to identifying AE-correlated genes and train-

ing a multi-gene expression model.

Lastly, we developed a web-based PDXGEM application (http://pdxgem.moffitt.org)

to share the PDXGEM algorithm with the scientific community, in the hope that this

tool will allow researchers to gain a better understanding of the drug targets and valid-

ation in a prospective study.

Conclusions
Molecular gene expression profiles and drug activity data from PDX tumors can be

used to develop highly predictive cancer biomarkers for predicting responses to anti-

cancer drugs in cancer patients. The clinical utility of PDXGEM predictions should be

assessed in a prospective study.

Materials and methods
Gene expression data and anti-cancer response data of PDX and cancer patient cohorts

Data on gene expression profiles and post-treatment percent change in tumor volume

of the Novartis PDX panel were obtained from Gene Expression Omnibus (GEO) re-

pository (https://www.ncbi.nlm.nih.gov/geo/). The gene expression data and clinical

outcome data of cancer patients used for the CCEA or validation analyses were also

publicly available at GEO (http://www.ncbi.nlm.nih.gov/geo) as well as ArrayExpress

(https://www.ebi.ac.uk/arrayexpress/) and ICGC (https://dcc.icgc.org/repository). A de-

scriptive summary and accession ID of all the data can be found in Supplementary

Table 2.

In vivo PDX-based drug sensitivity biomarker discovery

We discovered genes whose expression levels were significantly associated with in vivo

activities of each anti-cancer drug administered to the PDX tumors of the target cancer

type. Drug activity was calculated as a percent change in PDX tumor volumes (= 100 x

(post-treatment tumor volume – pretreatment tumor volume) / pretreatment tumor

volume). A negative drug activity value for a PDX, thus, indicates a tumor shrinkage,

and a positive drug activity value represents tumor growth. Drug activity data and pre-

treatment gene expression profiling data of the PDX models were analyzed to screen

initial drug sensitivity biomarkers. The basic unit of the biomarkers was an individual
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probeset on the PDX microarray. Drug sensitivity biomarkers were selected using an

unpaired two sample t-test that quantifies differential gene expression levels between

PDXs with shrunken tumors and those with grown tumors. When a sample size in one

of the two PDX groups was less than three and a variation in tumor volume changes

was near zero, we used a correlation analysis of gene expression levels with the percent

change in tumor volumes to screen the initial drug sensitivity biomarkers. For both the

t-test and correlation analyses, all statistical tests were two-sided and the FDR was con-

trolled to be less than 0.05 to correct for multiple comparisons. When no significant

genes were found, mainly due to a small sample size of available PDXs, we controlled a

less conservative nominal type I error rate of 0.05 to identify initial drug sensitivity

biomarkers.

Concordant co-expression analysis (CCEA)

Because PDX tumors can alter the biological characteristics of their origin patient tu-

mors to adapt to new growth environments, potentially not all the drug sensitivity

genes screened in an analysis of PDX tumor data will be predictive of response of can-

cer patients. To explicitly consider such biological differences, we selected genes with

concordant co-expression patterns between the PDX tumors and cancer patient tu-

mors. To quantify the degree of concordance of each gene’s co-expression relation-

ships, we calculated the concordance co-expression coefficient (CCEC) for each gene as

follows: using gene expression data from each of the two cancer systems separately, we

first constructed two n × n correlation matrices for n initial drug-sensitivity biomarkers;

we denoted the two correlation matrices, e.g. one for the PDX tumor set and the other

for the pretreatment cancer patient tumor set, as U = [Uij]n × n and V = [Vij]n × n, where

Uij and Vij were the correlation coefficients between gene i and j in the PDX set and

the patient tumor set, respectively; and the CCEC for the gene g, c(g), is derived as

c gð Þ ¼ 2
P

k≠g Ukg−U :g
� �

Vkg−V :g
� �

P
k≠g Ukg−U :g

� �2 þP
k≠g V kg−V :g

� �2 þP
k≠g U :g−V :g

� �2

where U:g ¼ 1
n−1

P
k≠gUkg and V:g ¼ 1

n−1

P
k≠gVkg.

Briefly, the CCEC c(g) first computed two vectors of gene-gene correlation coeffi-

cients. One vector consisted of correlation coefficients of gene g with other n-1 genes

for the PDX tumor set. The other vector was computed in the same manner for the pa-

tient tumor set. The CCEC next quantifies the degree of agreement between the two

vectors by calculating Lin’s concordance correlation coefficient [50]. Therefore, in the

example of paclitaxel, c(g) reflects the degree of concordance between the breast cancer

PDX panel and GSE3494 breast cancer patient cohort for expression relationships of

probeset g with other n-1 probesets. If c(g) took a statistically significant positive value

under an FDR of 0.05, then probeset g was selected as a CCE biomarker. Because the

probeset g was initially selected among n drug-sensitivity biomarkers, the probeset still

retained a significant association with drug sensitivity. To compute CCEC, we used

‘epi.ccc’ function that was implemented in epiR package in R program. The P-value for
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the concordance correlation coefficient was corrected for multiple testing by using the

Benjamini-Hochberg method implemented in ‘p.adjust’ function.

PDXGEM modeling and evaluation

A multi-gene expression model for predicting each drug’s response was built using

gene expression data and drug activity data of the PDX panel that was used in the

above drug sensitivity biomarker discovery. The drug activity data and gene expression

data of the PDX model for all CCE biomarkers, defined as drug sensitivity genes with

statistically significant CCEC, formed the model training data. After completing a gene-

wise standardization of the model training data, we performed a random forest classifi-

cation and regression analysis using the ‘randomforest’ function implemented in ran-

domForest package at the default setting in R program. The prediction performance of

the resultant RF predictor was first evaluated by calculating a correlation coefficient

between the observed and predicted tumor volume changes in the PDX models. When

there was a significant correlation relationship, the RF predictor was validated on gene

expression data and post-treatment clinical outcome data of cancer patient cohorts

that were independent of the biomarker discovery and the prediction model

development.

PDXGEM prediction and validation

To validate the prediction performance of each drug’s final RF prediction model, we

produced prediction scores of the RF model (PDXGEM score) for cancer patient co-

horts that were not involved in either drug sensitivity biomarker discovery or prediction

model development procedures. The performance of each drug’s PDXGEM prediction

was then assessed in a prospective manner. For cancer patient cohorts with binary re-

sponse outcome data, we compared prediction scores between responsive and non-

responsive patient groups by performing a two-sample t-test. The AUC was also calcu-

lated to summarize an overall prediction accuracy of the prediction model. For cancer

patient cohorts with survival outcome data, survival distributions were compared be-

tween their prediction score strata via Kaplan-Meier analysis, log-rank test, and Tar-

one’s trend test. Multivariable Cox proportional hazard regression analysis was also

used to examine an association between raw continuous prediction scores and survival

outcomes. All survival analyses were performed using survival and survMiner packages

in R program.

Gene ontology analysis

To assess any potent functional behaviors and mechanisms by which the multi-gene ex-

pression model could predict patients’ responses to an anticancer drug of interest, we

selected CCE biomarkers showing a positive value of variable importance in the RF

analysis. In brief, the variable importance is a model selection measure by summarizing

the difference in prediction accuracy between two RF predictors with and without indi-

vidual biomarkers. Finally, web-based Enrichr tool was used to conduct GO analysis by

submitting a set of CCE biomarkers with positive values of variable importance meas-

ure [51].
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