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Abstract

Background: Gene Regulatory Networks (GRNs) have been previously studied by
using Boolean/multi-state logics. While the gene expression values are usually scaled
into the range [0, 1], these GRN inference methods apply a threshold to discretize
the data, resulting in missing information. Most of studies apply fuzzy logics to infer
the logical gene-gene interactions from continuous data. However, all these
approaches require an a priori known network structure.

Results: Here, by introducing a new probabilistic logic for continuous data, we
propose a novel logic-based approach (called the LogicNet) for the simultaneous
reconstruction of the GRN structure and identification of the logics among the
regulatory genes, from the continuous gene expression data. In contrast to the
previous approaches, the LogicNet does not require an a priori known network
structure to infer the logics. The proposed probabilistic logic is superior to the
existing fuzzy logics and is more relevant to the biological contexts than the fuzzy
logics. The performance of the LogicNet is superior to that of several Mutual
Information-based and regression-based tools for reconstructing GRNs.

Conclusions: The LogicNet reconstructs GRNs and logic functions without requiring
prior knowledge of the network structure. Moreover, in another application, the
LogicNet can be applied for logic function detection from the known regulatory
genes-target interactions. We also conclude that computational modeling of the
logical interactions among the regulatory genes significantly improves the GRN
reconstruction accuracy.

Keywords: Gene regulatory network, Probabilistic logic, Fuzzy logic, Gene expression
data, Bayesian information criterion (BIC), Bayes factor (BF)

Background
The reconstruction of the gene regulatory networks (GRNs) is an important problem

in molecular biology, which attempts to represent the causality of regulatory processes.

The use of high-throughput microarray technologies to generate gene expression data

has significantly facilitated network studies. The DREAM (the Dialogue for Reverse En-

gineering Assessments and Methods) program was initiated to encourage researchers

to develop robust computational tools to infer GRNs from gene expression data [1].
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The computational tools for the GRN inference can be classified into different cat-

egories. Abstract techniques such as the Principle Component Analysis (PCA) and Mu-

tual Information (MI) [2–7] between genes are largely data-driven models in which the

correlations among gene expression data are modelled. At the other extreme, differen-

tial equation-based models highly rely on prior knowledge about the network structure

and the regulatory interactions. However, the temporal and spatial dynamics of each

interaction can be captured by these models [8–10].

The knowledge-based models could rely on the prior information, e.g., reference

regulatory networks documented in the databases, and then these reference networks

are trimmed based on their consistencies with the gene expressions [11–13]. The prior

knowledge is useful for the inference due to the noisy data in the -omics technology. A

few differential equation-based and Bayesian models are proposed to reconstruct the

GRNs from time-series microarrays, but they do not infer the logics among regulatory

genes [14–17].

In the middle between the two extremes, there are Bayesian models, and logic-

based models [18–24]. Logic-based models apply either a Boolean logic [20, 21, 25]

or a multi-state logic [26–28] to study a priori-specified GRNs by using discretized

gene expression data. While the normalized gene expression levels vary in the

interval [0, 1], it is assumed in the Boolean networks that each gene is either

expressed or not. Boolean logics apply a threshold on the interval [0, 1] to

discretize the gene expression levels, resulting in the missing information. To over-

come this weakness of the Boolean and the multi-state logics, the fuzzy logic

models have been proposed to study the networks from the continuous gene ex-

pression data [19, 22]. However, the fuzzy and the multi-state logics study only a

network with an a priori-specified structure and do not reconstruct it. Here, we

introduce a new logic for continuous data, rather than binary data, called the prob-

abilistic continuous (PC) logic, and accordingly, we propose a logic-based algorithm

to reconstruct the GRNs from the continuous gene expression data. This new algo-

rithm, called the LogicNet, is superior to the current logic-based models from sev-

eral perspectives and has the following properties:

a) The LogicNet relies on a new kind of logic applicable to continuous data, i.e., the

PC logic, for modeling the cooperative, competitive and other types of logical

interactions among genes. Regarding the reconstruction of the GRNs from the

continuous gene expression data, the performance of the PC logic is superior to

that of the fuzzy logic;

b) Contrary to the current logic-based models, which can analyze only the GRNs with

an a priori known structure, the LogicNet requires no prior information or hypoth-

esis about the network structure;

c) Using the continuous gene expression data in the interval [0, 1], the LogicNet

reconstructs the GRN with directed and signed edges. Indeed, the LogicNet infers

the underlying biochemical causalities of the regulatory interactions;

d) The LogicNet infers the underlying logical relationships, e.g., the cooperative

(AND, OR), competitive (XOR), and any other types of relationships, among the

regulatory genes of a target gene.
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Altogether, the main feature of the LogicNet is to improve the current models with

the logic detection and not to defeat them in terms of accuracies. To study the regula-

tory effect of other genes on a target gene, the LogicNet computes the likelihood func-

tion for each possible set of regulatory genes with a specified logical interaction. In the

LogicNet, the expression levels of the target gene belonging to the interval [0, 1] are in-

tuitively supposed to follow a beta distribution. The parameters of this distribution de-

pend on the type of the logical interaction of the regulatory genes. To prevent the

model from over-fitting, the LogicNet applies the Bayesian Information Criterion (BIC)

to force a balance between the quality of the fitting and the complexity of the interac-

tions. The significance of the causal interactions is consequently modeled by using the

Bayes Factor (BF).

Results
The LogicNet performance is evaluated by using the simulated data from Escherichia

coli (E. coli) and also data from the yeast GRNs of DREAM3 [1]. Also, the LogicNet

performance is compared to several state-of-the-art tools, i.e., PCA-CMI [3], ARACNe

[5], Genie3 [29], Narromi [4], CN [30], and GRNTE [31]. The performance is evaluated

by using the true positive rate (TPR), false positive rate (FPR), positive predictive value

(PPV), accuracy (ACC) and Matthews’s coefficient constant (MCC) defined as follows:

TPR ¼ TP= TPþ FNð Þ

FPR ¼ FP= FPþ TNð Þ

PPV ¼ TP= TPþ FPð Þ

ACC ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ

MCC ¼ TP�TN − FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

where TP, FP, TN and FN are the numbers of the true positive, false positive, true

negative, and false negative predictions, respectively. The LogicNet has no parameter

by which we could calculate the receiver operating characteristic (ROC) curves and the

area under the ROC curve (AUC). Therefore, the F-measure, which is the harmonic

mean of the TPR and PPV, is used to compare the overall performance of the LogicNet

with that of other tools. Although the LogicNet is compared to other tools for detecting

undirected/directed network edges, it is also capable of detecting the underlying logic

of the regulatory interactions. This capability is one advantage of the LogicNet for

reconstructing the GRNs, and no other tool is currently capable of simultaneously de-

tecting the directed network edges and the logic functions.

To evaluate the integrative performance of the LogicNet for the simultaneous detec-

tion of the directed edges and the logic functions, we apply a new measure in which we

consider a TP if the regulatory genes and the active partition in the Venn diagram are

both correctly predicted. In addition, we consider an FP if either the regulatory genes

or the active partitions in the Venn diagram are predicted falsely. All other predictions

are considered as FN (See the Methods section for more details).
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Fig. 1 E. coli GRN and the simulated logic functions among the regulatory genes. a E. coli GRN from DREA
M3 is shown. Activatory and inhibitory interactions are shown by the black and red edges, respectively. b E.
coli GRN with simulated logic functions among the regulatory genes is shown
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E. coli network with simulated logic functions

Figure 1 A shows the GRN of E. coli from the DREAM3 dataset in which the activatory

and the inhibitory interactions are shown by the black and red edges, respectively. Since

the logic functions among the regulatory genes are unknown, the E. coli logic functions

are simulated with randomly assigned logics of types AND, OR, and XOR. Figure 1. B

shows a possible logical network with simulated logics among the regulatory genes,

constructed based on the E. coli network in Fig. 1. A. The gene expression samples are

then simulated from this logical network, and the LogicNet is applied to predict the di-

rected network and the logic functions. Table 1 shows the LogicNet performance sep-

arately for 10 and 50 gene expression samples and 100 repeats of the whole simulation

study

As indicated in Table 1 for 10 samples, in detecting the undirected and directed GRN

of E. coli, the PC-LogicNet reaches the F-measures of 0.61 and 0.46, respectively, which

are superior to the performance of PCA-CMI [3], ARACNe [5], Genie3 [29], Narromi

[4], CN [30], and GRNTE [31] (see Table 2 for comparisons).

Table 1 also shows the integrative performance of the LogicNet in detecting both di-

rected network and logic functions in E. coli. With this integrative measure, the PC-

LogicNet reaches an F-measure of 0.46, which is significantly higher than its perform-

ance when using the fuzzy logic, i.e., 0.10. It should be noted that in achieving these re-

sults, the parameter c, i.e., c = α + β, is set to 1000 (See Methods). In Table 3, the

sensitivity of the results is tested for other values of c, i.e., c = 500, 750, 1000 and 1250.

As this table indicates, the results are not sensitive to the c values.

Yeast network real data

Figure 2 shows two yeast GRNs, i.e., Y2 and Y3, in which activatory and inhibitory in-

teractions are respectively shown by the black and red edges. The microarray gene ex-

pression data of these networks are downloaded from the DREAM3 dataset, and the

Table 1 The LogicNet performance in predicting the GRNs and the logic functions, for 100 logic
function simulations. The performance is evaluated at three levels, i.e., for undirected/directed
networks and for directed logical networks in which the integrative detection of the directed
edges and logic functions is evaluated

SAMPLE SIZE GRN TPR FPR PPV ACC MCC F-MEASURE

PC-LogicNet 10 Undirected 0.48 0.05 0.82 0.79 0.51 0.61

Directed 0.42 0.08 0.51 0.84 0.37 0.46

Directed Logical 0.42 – 0.52 – – 0.46

50 Undirected 0.50 0.05 0.84 0.80 0.53 0.63

Directed 0.44 0.08 0.53 0.84 0.39 0.48

Directed Logical 0.43 – 0.53 – – 0.47

Fuzzy-LogicNet 10 Undirected 0.43 0.05 0.81 0.77 0.46 0.56

Directed 0.36 0.05 0.57 0.85 0.37 0.44

Directed Logical 0.09 – 0.13 – – 0.10

50 Undirected 0.50 0.10 0.72 0.77 0.45 0.59

Directed 0.43 0.07 0.55 0.85 0.40 0.48

Directed Logical 0.08 – 0.10 – – 0.09
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Table 2 The LogicNet in comparison with PCA-CMI, ARACNe, Genie3, Narromi, CN, and GRNTE in
reconstructing the undirected/directed E. coli network, using 10 gene expression samples and 100
repeats of the whole simulation study. Two types of logics, i.e., PC and fuzzy logics, are used
separately for reconstructing the GRNs and logic functions in the LogicNet algorithm. Also, the
value of c = α + β is set to 1000. The highest accuracies are indicated in boldface. Reported values
for the TP, FP, TN, FN are the total of the corresponding values over 100 repeats of the whole
simulation study

METHOD TP FP TN FN TPR FPR PPV ACC MCC F-MEASURE

Undirected E. coli Network (the edge direction is not taken into account in calculating the performance)

PC-LogicNet 724 157 2843 776 0.48 0.05 0.82 0.79 0.51 0.61

Fuzzy-LogicNet 640 155 2845 860 0.43 0.05 0.81 0.77 0.46 0.56

PCA-CMI-0.1 824 1974 1026 676 0.55 0.66 0.29 0.41 −0.11 0.38

PCA-CMI-0.05 940 2214 786 560 0.63 0.74 0.30 0.38 −0.11 0.40

ARACNe 160 140 2860 1340 0.11 0.05 0.53 0.67 0.11 0.18

GENIE3-FR-sqrt 213 228 2772 1287 0.14 0.08 0.48 0.66 0.10 0.22

GENIE3-FR-all 192 235 2765 1308 0.13 0.08 0.45 0.66 0.08 0.20

Narromi 490 829 2171 1010 0.33 0.28 0.37 0.59 0.05 0.35

CN 976 2297 703 524 0.65 0.77 0.30 0.37 −0.12 0.41

GRNTE 420 750 2241 1089 0.16 0.41 0.36 0.34 − 0.28 0.22

Directed E. coli Network

PC-LogicNet 624 588 6912 876 0.42 0.08 0.51 0.84 0.37 0.46

Fuzzy-LogicNet 540 405 7095 960 0.36 0.05 0.57 0.85 0.37 0.44

ARACNe 120 180 7320 1380 0.08 0.02 0.40 0.83 0.12 0.13

GENIE3-FR-sqrt 155 445 7055 1345 0.10 0.06 0.26 0.80 0.07 0.15

GENIE3-FR-all 156 444 7056 1344 0.10 0.06 0.26 0.80 0.07 0.15

Narromi 275 1513 5987 1225 0.18 0.20 0.15 0.70 −0.02 0.17

CN 616 1369 6131 884 0.41 0.18 0.31 0.75 0.21 0.35

GRNTE 232 1210 3030 1128 0.04 0.59 0.13 0.15 −0.63 0.08

Table 3 The PC-LogicNet performance is evaluated for different values of c = α + β, i.e. c = 500,
750, 1000 and 1250. The PC-LogicNet is applied to reconstruct the directed network and logic
functions among the regulatory genes in the E. coli, by using 10 gene expression samples and 100
repeats of the whole simulation study. Reported values for the TP, FP, TN, FN are the total of the
corresponding values over 100 repeats of the whole simulation study

GRAPH TP FP TN FN TPR FPR PPV ACC MCC F-MEASURE

c = 500 Undirected a 716 165 2835 784 0.48 0.06 0.81 0.79 0.50 0.60

Directed b 616 592 6908 884 0.41 0.08 0.51 0.84 0.36 0.45

Directed logical c 614 592 – 885 0.41 – 0.51 – – 0.45

c = 750 Undirected 720 155 2845 780 0.48 0.05 0.82 0.79 0.51 0.61

Directed 620 590 6910 880 0.41 0.08 0.51 0.84 0.37 0.46

Directed logical 605 590 – 899 0.40 – 0.51 – – 0.45

c = 1000 Undirected 724 157 2843 776 0.48 0.05 0.82 0.79 0.51 0.61

Directed 624 588 6912 876 0.42 0.08 0.51 0.84 0.37 0.46

Directed logical 625 588 – 868 0.42 – 0.52 – – 0.46

c = 1250 Undirected 758 147 2853 742 0.51 0.05 0.84 0.80 0.54 0.63

Directed 658 571 6929 842 0.44 0.08 0.54 0.84 0.39 0.48

Directed logical 632 571 – 845 0.43 – 0.53 – – 0.47
a The edge direction is not taken into account in calculating the performance
b The edge direction is taken into account in calculating the performance
c The integrative performance of the LogicNet in reconstructing both the edge direction and logic function
among regulatory genes is evaluated
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LogicNet is applied for reconstructing the networks. See Table 4 for the predicted

edges and logics.

In Table 5, the performance of the LogicNet in reconstructing the undirected yeast

networks is compared with that of other tools, (see Table 6 for the results of predicting

the directed networks). As Table 5 illustrates, the LogicNet outperforms the other tools

in reconstructing the undirected networks of Y2 and Y3, with an F-measure of 0.60

and 0.74, respectively. Moreover, as shown in Tables 5 and 6, the performance of the

PC logic is superior to that of the fuzzy logic, in the majority of cases. These results in-

dicate that the PC logic is more effective and relevant to the biological processes in

logic function modeling than the fuzzy logic.

It should be emphasized that PCA-CMI [3], ARACNe [5], Genie3 [29], Narromi [4],

CMI2NI [2], and CN [30] are threshold dependent. These thresholds, e.g., on mutual

information between two genes, determine the significance of the regulatory

Fig. 2 Yeast GRNs. a Yeast network Y2 with 10 nodes and 25 edges, b Yeast network Y3 with 10 nodes and
22 edges, as parts of the DREAM3 dataset
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interactions. As these thresholds are user-dependent, and there is no a priori informa-

tion to determine them, many of the current tools are limited by their dependency on a

threshold. However, in the LogicNet, due to the large difference in the likelihoods of

the target’s gene expression level under a biologically significant logic and a random

logic, we can always decisively infer the significant logic functions with a BF > 100.

Application to the logic function detection

The LogicNet can also be applied to infer the logic functions among the regulatory

genes, in the networks with a known structure. For this purpose, we used the previously

identified gene regulation in the yeast with 176 Regulatory Factors (RFs) and their tar-

get genes [32, 33]. The number of target genes with 1, 2 and 3 RFs are, respectively,

1472, 1013 and 653. To infer the logic function among these regulatory genes, the

LogicNet is fed with three well-studied yeast cell-cycle datasets [34, 35]: 1) the alpha-

factor time course with 16 time points (0, 7′, …, 119′); 2) cdc15 time course with 25

time points (10′, 30′, …, 290′); and 3) cdc28 time course with 17 time points (0, 10′,

…, 160′) for the gene expression samples. After combining all three datasets (5581

genes and 58 time points), the gene expressions for each time point are converted into

the interval [0, 1].

Table 4 The predicted regulators and logic functions among these regulatory genes in Y2 and Y3
networks, with LogicNet

GENE PREDICTED REGULATOR/LOGIC FUNCTION

Y2 NETWORK

G1 G6G8G9⋁G6G8G9⋁G6G8G9⋁G6G8 G9⋁G6G8G9

G2 G1G5G8⋁G1G5G8⋁G1G5G8⋁G1G5G8⋁G1G5 G8

G3 G4G5G9⋁G4G5G9

G4 G5G7G10⋁G5G7G10

G5 G3G8G10⋁G3G8G10⋁G3G8G10

G6 G1G2G7⋁G1G2G7⋁G1G2G7⋁G1G2G7⋁G1G2G7

G7 G4G6G9⋁G4G6G9⋁G4G6G9⋁G4G6G9⋁G4G6 G9⋁G4G6G9

G8 G2G3G9⋁G2G3G9⋁G2G3G9

G9 G2G6G8⋁G2G6G8⋁G2G6G8

G10 G6G8G9

Y3 NETWORK

G1 G2G4G6⋁G2G4G6

G2 G3G7G8⋁G3G7G8⋁G3G7G8⋁G3G7G8

G3 G1G4G5⋁G1G4G5

G4 G3G5G10⋁G3G5G10⋁G3G5G10⋁G3G5G10⋁G3G5G10

G5 G4G7G8⋁G4G7G8⋁G4G7G8

G6 G2G5G9⋁G2G5G9⋁G2G5G9⋁G2G5G9⋁G2G5G9⋁G2G5G9⋁G2G5 G9

G7 G3G6G8⋁G3G6G8⋁G3G6G8⋁G3G6 G8⋁G3G6G8

G8 –

G9 G1G5G6⋁G1G5G6⋁G1G5 G6

G10 G3G7G8⋁G3G7G8⋁G3G7G8
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For target genes with one RF, we used the LogicNet to characterize the RF1-target

logics during the yeast cell cycle. As depicted in Fig. 3. A, we found 1364 RF-target

logics of type Target = RF1 and 75 logics of type Target ¼ RF1. The other 33 RF-target

logics were of type Target = 1. See Supplementary File 1 for the gene names with RF-

target interaction and the corresponding logic function.

For the target genes with two RFs, we used the LogicNet to characterize the RF1-

RF2-target logics by computing the likelihood values for the 16 possible logic functions

among two RFs, as shown in Table 7. As depicted in Fig. 3. B, logic functions “Target =

RF1VRF2” (i.e., OR logic function), “Target = RF2” and “Target = RF1” are more fre-

quent than the other logic functions for characterizing RF1-RF2-target logics. The OR

logic for the RF1-RF2-target interaction indicates that either RF1 or RF2 is enough to

activate the expression of their target genes. Also, the non-cooperative logic functions

such as “Target = RF2” and “Target = RF1” indicate that only one RF (the dominant RF)

controls the target regulation. See Supplementary File 1 for the gene names with RF1-

RF2-target interaction and the corresponding logic function. We also used the Logic-

Net to characterize the RF1-RF2-RF3-target logics by computing the likelihood values

Table 5 The LogicNet in comparison with PCA-CMI, ARACNe, Genie3, Narromi, CN, and GRNTE in
reconstructing the undirected yeast networks (the edge direction is not taken into account in
calculating the performance). Yeast networks Y2 and Y3 are reconstructed by using 10 gene
expression samples from the DREAM3 dataset. Two types of logics, i.e., the PC and the fuzzy logics,
are used separately for reconstructing the GRNs and detecting the logic functions in the
LogicNet algorithm. The value of c = α + β is set to 1000. The highest accuracies are indicated in
boldface

METHOD TP FP TN FN TPR FPR PPV ACC MCC F-MEASURE

Yeast Network Y2

PC-LogicNet 14 10 10 11 0.56 0.50 0.58 0.53 0.06 0.57

Fuzzy-LogicNet 14 8 12 11 0.56 0.40 0.64 0.58 0.16 0.60

PCA-CMI-0.1 5 1 19 20 0.20 0.05 0.83 0.53 0.22 0.32

PCA-CMI-0.05 5 2 18 20 0.20 0.10 0.71 0.51 0.14 0.31

ARACNe 1 0 20 24 0.04 0.00 1.00 0.47 0.13 0.08

GENIE3-FR-sqrt 5 1 19 20 0.20 0.05 0.83 0.53 0.22 0.32

GENIE3-FR-all 3 3 17 22 0.12 0.15 0.50 0.44 −0.04 0.19

Narromi 8 2 18 17 0.32 0.10 0.80 0.58 0.26 0.46

CN 8 5 15 17 0.32 0.25 0.62 0.51 0.08 0.42

GRNTE 14 9 11 11 0.56 0.45 0.61 0.56 0.11 0.58

Yeast Network Y3

PC-LogicNet 17 7 16 5 0.77 0.30 0.71 0.73 0.47 0.74

Fuzzy-LogicNet 14 8 15 8 0.64 0.35 0.64 0.64 0.29 0.64

PCA-CMI-0.1 14 2 21 8 0.64 0.09 0.88 0.78 0.57 0.74

PCA-CMI-0.05 15 6 17 7 0.68 0.26 0.71 0.71 0.42 0.70

ARACNe 3 0 23 19 0.14 0.00 1.00 0.58 0.27 0.24

GENIE3-FR-sqrt 3 1 22 19 0.14 0.04 0.75 0.56 0.16 0.23

GENIE3-FR-all 3 2 21 19 0.14 0.09 0.60 0.53 0.08 0.22

Narromi 6 5 18 16 0.27 0.22 0.55 0.53 0.06 0.36

CN 17 7 16 5 0.77 0.30 0.71 0.73 0.47 0.74

GRNTE 10 7 16 12 0.45 0.30 0.59 0.58 0.15 0.51
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for the 256 possible logic functions among three RFs (see Supplementary File 1 for the

result).

As in previous studies [36], we used RF knockout experiments in the yeast to validate

the logic functions which are inferred by the LogicNet. These RF knockout experiments

measure the gene expression fold changes, after deleting each RF [37, 38]. If the target

is cooperatively regulated by two RFs, e.g., in “Target = RF1VRF2” (OR logic), then it is

most likely that the knockout of either RF decreases the target gene expressions. In 412

logic functions “Target = RF1VRF2”, which are inferred by the LogicNet, deleting either

RF1 or RF2 decreases the target gene expression by a factor of − 0.016 and − 0.157 in

the logarithm scale. For the non-cooperative logic functions, e.g., “Target = RF2”, we

found that deleting the dominant RF, i.e., RF2 downregulates the target gene expression

more than the removal of RF1. Indeed, in logic function “Target = RF2”, deleting RF1

or RF2 decreases the target gene expression on average by a factor of − 0.022 and −

0.086, respectively, with a standard deviation of 0.37 and 0.34.

Application to RNA-Seq data

LogicNet is also applied to infer GRNs in the early embryonic development data (oo-

cyte to E4.25 blastocyst stages) [39], from single-cell transcriptome sequencing of 48

genes. As described in the original study [39], raw Ct data are first subtracted by the

detection limit of 28 and further normalized on a cell-wise basis by subtracting the

mean expression of housekeeping genes Actb and Gapdh.

Table 6 The LogicNet in comparison with ARACNe, Genie3, Narromi, CN, and GRNTE in reconstructing the
directed yeast networks. Two Yeast networks, i.e., Y2 and Y3 with 10 genes and 25 edges (Y2)/22 edges
(Y3), are reconstructed by the LogicNet by using 10 gene expression samples from the DREAM3 dataset

METHOD TP FP TN FN TPR FPR PPV ACC MCC F-MEASURE

Yeast Network Y2

PC-LogicNet 10 20 45 15 0.40 0.31 0.33 0.61 0.09 0.36

Fuzzy-LogicNet 8 18 47 17 0.32 0.28 0.31 0.61 0.04 0.31

ARACNe 0 1 64 25 0.00 0.02 0.00 0.71 −0.07 –

GENIE3-FR-sqrt 1 5 60 24 0.04 0.08 0.17 0.68 −0.07 0.06

GENIE3-FR-all 1 5 60 24 0.04 0.08 0.17 0.68 −0.07 0.06

Narromi 6 5 60 19 0.24 0.08 0.55 0.73 0.22 0.33

CN 1 5 60 24 0.04 0.08 0.17 0.68 −0.07 0.06

GRNTE 12 17 48 13 0.48 0.26 0.41 0.67 0.21 0.44

Yeast Network Y3

PC-LogicNet 11 16 52 11 0.50 0.24 0.41 0.70 0.25 0.45

Fuzzy-LogicNet 8 19 49 14 0.36 0.28 0.30 0.63 0.08 0.33

ARACNe 1 2 66 21 0.05 0.03 0.33 0.74 0.04 0.08

GENIE3-FR-sqrt 2 2 66 20 0.09 0.03 0.50 0.76 0.13 0.15

GENIE3-FR-all 1 5 63 21 0.05 0.07 0.17 0.71 −0.05 0.07

Narromi 5 7 61 17 0.23 0.10 0.42 0.73 0.16 0.29

CN 6 11 57 16 0.27 0.16 0.35 0.70 0.12 0.31

GRNTE 7 15 53 15 0.32 0.22 0.32 0.67 0.10 0.32
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Fig. 3 The number of PC logic functions which are inferred by the LogicNet in the yeast. a The target
genes are regulated by one RF. b The target genes are regulated by two RFs

Table 7 16 possible PC logic functions between two genes G1 and G2, which regulate the target.
The ∪ sign stands for the union of the sets, and ∨, ∧ ,⊕ , and ⨀ stand for the OR, AND, XOR, and
XNOR PC logics between G1 and G2
i i3 i2 i1 i0 fi(G1, G2) Output

0 0 0 0 0 0 0

1 0 0 0 1 G1G2 ¼ G1∧G2 ð1 − expG1
Þ�ð1 − expG2

Þ
2 0 0 1 0 G1G2 ¼ G1∧G2 expG2

− expG1
� expG2

3 0 0 1 1 G1G2∪G1G2 ¼ G1 1 − expG1

4 0 1 0 0 G1G2 ¼ G1∧G2 expG1
− expG1

� expG2

5 0 1 0 1 G1G2∪G1G2 ¼ G2 1 − expG2

6 0 1 1 0 G1G2∪G1G2 ¼ G1⨁G2 expG1
þ expG2

− 2 expG1
� expG2

7 0 1 1 1 G1G2∪G1G2∪G1G2 ¼ G1∨G2 1 − expG1
� expG2

8 1 0 0 0 G1G2 = G1 ∧ G2 expG1
� expG2

9 1 0 0 1 G1G2∪G1G2 ¼ G1⨀G2 1 − expG1
− expG2

þ 2 expG1
� expB

10 1 0 1 0 G1G2∪G1G2 ¼ G2 expG2

11 1 0 1 1 G1G2∪G1G2∪G1G2 ¼ G1∨G2 1 − expG1
þ expG1

� expG2

12 1 1 0 0 G1G2∪G1G2 ¼ G1 expG1

13 1 1 0 1 G1G2∪G1G2∪G1G2 ¼ G1∨G2 1 − expG2
þ expG1

� expG2

14 1 1 1 0 G1G2∪G1G2∪G1G2 ¼ G1∨G2 expG1
þ expG2

− expG1
� expG2

15 1 1 1 1 G1G2∪G1G2∪G1G2∪G1G2 ¼ 1 1
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GRNs are then reconstructed for two overlapping subsets of data from 46 genes, i.e.,

excluding the housekeeping genes which are used for data normalization. The early

subset of data includes the cells from oocyte up to 32-cell E3.5 blastocyst stages and

the late subset includes the cells from 16-cell morula to 64-cell E4.25 blastocyst stages.

Inferred GRNs using LogicNet are depicted in panels A and B of Fig. 4, respectively

for the early and late subsets of cells. As shown in this Figure, GRN for cells from 16-

cell morula to 64-cell E4.25 blastocyst stages is more complex than GRN for the early

subset of cells. However, in both networks, Grhl2 has an important role as a hub.

The LogicNet complexity

To calculate the time complexity of the LogicNet, consider N genes in the network and

a sample of n gene expression vectors. For each gene as a target and logic functions in-

cluding up to k regulatory nodes, we have 22ðN − 1
1 Þ þ 22

2ðN − 1
2 Þ þ…þ 22

kðN − 1
k Þ possible

logic functions in the model. Then, having N genes, each considered as a target at a

time and a sample size of n, we reach a complexity of Oðn22kNkþ1Þ for the number of

calculations in the model.

Discussion
The PC-LogicNet achieves a considerably higher F-measure than the Fuzzy-LogicNet.

This result indicates that the PC logic is more relevant and effective in modeling regu-

latory gene interactions. Therefore, future studies can benefit from this PC logic in

reconstructing the GRNs and detecting the logic functions. Moreover, compared to the

previous logic-based models, the LogicNet does not rely on a priori known network

structure to infer the logic functions. However, as described in the results section, the

LogicNet can be applied for the logic function detection from the known regulatory

genes-target interactions.

Moreover, since the parameters of the beta distribution are estimated separately for

each sample, the LogicNet can model the gene expression data that follow a multi-modal

distribution. This capability is a major advantage of the LogicNet over many existing tools,

which have difficulties in modeling the multi-modal gene expression data.

Fig. 4 a For cells from oocyte up to 32-cell E3.5 blastocyst stages. b For cells from 16-cell morula to 64-cell
E4.25 blastocyst stages
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R package of the LogicNet is available at https://github.com/CompBioIPM/LogicNet.

Yeast and E.coli data sets, which were used in this study, are also available on this web-

page. Parallel programming of the LogicNet algorithm reduces its running time consid-

erably. For a GRN of 10 nodes and 10 gene expression samples, it takes 275 s to run

the LogicNet on a 64-bit operating system with an Intel(R) Core (TM) i7-4710HQ CPU

@ 3.50 GHz processor and 16 GB RAM.

Conclusion
The LogicNet performance is superior to that of the MI-based and regression-based

tools. The low performance of these tools is, to some extent, associated with ignoring

the logic function among the regulatory genes. Indeed, compared to the other tools,

logic-based models are more accurate for reconstructing the GRNs and more useful for

detecting the logic functions, two important problems in biology.

Methods
The LogicNet was developed to infer the existing regulatory interactions of a target

gene T and to determine the corresponding logic behind these interactions. The values

of the expression level of each gene are normalized into the interval [0, 1]. In the Logic-

Net, these expression levels are supposed to be the samples of a beta distribution. In

this context, the expression level expresses the probability of being an active gene. In

other words, an expression level value close to zero indicates a high probability of being

off. Accordingly, a regulatory gene with a higher level of activity is more probable to in-

fluence other genes. Furthermore, it is assumed that the expression levels of T are the

outputs of a continuous logic function whose inputs are the gene expression level of

the regulatory genes of T. Hence, each logic function provides an estimate of the ex-

pression level of T, or, similarly, an estimate of the probability of the activity of T. We

call this function a probabilistic continuous (PC) logic function.

PC logic function

Consider k genes G1, G2, …, Gk regulating the target gene T. Each gene can have an

activatory or inhibitory effect on T, denoted by Gi and Gi , respectively. Hence, there

are 2k different combinations of the activatory and inhibitory effects of all regulators,

e.g.; for k = 1 we have G1 and G1 and for k = 2 we have 4 different combinations of

G1G2, G1G2, G1G2, and G1G2. These activatory/inhibitory combinations can be associ-

ated with partitions in the Venn diagram of the set of k regulatory genes (Fig. 5). Now

for k = 1, 2, and 3, and for the regulatory genes G1, G2, and G3, we use Venn diagram

partitions and define PC logic functions as follows:

f i G1ð Þ ¼ i1G1∪i0G1 ð1Þ
f i G1;G2ð Þ ¼ i3G1G2∪i2G1G2∪i1G1G2∪i0G1G2 ð2Þ
f i G1;G2;G3ð Þ ¼ i7G1G2G3∪i6G1G2G3∪i5G1G2G3∪i4G1G2G3∪i3G1G2G3∪i2G1G2

G3∪i1G1G2G3∪i0G1G2G3;

ð3Þ
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where ∪ stands for the union of two sets, and ði2k − 1;…; i2; i1; i0Þ2 denotes the binary

representation of the PC logic function index i. Indeed, the coefficient of each partition

in fi(G1,G2,…,Gk) could be 0 or 1, indicating the presence of the corresponding activa-

tory/inhibitory combination in fi(G1,G2,…,Gk), for more details on notations see [40].

Moreover, binary variables ði2k − 1;…; i2; i1; i0Þ2 in the PC logic function provide a sys-

tematic way to generate different logics and these random variables have to be esti-

mated in our maximum likelihood approach, in the next subsections. In general,

according to the ði2k − 1;…; i2; i1; i0Þ2 , there are 22
k
different PC logic functions fi(G1,

G2,…,Gk) for k regulatory genes, where 0≤ i < 22
k
.

The occurrence of each partition in the PC logic function results in the expression of

the target gene T. Each partition represents the AND logic between the genes, e.g.,

f8(G1,G2) =G1G2 =G1 ∧G2 (Table 7). The union operation between the partitions ex-

presses the logical operation OR, denoted by ∨, e.g. f 14ðG1;G2Þ ¼ G1G2∪G1G2∪G1G2

¼ G1∨G2 . Figure 6 depicts fi(G1,G2) for i = 3, 6, 8, and 14, corresponding to the PC

Fig. 5 Venn diagram partitions representing different interactions among the regulatory genes influencing
the target T. Each partition either exists or does not exist in the corresponding fi(G1, G2,…, Gk) of the logic
function. a G1 regulates T. Each partition, i.e., G1 and G1 of the Venn diagram, is possibly on or off in fi(G1). b
Both genes G1 and G2 regulate T. The Venn diagram is partitioned into 4 disjoint regions; each is potentially
on or off in fi(G1, G2). c Genes G1, G2 and G3 regulate T. The Venn diagram is partitioned into 8 disjoint
regions; each is potentially on or off in fi(G1, G2, G3)
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Fig. 6 Participating activatory/inhibitory partitions in the Venn diagram for logic functions f3, f6, f8, and f14.
The indexes i0, i1, i2 and i3 indicate if the corresponding partition exists in fi(G1, G2), between genes G1
and G2
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logics G1, XOR(G1,G2), AND(G1,G2), and OR(G1,G2), respectively. Note that there is a

fundamental difference between the PC and the Boolean logics. The PC logic performs

the logical operation on the continuous data, and its output is not restricted to the

Boolean values of 0 and 1, but, in contrast, the output is a continuous value in the

interval [0, 1].

Probabilistic and fuzzy logics

To define the logical operators for the continuous gene expression data, previous stud-

ies usually utilize the fuzzy logic [19, 22], as given in Table 8. However, we propose an

alternative logic, i.e., the PC logic, which is based on the probabilistic rules. All Boolean

functions can be described by the combination of three basic logical operators: AND,

OR, and NOT [40]. The definitions of these basic logical operations for the case of hav-

ing two regulatory genes G1 and G2 and with the expression levels expG1
and expG2

are compared in Table 8 for the PC and the fuzzy logics.

In the case of k = 1, only gene G1 is in the causal set of the target gene T. Accord-

ingly, Eq. (1) results in f0(G1) = 0, f 1ðG1Þ ¼ G1 ¼ 1 − expG1
, f 2ðG1Þ ¼ G1 ¼ expG1

,

and f3(G1) = 1, where f1(G1) and f2(G1) indicate the inhibitory and activatory effects of

gene G1 on T, respectively (see Fig. 6a). By applying probabilistic logics, the output of

16 possible PC logic functions for k = 2 are represented in Table 7. The PC logic func-

tion fi(G1, G2,…, Gk) is just an estimator of the probability of the activation of T, i.e.,

expT.

Likelihood function

Each PC logic function fi(G1, G2,…, Gk) provides an estimate of the expression level of

the target gene T. However, there are 22
k
different PC logic functions for k regulatory

genes influencing the target. Therefore, we need to evaluate the likelihood that these

PC logic functions will predict the expression level of T. To achieve this goal, we sup-

pose that the expression level of T follows a beta distribution with parameters α and β:

pdf Tð Þ ¼ Γ αþ βð Þ
Γ αð ÞΓ βð ÞT

α − 1 1 − Tð Þβ − 1; ð4Þ

where, 0 ≤ T ≤ 1. We know that in this beta distribution, the expected value of the ex-

pression level is EðTÞ ¼ α
αþβ. Assuming fi(.) as an unbiased estimator of the target’s ex-

pression level, we obtain

E Tð Þ ¼ α
αþ β

¼ f i :ð Þ ð5Þ

Table 8 The PC logic and the fuzzy logic for the regulatory effects of genes G1 and G2 on the
target, utilizing continuous gene expression data. expA and expB denote the expression levels of
genes G1 and G2, respectively

Logic Probabilistic Logic Def. Fuzzy Logic Def.

NOTðG1Þ ¼ G1 1 − expG1
1 − expG1

AND(G1, G2) = G1 ⋀ G2 expG1
� expG2

minð expG1
; expG2

Þ
OR(G1, G2) = G1 ⋁ G2 expG1

þ expG2
− expG1

� expG2
minð1; expG1

þ expG2
Þ
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In addition, considering α + β = c, where c is a constant, the model parameters are es-

timated as follows:

α ¼ cf i :ð Þ; and β ¼ c 1 − f i :ð Þð Þ: ð6Þ

To avoid getting zero parameters when fi(.) is either 0 or 1, a small value is added to

the estimated α and β in Eq. (6). Then, for n gene expression samples, the logarithm of

the likelihood function is

log likelihoodð Þ ¼ nΓ cð Þ −
Xn

s¼1

�
logΓ c f si :ð Þ

� �þ logΓ c − cf si :ð Þ
� �

þ cf si :ð Þ − 1
� �

log Tsð Þ þ c − c f si :ð Þ − 1
� �

log 1 − Tsð Þ�; ð7Þ

in which, Ts indicates the expression level of the s-th sample of the target gene, and f sið:Þ
is the PC logic function computed for the corresponding sample.

The c value calibrates the variance of the target gene expression (T) given its regulators,

in the beta distribution. As T values are modelled separately for each sample, i.e., T is ex-

pected to be close to fi(.), we consider a large value for c to assure a low deviation from fi(.).

Equation 7 is maximized w.r.t the binary variables ði2k − 1;…; i2; i1; i0Þ2 , representing
the on/off state of the 2k partitions in the venn diagram of the k regulatory genes. For

this purpose, the current version of the LogicNet evaluates the likelihood under all pos-

sible values of these binary variables, i.e., the exact solution.

For the microarray data, the min-max feature scaling is applied to normalize the ex-

pressions into the [0, 1] interval, e.g., for a gene A:

expA − min expAð Þ
max expAð Þ − min expAð Þ

The LogicNet is originally proposed to reconstruct the logic based GRNs, from mi-

croarrays. However, the count distribution in the RNA-seq data can also be trans-

formed to a distribution close to the Gaussian distribution, using the voom

transformation [41]. Then, the min-max feature scaling is applied [41].

Bayesian information criterion (BIC)

The LogicNet computes the likelihood for the expression level of the target gene by

considering k regulatory genes. However, increasing the number of regulatory genes

may potentially result in model over-fitting. Here, we use the Bayesian Information Cri-

terion (BIC) [42] to strike the right balance between improving the model fitting (likeli-

hood) and making the model more complex. BIC is defined as follows [42]:

BIC ¼ − 2Loglikelihood Modelð Þ þ number of parameters�Log nð Þ ð8Þ

In the case of having k regulatory genes, we consider 2k parameters in the model that

are associated with 2k partitions of the Venn diagram, where each partition either exists

or does not exist in the fi(G1, G2,…, Gk). To this end, the PC logic function with a mini-

mum BIC is considered for each target gene.

Bayes factor (BF)

The PC logic corresponding to the minimum BIC is not necessarily biologically signifi-

cant and meaningful. To distinguish between random and biologically meaningful

logics, the LogicNet applies the Bayes Factor (BF) [43] to test the likelihood significance
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Fig. 7 (See legend on next page.)
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of the PC logic function with a minimum BIC. The BF is the ratio of the likelihood

probabilities for two competing hypotheses as follows:

BF ¼ Pro Target Gene expression DatajM1ð Þ
Pro Target Gene expression DatajM0ð Þ ; ð9Þ

where M1 is the PC logic function with the minimum BIC and indicates the causal rela-

tionships between the regulatory and target genes. M0 is a random logic without a bio-

logical significance. Based on the Bayesian literature, a value of BF > 100 means that

compared to M0, M1 is decisively supported by data.

The overall workflow of the LogicNet is depicted in Fig. 7. From genes GA, GB, …,

and GZ, one gene at a time is considered as the target. Considering gene GA as the tar-

get and k = 1, 2, 3, … genes as its regulators, the PC logic functions fi(.) are constructed

for different subsets of genes GB, …, and GZ. Then, the likelihood of the expression

level of the target gene (i.e., gene GA) is calculated under each PC logic function. BIC is

applied to strike the right balance between the likelihood and model complexity, i.e.,

the number of the regulatory genes. The likelihood significance in the PC logic function

with the lowest BIC is consequently evaluated by using the BF. This process is repeated

for each gene as the target. The maximum of k in this study is 4.

The LogicNet integrative performance for directed edges and logic functions

To evaluate the integrative performance of the LogicNet for the simultaneous detection

of the directed edges and the logic functions, we apply a new measure in which we con-

sider a TP if the regulatory genes and the active partition in the Venn diagram are both

correctly predicted. In addition, we consider an FP if either the regulatory genes or the

active partitions in the Venn diagram are predicted falsely. All other predictions are

considered as FN. For example, in the case of f14(G1, G2) = G1 ∪G2 in Fig. 6, three parti-

tions G1G2, G1G2 and G1G2 of the Venn diagram are active, and therefore, we consider

a TP for the correct prediction of each partition and a FP if either gene G1 or gene G2

or the corresponding active partitions are falsely predicted.

Data and LogicNet availability Project name: LogicNet. Project Home Page:

https://github.com/CompBioIPM/LogicNet.

Operating System: Windows and Linux (× 86 and × 64 versions).

Programming Language: Designed in R.

License: Freely available under R-3.0.0 or higher versions.

Any restrictions to use by non-academics: none.

(See figure on previous page.)
Fig. 7 Workflow diagram of the LogicNet to reconstruct the Gene Regulatory Network. Assume n samples
are drawn from the expression level of genes GA, GB, …, and GZ. Each time, one gene is considered as the
target, and the regulatory effect of other genes on the target is investigated. Here, gene GA is considered as
the target. Logic functions consisting of k regulatory genes are constructed for k = 1, 2, 3, and the target
gene expression likelihoods are evaluated under different logic functions. To calculate the likelihood, the
target’s gene expression is modeled by using a beta distribution whose parameters are identified based on
the logic function between the regulatory genes. Then, the Bayesian Information Criterion (BIC) is applied
to strike the right balance between the likelihood and model complexity (the number of the regulatory
genes). For each target gene, the likelihood significance in the logic function with the lowest BIC is further
evaluated by using the Bayes Factor (BF). Only logic functions which are decisively supported by the target
gene expression data (with BF > 100) are considered to be significant
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