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Abstract

Background: Understanding the relation between the human microbiome and
modulating factors, such as diet, may help researchers design intervention strategies
that promote and maintain healthy microbial communities. Numerous analytical tools
are available to help identify these relations, oftentimes via automated variable
selection methods. However, available tools frequently ignore evolutionary relations
among microbial taxa, potential relations between modulating factors, as well as
model selection uncertainty.

Results: We present MicroBVS, an R package for Dirichlet-tree multinomial models
with Bayesian variable selection, for the identification of covariates associated with
microbial taxa abundance data. The underlying Bayesian model accommodates
phylogenetic structure in the abundance data and various parameterizations of
covariates’ prior probabilities of inclusion.

Conclusion: While developed to study the human microbiome, our software can be
employed in various research applications, where the aim is to generate insights into
the relations between a set of covariates and compositional data with or without a
known tree-like structure.

Keywords: Bayesian analysis, Compositional data, Dirichlet-tree multinomial
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Background
The human microbiome is a collection of prokaryotes, archaea, fungi, and viruses which
may vary in composition depending on an individual’s health, diet, and environment
[1, 2]. High-throughput sequencing technologies enable researchers to characterize the
composition of the microbiome by quantifying richness, diversity, and abundances (see
[2] for a detailed review). Characterization of the microbiome is especially critical to the
study of chronic diseases such as cancer and diabetes that may be associated with key
changes in the microbiome [2].
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Models developed to investigate microbial taxa abundance data collected on the human
microbiome must be able to handle numerous analytical challenges observed in practice,
including overdispersion, complex correlation structures, sparsity, high-dimensionality,
and known biological information [2]. Recently, the Dirichlet-multinomial (DM) dis-
tribution has been used to model microbial count data, since it can accommodate
overdispersion induced by sample heterogeneity and varying proportions among samples
[3–6]. However, the DMmodel only assumes that counts are negatively correlated. Alter-
natively, the Dirichlet-tree multinomial model (DTM) inherits the DM’s ability to handle
overdispersed data and can model general correlation structures between counts as well
as naturally incorporate structural information [7, 8]. Microbial abundance data, in par-
ticular, have been shown to depend on the evolutionary relations among taxa represented
by a phylogenetic tree [9–11].
An important question in human microbiome research is to identify associations

betweenmicrobial abundance data and clinical covariates, such as KEGG orthology path-
ways or dietary intake [5, 6, 9, 12–16]. For this, researchers often use penalized likelihood
methods to simultaneously estimate regression coefficients and select covariates [6, 9].
These models are typically quite efficient and have shown good predictive accuracy [6, 9].
However, the ability of these models to incorporate information about known relations
between covariates is limited due to the requirement of complex optimization routines
[9]. Additionally, they do not accommodatemodel selection uncertainty while performing
selection.
Alternatively, Bayesian variable selection methods are able to accommodate complex,

high-dimensional data structures and fully account for model uncertainty over covari-
ate selection [17, 18]. A common approach for Bayesian variable selection is to employ a
spike-and-slab prior for regression coefficients that depends on a latent inclusion indica-
tor for each covariate [18]. In this model formulation, unassociated covariates are pushed
out of the model and associated covariates’ regression coefficients are freely estimated.
Recently, Wadsworth et al. [5] developed an approach for identifying KEGG orthology
pathways that were associated with multivariate count data using a DM regression model
with spike-and-slab priors. Through simulations, they demonstrate improved perfor-
mance of their method on selecting covariates when compared to alternative methods,
including the penalized likelihood approach of [6].
We present MicroBVS, an R package for Dirichlet-tree multinomial models with

Bayesian variable selection, for the identification of covariates associated with microbial
taxa abundance data. The underlying Bayesian model extends the work of Wadsworth
et al. [5] by accommodating tree-like structure between the compositional data and also
includes various parameterizations of covariates’ prior probabilities of inclusion. While
developed to study the human microbiome, our software can be employed in various
research applications, where the aim is to generate insights into the relations between a
set of covariates and compositional data with or without a known tree-like structure.

Implementation
Software implementation

Our contributed R package provides a general approach for identifying covariates asso-
ciated with compositional data. At the core is a Markov chain Monte Carlo (MCMC)
algorithm that generates posterior samples of model parameters for inference. The
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MCMC algorithm is written in C++ to increase performance time and accessed through
R wrapper functions using Rcpp and RcppArmadillo [19, 20]. The package extends the
work of Wadsworth et al. [5] by accommodating tree-like structure between the com-
positional data via a DTM regression model. As a result, our approach incorporates the
contributions of [5] as a special case and additionally is flexible to various prior probability
of inclusion parameterizations. The package has built-in functionality to simulate data in
user-specified research scenarios to assess selection performance and conduct sensitivity
analyses. Additionally, various auxiliary R functions are incorporated to help researchers
assess convergence, draw inference from the MCMC samples, and plot results. The
package includes a vignette with worked examples using simulated data.

Data input and output

While designed to study microbial abundance data, our package can handle any research
setting aimed at identifying factors associated with compositional data. Thus in micro-
biome analyses, our package is agnostic to the sequencing approach used to quantify
microbial samples. In addition to compositional data, the method requires a set of covari-
ates collected for each subject and a tree object that can be read by the R package ape [21].
Before analysis, we recommend standardizing continuous covariates and reparameteriz-
ing categorical covariates using indicator variables. Standard for any Bayesian approach,
our algorithm requires the specification of various hyperparameters in the model. While
we have set default values for each of the hyperparameters, the vignette contains details
of their function in the algorithm as well as recommendations for their adjustment.
Technical details of the model can be found in the Supplementary Material.
Once the algorithm has run, a list of MCMC samples for each of the parameters’ pos-

terior distributions is outputted. This list includes MCMC samples for intercept terms,
covariates’ respective regression coefficients, and latent inclusion indicators for covari-
ates, which take on values of zero or one, corresponding to exclusion or inclusion in the
model. Inclusion in the model is determined if the marginal posterior probability of inclu-
sion (MPPI), calculated as the average of the MCMC inclusion indicator samples for each
covariate-branch combination, is ≥ 0.50 [22]. An alternative inclusion threshold can be
obtained using a Bayesian false discovery rate, which controls for multiplicity [23]. In
addition to the functions provided in the package to draw posterior inference, the out-
put can easily be transformed into a format that is readable by the coda package in R for
further summaries, plotting, and diagnostics [24].

Application
To demonstrate the functionality of our software, we apply it to a benchmark data set col-
lected to study the relation between dietary intake and the human gut microbiome [15].
Previously, Wang and Zhao [9] proposed a penalized DTM regression model to identify
dietary intake covariates associated with genus-level operational taxonomic units (OTUs)
on a subset of these data. For comparison, we apply our software to the same data. Briefly,
the data used in this analysis consist of 28 genera-level OTU counts obtained from 16S
rRNA sequencing and a corresponding set of 97 dietary intake covariates derived from
diet information collected using a food frequency questionnaire on 98 subjects.
In this analysis, the model was run on these data using a DTM regression model. The

phylogentic tree used in this analysis is presented in Fig. 1.We assumed a non-informative
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Fig. 1 Phyologentic tree for application data

Beta-Binomial prior for inclusion indicators (a = b = 1). The MCMC algorithm was run
for 150,000 iterations. After a burn-in of 75,000 samples, inference was drawn from the
remaining 75,000. Visual inspection of the trace plots for the number of active covariates
in the model and the log posterior distribution indicated good convergence and mixing.
A covariate’s inclusion in the model was determined using a Bayesian false discovery rate
of 0.01, corresponding to a MPPI ≥ 0.89. Additionally, we ran the method of [9] with
penalty parameter γ = 0.25, corresponding to a sparse grouped lasso prior, over a grid
of λ values, similar to their analysis. For the penalized approach, the best model was then
chosen by minimizing the Akaike information criterion [25].

Results and discussion
We identified 232 dietary factor-branch associations with our Bayesian variable selec-
tion method for DTM regression models, whereas the penalized approach identified 271
associations overall. See Figs. 2 and 3 for a network representation of the associations
identified by each model. Figure 4 captures the associations that our proposed method
found that the penalized approach excluded. We observed that the penalized approach
tended to identify similar dietary factors across taxa. These results may reflect the struc-
ture imposed by the sparse grouped lasso penalty used in the penalized approach. While
the Beta-Binomial prior for inclusion indicators does not impose any structural relations
between covariates, the MicroBVS package can be specified with graph-based inclusion
priors, similar to [26, 27]. See the vignette for details regarding inclusion indicator prior
specification.
Similar to our approach, Wang and Zhao’s method identified factors associated with

each branch of the phylogenetic tree. To summarize association results at the genus-level,
they reported the most frequently selected dietary intake covariates along the paths from
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Fig. 2 Network of associations found using the proposed DTM MCMC algorithm. Identified associations are
represented by edges between microbial taxa (red) and dietary factors (blue)

the root node of the phylogenetic tree to the leaf nodes representing two genera pre-
viously used to define enterotypes of the human microbiome [15, 28], Bacteroides and
Prevotella, across 100 randomly split testing and training data sets. For comparison, we
present a network graph of the dietary intake covariates identified by our model, but not
the method of [9], along these same paths using the full data set (Fig. 5).
As in Wu et al. [15], we found associations between Bacteroides and various amino

acids and fatty acids. Relations between amino acids and Bacteroides were also confirmed
in [9]. Both [9] and [15] found Prevotella to be associated with a carbohydrate-based diet.
Similar to [9], we identified Naringenin, flavanone and Total Trans/Cis Trans Linoleic as
associated with Prevotella. Additionally, we identified relations between Prevotella and
Methionine, Phenylalanine, Total Choline, no betaine, and Sum of Betaine and Choline,
similar to [15]. Compared to [6], who proposed a penalized likelihood approach for a
DM model, we also found relations between Bacteroides and Animal fat, Eriodictyol,
flavonone, andMaltose as well as between Prevotella and Choline, Phosphatidylcholine.
Bayesian variable selection methods for regression models have shown better selection

performance than penalized approaches [5, 29, 30]. However, these approaches are typ-
ically computationally less efficient. For the DTM regression models of this paper, the
dimension of the model space grows dramatically as a function of the number of covari-
ates, number of leaf (or root) nodes, and complexity of the phylogenetic tree. Specifically
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Fig. 3 Network of associations found using the method of [9]. Identified associations are represented by
edges between microbial taxa (red) and dietary factors (blue)

for B branches and P covariates, there are 2B×P potential models to choose from. In addi-
tion to large parameter spaces, convergence of the model is highly dependent on the
correlation structure between covariates and count data, as well as the sparsity level of the
model. For the analysis of this paper, the DTMmodel took around 9 hours to run 150,000
iterations on a 2.5 GHz dual-core Intel Core i5 processor with 8 GB RAM. To main-
tain reasonable computation times and selection performance, we recommend applying
the Bayesian DTM model to small-to-medium sized microbiome data sets, that is, with
less than 100 compositional components and moderate-to-large tree-structures when
B × P >> n. Larger data sets might be analyzed by employing the Dirichlet-multinomial
regression model of Wadsworth et al. [5], which does not incorporate the phylogenetic
tree. This option is available within the MicroBVS software.
Our software implementation includes some of the most commonly used inclusion

indicator priors. In practice, researchers are often interested in identifying higher-order
terms, such as interactions, or grouped covariates. Future developments of the software
may include functionality to handle these type of settings following [31]. Additionally,
we assume that all of the covariate relations in the model are linear, which may not be
realistic. Alternative priors for regression coefficients are available that can handle non-
parametric relations (e.g., Dirichlet process priors). As the dimension of the model grows,
inference becomes challenging. In addition to the posterior inference tools we provide
in this version of the R package, more advanced visualization tools may permit a deeper
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Fig. 4 Network of associations found using the proposed DTM MCMC algorithm and not the method of [9].
Identified associations are represented by edges between microbial taxa (red) and dietary factors (blue)

understanding of the model’s results in applications. While using a fully Bayesian MCMC
algorithm for posterior inference accommodates both parameter estimation and model
selection uncertainty, our approach may not scale as well as approximate Bayesian meth-
ods, which may underestimate model uncertainty, to extremely large data sets. For DM
and negative binomial regression models, [32] devised an efficient, variational Bayes vari-
able selection approach via spike-and-slab priors. In future work, we aim to incorporate
a variational alternative for DTM regression models, as well as extend our package to
handle other data structures commonly found in microbiome research (e.g., zero-inflated
counts, negative binomial distributions).

Conclusions
This software package provides a general Bayesian approach for identifying factors asso-
ciated with compositional data that may have known tree-like structure. Additionally,
the package is accompanied by a detailed vignette that contains a step-by-step tutorial
demonstrating how to use the package in practice. Together, our user-friendly pack-
age enables researchers to investigate heterogeneity in compositional data potentially
explained by a set of covariates. While we demonstrate our package in the context of
human microbiome data, it can be applied to various research settings.
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Fig. 5 Network of associations found for Bacteroides and Prevotella using the proposed DTM MCMC
algorithm and not the method of [9]. Identified associations are represented by edges between microbial
taxa (red) and dietary factors (blue)

Availability of data and requirements

Project name: MicroBVS
Project home page: https://github.com/mkoslovsky/MicroBVS
Operating system(s): Linux, Mac OS, Windows
Programming language: R and C++ Other requirements: R Rcpp RcppArmadillo ape
MCMCpack mvtnorm ggplot2 GGMselect devtools ape igraph
License: MIT
Any restrictions to use by non-academics: None.
Data Availability: All simulated data can be generated using the R package. Data analyzed
in the Case Study are available in the R package [15].
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