Wang et al. BMC Bioinformatics 2020, 21(Suppl 13):380

https://doi.org/10.1186/512859-020-03673-5 B M C BIOI nfo rm atlcs

Biomedical document triage using a ®

Check for

hierarchical attention-based capsule network

Jian Wang, Mengying Li, Qishuai Diao, Hongfei Lin, Zhihao Yang and YiJia Zhang”

updates

From The 18th Asia Pacific Bioinformatics Conference
Seoul, Korea. 18-20 August 2020

*Correspondence: zhyj@dlut.edu.cn
Dalian University of Technology, The Abstract
School of Computer Science and Background: Biomedical document triage is the foundation of biomedical

Technology, 116024 Dalian, China information extraction, which is important to precision medicine. Recently, some
neural networks-based methods have been proposed to classify biomedical
documents automatically. In the biomedical domain, documents are often very long
and often contain very complicated sentences. However, the current methods still find
it difficult to capture important features across sentences.

Results: In this paper, we propose a hierarchical attention-based capsule model for
biomedical document triage. The proposed model effectively employs hierarchical
attention mechanism and capsule networks to capture valuable features across
sentences and construct a final latent feature representation for a document. We
evaluated our model on three public corpora.

Conclusions: Experimental results showed that both hierarchical attention
mechanism and capsule networks are helpful in biomedical document triage task. Our
method proved itself highly competitive or superior compared with other
state-of-the-art methods.
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Background
Biomedical natural language processing (BioNLP) has an important role in the framework
for implementing precision medicine [1-3] . Biomedical document triage is an important
task in BioNLP, and is the first step in the literature curation workflow [4, 5]. Biomedical
document triage helps curators and researchers focus on the biomedical literature that
contains information relevant to their tasks [6, 7].

In the past decade, biomedical document triage has been an important shared task
in the BioCreative challenge community. For example, BioCreative II (IAS) [8] and III
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(ACT) [9] focused on the classification of whether a given article contains protein inter-
action information. BioCreative VI (PM) [10] focused on identifying relevant PubMed
citations describing genetic mutations affecting protein-protein interactions. Similarly,
various methods have been proposed for the task of biomedical document triage [11].
The majority of these tasks can be divided into either machine learning-based methods
or neural network-based methods.

As for machine learning-based methods for biomedical document triage, most depend
on effective feature engineering including lexical and syntactic information. For example,
SiL et al. [12] utilized logistic regression and support-vector machine algorithms to gen-
erate ranked lists of documents. Almeida H et al. [13] experimented with dataset sampling
factors and a set of features, as well as three different machine learning algorithms includ-
ing naive Bayes, support-vector machine and logistic model trees. Generally, machine
learning-based methods are skill-dependent and labor-intensive, requiring lots of effort
to design particular features.

Recently, neural network-based methods [14] have been successfully applied to biomed-
ical documents. Kim et al. [15] reported on a series of experiments using convolutional
neural networks (CNN) trained on top of pretrained word vectors for sentence-level clas-
sification tasks. Lai et al. [16] introduced a recurrent convolutional neural network for
text classification, which combines CNN with a recurrent neural network (RNN). Some
of the above-mentioned methods have been successfully applied to biomedical document
triage [17-19]. Attention mechanisms, which can capture the relatively important parts
of the input text, have been successfully applied in BioNLP [20, 21].In 2016, Yang et al.
proposed a two-layer attention network for text classification [22]. That network would
obtain the characteristics of both words and sentences within a document. In 2017, Hin-
ton proposed the CapsNet network architecture [23], which was based on the traditional
CNN but it modified some layers.

However, while these methods can automatically extract features to save time and
energy in the documents triage task, they have limitations in dealing with long biomedical
documents. In the BioCreative VI Precision Medicine Track of the triage task, even the
top team received an F-score of less than 70 percent [10]. Those models mentioned above
cannot effectively learn the latent feature representation from long biomedical texts. Con-
sidering that the word-level attention layer can capture the internal association in the
sentence. The obtained vector can reflect the global feature with the information about
all the words of the entire sentence. The sentence-level attention layer can capture the
association feature between sentences in an article. Recent studies [23—25] indicates that
the capsule network retains the advantages of CNN and improve its shortcomings. It can
capture more information on spatial patterns aggregated at lower levels that contribute to
representing higher level concepts. It forms a more effective recursive process to articu-
late what to be modeled when there is less training dataset. In general, document text is
much longer than sentence text. In particular, some biomedical document texts contain
several very complicated sentences including medical terms. In our study, we make full
use of the complementarity of hierarchical attention and capsule network to construct
our model, in which the attention mechanism can reduce the problem of dependence in-
formation loss in the long biomedical document text and the capsule network can capture
more feature information at lower levels even there are complicated sentences in biomed-
ical document. These recent advances in neural networks may improve the performance
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of biomedical document triage. Both attention mechanisms and capsule networks may be
helpful in biomedical document triage.

In this paper, we propose a hierarchical attention-based capsule network model, which
can effectively capture the important features across sentences and learn the compre-
hensive latent feature representation for the whole document text. Firstly, our model
employed the dynamic route algorithm to accurately identify more features in the
biomedical text and improve precision instead of using a max-pooling method where
important information may be lost to filter features. Additionally, a hierarchical attention
mechanism was used to capture valuable features at both the sentence-level and word-
level to better deal with the long text of a document. Our method was evaluated on three
public corpora including BioCreative VI Precision Medicine (PM) corpus, BioCreative
II (IAS) corpus and BioCreative III (ACT) corpus. Experimental results suggest that the
proposed model achieved state-of-the-art performance on all three corpora.

The rest of paper is organized as follows. In “Methods” we give a brief intro-
duction of the biomedical document triage task and describe our proposed model in
detail. Then, we present and discuss the experimental results on the three corpora in
“Results and discussion” Finally, our conclusion and future plans are presented in
“Conclusion” sections.

Methods

Biomedical document triage

Biomedical document triage is generally approached as the task of classifying whether
a specific article contains information relevant to what is needed. In this paper, we
choose three public corpora: BioCreative VI Precision Medicine (PM) corpus, BioCre-
ative II (IAS) corpus and BioCreative III (ACT). All three corpora have been examined by
biological curators and domain experts.

The PM corpus is provided by the BioCreative VI Precision Medicine Track task [10].
The PM corpus contains training and test sets that are stored in the 'JSON’ format,
Fig. 1 gives a negative example and a positive example of the PM corpus. The corpus file
includes two types of passages. One is the title text and the other is the abstract text,
the latter of which is marked by the label of ‘infons. Negative examples are annotated
with a 'no’ under the ’relevant’ label, this annotation helps identify text that is relevant

A Negative example (JSON-format) B Positive example (JSON-format)

mutations causing organ defectsin BOR syndrome.",

Fig. 1 Negative examples and positive examples of JON-format from PM datset. a negative examples of
JON-format from PM datset. b positive examples of JON-format from PM dataset
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to our area of interest, genetic mutations affecting protein-protein interactions (PPIm).
All selected articles were manually annotated by the official organization to answer these
questions: Does this article describe experimentally verified protein-protein interactions?
Are the database curated PPI pairs for this article mentioned in the abstract? Does this
article describe a disease known mutation or a mutational analysis experiment? Is the
PPI affected by the mutation? Then, based on the above annotations, articles are carefully
categorized as 1)Positives, for articles specifically describing PPI influenced by genetic
mutations, 2)Negatives, for articles describing both PPIs and genetic variation analysis
with no inference of relation between them or containing PPI but no mutations or con-
taining mutations but no PPI or mentioning neither [10]. In the training set of the PM
corpus, there were 1729 relevant articles that describe the protein-protein interactions
affected by genetic mutations and 2353 articles that were not relevant. Lastly, the PubMed
Unique Identifier (PMID) (e.g. 9685346) of the passages is given under the ’id’ label.

The IAS corpus and ACT corpus are a little different from the PM corpus. They are
provided in the XML-format. The IAS corpus file includes training and test sets. The
IAS training set corpus contained 3536 positive examples that were relevant to protein
interactions and 1959 negative examples that were not relevant to protein interactions.
The IAS test set contained 338 positive examples and 339 negative examples. The ACT
corpus file includes training, development and test sets. There were 1140 positive exam-
ples and 1140 negative examples in the ACT training set, 682 positive examples and 3318
negative examples in the ACT development set, and 910 positive examples and 5090 neg-
ative examples in the ACT test set. Figure 2 gives an illustration of positive and negative
examples of XML-like corpus format. The label of positive and negative is under the
‘CURATIONRELEVANCE’ label. The corpus in the XML-format also gives the PMID,
title text, abstract text and so on under the relevant labels.

The model architecture

An architecture schematic overview of our model is shown in Fig. 3. In general, our model
consists of three main parts: the hierarchical attention layer, the convolution neural net-
work (CNN) and the capsule network layer. The inputs of our model are text sequences.
The word embedding generates the distributed representation vector including semantic
information for each word. The hierarchical attention layer applies a sentence-level and a
word-level multi-attention mechanism to capture the relatively important features based

A Negative example (xML-format) B

Positive example (xvL-format)

ENTRY
CURATION_RELEVANCE>
)

CURATION_RELEVANCE>
<PPI_DATABASE
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Sevr g iy to et
Of the 93 pr identified. ¢ Propo
sy (57 out of 93 bad 3 sl peped,wher

Fig. 2 Negative examples and positive examples of XML-like format from IAS dataset. a negative examples of
XML-like format from IAS dataset. b Positive examples of XML-like format from IAS dataset
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Fig. 3 The schematic overview of our model

on the whole word representations from the two levels in the long text. After the hierar-
chical attention mechanism layer, a convolution layer is used to learn some local features
from the long text. Importantly, in order to prevent losing significant features to the max-
pooling operation of the CNN, we use the dynamic routing algorithm in the capsule layer
and convert scalar feature output to vector feature output to learn more features. At last,
we employ a fully connected layer and the Softmax function to implement document

triage.

Word representations

The distributed representation, also known as word embedding [26, 27], is based on the
hypothesis that semantically similar words have similar semantics. In the field of BioNLP
word embedding is widely used, it effectively captures the semantic information under-
lying each word. For this paper, we used the pre-trained word embedding downloaded
from https://github.com/cambridgeltl/BioNLP-2016, which was trained on the PubMed
Central Open Access subset (PMC) corpus.

Hierarchical attention mechanism

Attention mechanisms have become an important part of some compelling sequence
models and transduction models for various tasks, allowing modeling of dependen-
cies without regard for their distance in the input or output sequences [22, 28, 29]. In
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our model, we combine word-level and sentence-level attention mechanisms to capture
important features across sentences.

Multi-head attention mechanism

The principle on which the multi-head attention mechanism functions is that applying
the attention many times may learn more features than a single application. For atten-
tion mechanisms, the self-attention mechanism is a special case where the input and
output are the same sequences in the Encoder-Decoder framework. The physical mean-
ing in machine translation is a word alignment mechanism between the target word and
the source word in the general attention mechanism, while the self-attention mechanism
learns the internal connection or grammatical structure of the sentence. As an example,
we consider the sentence “The animal didn’t cross the street because it was too tired”
What does “it” refer to, “street” or “animal?” This is a simple problem for humans, but it
is not simple for an algorithm. When the model processes the word “it,” the self-attention
mechanism associates “it” with “animal” When the model processes each word, that is,
when processing each position of the input sequence, the self-attention mechanism allows
it to look at other locations in the input sequence to find ways to better encode each word.
Figure 4 illustrates the calculation process of the self-attention mechanism.

An attention function is created by mapping a query and a set of key-value pairs to an
output, where the key, values, query and output are all vectors. A weighted sum of the val-
ues is the output, where the weight assigned to each value is computed by a compatibility
function of the query with the corresponding key. Our input was made of queries and
keys of the dimension dj, and values of the dimension w. The dot products of the query
with all keys were computed and each was divided by \/dT( Finally, a Softmax function
was be used to obtain the weights of the values, which is shown in the following formula.

Attention(Q, K, V) = softmax ((QK T) / /d:) |4

where Q is a matrix in which a set of queries is packed together. Similarly, K and V are

the matrices in which the keys and values, respectively, are packed together.

Q
x W . Queries

x WX
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Fig. 4 The self-attention mechanism calculation process. We can get three vectors that are a query vector, a
key vector and a value vector for each word by multiplying the embedding word vector by the three matrices
trained during the training. The size of these new vectors is 3, while the dimensions of the embedding word
and encoder are 4. We evaluate the dependence between the words with the dot product operation
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It is more effective to linearly project the queries, keys, and values many times with
different dimensions for each than to perform a single attention function with the dimen-
sional keys, values, and queries, which is the main idea of the multi-head attention
mechanism. The model is allowed to jointly attend to information from different rep-
resentation subspaces at different positions in the multi-attention mechanism, which is
shown as follows:

head; = Attention (QWF, KW, vwy)

MultiHead(Q,K, V) = Concat (heady, . . ., heady) W°

where the VViQ, VViK and W are the parameter matrices, whose dimensions are d,,,0del x
dy, dyodel x dy, and d,odel x d,, respectively. The dimension of W° is hd, x dy,odel,
where /1 is the number of times a single attention calculation is performed. The matrices
above all are initialized randomly. After training, each set of input vectors is projected
into a different representation subspace.

The multi-head attention mechanism improves the performance of the attention layer
by extending the model’s ability to focus on different locations and provide multiple
“representative subspaces” Our goal is that the attention model will learns different
dependency information in different heads from the long biomedical texts so that we can
further improve on the performance of the biomedical text classification task.

Hierarchical attention mechanism

Hierarchical attention is aimed to capture two basic types of features from a biomedical
document structure, one being word-level features and the other being sentence-level
features.

Since the time complexity of the attention mechanism is O(#2), the amount of com-
putation increases significantly when the input of the model is a longer text. On the
other hand, there is little connection between words found in different sentences or long
sentences. There are the word-to-sentence and sentence-to-document features in each
text. Correspondingly, the representation of the sentence can be constructed first by the
word, followed by a representation of the text that can be constructed by the sentence.
Because different words and sentences have different information, not only can the infor-
mation between the words be obtained, but the information between the sentences can
be obtained with the two-levels of features. Hierarchical attention mechanisms can give
words and sentences different weights to accommodate that fact the same words and
sentences can have different roles in different texts. The problem that dependence infor-
mation is lost when the input text is too long, which often occurs in the text classification
task, can be solved by the hierarchical attention mechanism and we can get more features
from words and sentences in the document in this way.

There are many sentences in each text and many words in each sentence, complicat-
ing the biomedical document triage task, this makes the training speed slow when using
the self-attention mechanism directly. In our work, we mainly use hierarchical attention
mechanisms based on self-attention. First, the self-attention mechanism at the word level
is used to find the dependencies between words in the sentence, and then it is used at the
sentence level to find the dependencies between the sentences in the document, which
not only speeds up the training, but also establishes the characteristics of the word and
sentence levels in the text. Our experimental result shows its effectiveness in improving
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the performance of the document triage task. We use the first part of the hierarchical
attention model to process the words of each clause with the purpose of transforming the
sentences into vectors. The second part deals with the sentence vector of the document
to generate a new sentence vector using the self-attention calculations and perform sub-
sequent convolution operations. Figure 5 gives the hierarchical mechanism architecture.
We can see that the input text is split into words (w1, wy, ..., w,) that will be encoded
by the recurrent neural network. Each word will get an attention weight (a1,ay, .. .,a,)
about the input text sequence. Then the output of the word-level attention will be used
as the feature of the sentence-level attention for the sentence encoder. The sentence-level
attention input is the document which is split into sentences (s1, 52, . . .,Sy), and we will
calculate the attention weights (b1, by, . . ., by,) for the sentences. At last, we will get a fea-
ture vector with more information and the Softmax function will be used to normalize
the result.

Convolution neural network (CNN)

After the hierarchical attention layer, we use a slight variant of the traditional convolu-
tional layer as the baseline to further capture local features for optimization of our model.
Generally, each convolutional layer of the traditional CNN is serially connected, that is,

Output
A
Attention layer
v 4% ¥
b b, b b
hy ha P hn
sentence encoder — = Sians =
h h o | h
A T T A A
Sentence-Level Attention ‘ 3 L J
Word-Level Attention
Attention layer AW
a az a) a
h ‘yhz ) V'h,‘ h,
Word encoder e ha see b hn
A A A A A
input LI
text The molecular basis of Rieger syndrome.

Fig. 5 The hierarchical attention mechanism architecture. We connect the word-level and sentence-level
features by attention mechanism to get a feature vector with more information and the Softmax function is
used to normalize the result
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the output of the upper layer is used as the input of the next layer, but in our experiment,
each convolutional layer of the CNN is connected in parallel, and the output of each con-
volutional layer is spliced together as the output of the CNN. In this layer, let x; be the
k-dimensional word vector corresponding to the i — ¢t/ word in the sentence. A sentence
of length n is represented as follows. If the length is not n, we will pad it where necessary.

X(1:n) = X1,%2,...,%p

%(1.x) denotes the concatenation operator of x1,xy,...,x,. The convolution operation
can be seen as filtering features, which obtains local optimal features through the kernel
function. Then these features are combined together to form new features. In this way,
each layer is filtered out and the more significant features are passed to the higher layers
to calculate as follows:

Sty = ReLU (Wx(tsz,l) + b)

where W is a transformation matrix, also known as the convolution kernel function. The
input sequence is [xt,x(t+1), .. .x(ter,z),x(HW,l)], where the lowercase w is the input
window size. ReLU is an activation function that is a non-linear unit function and b is
the bias vector. The filter is applied to each possible window of words in the sentence
X(z:t+w—1) to produce the feature map S, which is the convolutional layer result.

Capsule network

A CNN model can effectively capture local features, but cannot capture global features. In
brief, a CNN generates different features through multiple convolution kernels, and the
features are accumulated layer by layer, but in this process, the network loses important
information: i.e. the spatial relationship between the features. To address this disadvan-
tage of the CNN model, Hinton et al. proposed capsule networks [23]. An important
concept of CNN is the pooling strategy, which downsamples the input vectors. In the
text classification area, each convolution kernel can be used to detect the relevant mean-
ings of consecutive words to generate text features. If a similar text feature reappears, the
output value of this convolution kernel becomes larger, which is well preserved by the
pooling strategy. The pooling can handle the translation change. When a feature moves,
as long as it does not exceed the size of the pooled window, it will not be lost and will
be detected, which can make the network position-invariant. However, the disadvan-
tage of this method is that the pooling operation, such as max-pooling, retains only the
most important features while losing a lot of information. The ideal pooling not only
reduces the data dimension, but also retains various features and information so that each
feature does not change through the pooling layer. Based on this idea, the capsule net-
work replaces the scalar-output feature detectors of CNN with vector-output capsules
and max-pooling with routing-by-agreement, it still likes to replicate learned knowledge
across space. Unlike max-pooling, information about the precise position of the entity
within the region is not thrown away in the capsule network.

The capsule network is well trained by a powerful dynamic routing mechanism that
ensures the capsule’s output reaches the appropriate parent node. The basic idea of the
dynamic routing mechanism is to design a nonlinear mapping strategy, whose task it is to
let the output reach the appropriate parent capsule. More specifically, the capsule output
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is sent to all of the parent capsules in the next layer, and then, for each possible parent cap-
sule, the sub-capsules calculate their outputs by multiplying by the weight matrix. If this
result is a large scalar product of the parent capsules output, then the connection between
the sub-capsule and the parent capsule should be close, which is achieved by increasing
the coupling coefficient of the sub-capsule to the parent capsule and reducing the cou-
pling coefficient with other parent capsules. In theory, this dynamic routing protocol is
more efficient than the routing method implemented by max-pooling. From a mathemat-
ical point of view, a non-linear “squashing” function is used to ensure that short vectors
get shrunk to a near zero length, which is shown as follows.

vi = (IIsl1?) / (L + 1Isil1*) 53/ (11sil1)
where v; is the vector output of capsule j and s; is its total input. For all but the first layer of
the capsules, the total input to a capsule s; is a weighted sum over all “prediction vectors”
YZ(ﬂ i) from the capsules in the layer below and is produced by multiplying the output u; of
a capsule in the layer by the weight matrix Wiy which is shown as follows.

sj= Eic(ij)ﬁ(ﬂi)
gy = W) i

where the c¢;j are coupling coefficients that are determined by the iterative dynamic
routing process. The calculation method of ¢;j is shown as follows.

C(ij) = exp (z(ij)) / Ziexp (Z(ik))

The coupling coefficients between capsule i and all the capsules in the layer above are
determined by a routing Softmax whose initial logits z;j are the log prior probabilities that
capsule i should be coupled to capsule j. The coupling coefficients sum to 1.

Our capsule network architecture is shown in Fig. 6. It can be seen that we first use
the convolutional layer to extract some primary features and next use a primary capsule
layer to capture more features and convert the scalar output to vector output to be the

K-dimension
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Fig. 6 The capsule network model architecture
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input of the next capsule layer which can get accuracy features. The useful information
in the biomedical long texts can be preserved by the dynamic routing algorithm that is
used in our two capsule layers. In the capsule network, the output is a vector instead of
a scalar, this means that the output of the primary capsule layer will give a very clean
and accurate signal to the appropriate subsequent capsule for the exact transmission of
information. The capsule vector dimension is set to 32 in our experiments and the number
of the dynamic routing iterations is set to 3 which can be seen from Fig. 6. In the dynamic
routing algorithm, the vectors (v, v) are the input which is transformed by the affine
transformation to get the outputs u1, 2. The s1,52,s3 will be calculated as the sum of
u1, up. Then, s1,s3,s3 will be used in formula to calculate the vector outputs (a1, az, a3).
The results of a3, ap will be fed back to optimize the last result as.

Classification and training

We used the 'Softmax’ function on the output layer to implement the detection and
classification of the biomedical documents about PPI and PPIm in this paper. In the exper-
iments, the programming language was Python, and the version was 3.5. The python
libraries we used included numpy, scikit-learn, gensim, etc. Our model was implemented
by Keras with the TensorFlow 1.13.1 backend. We employed the dropout layer mecha-
nism before the word representation layer and output layer to prevent the overfitting of
the neural network model. The hyperparameters used in our experiments are listed as
follows. The dimension of our models in the word embedding was initialized to 200 to
adapt to the time and space computational complexity. The number of hidden layer neu-
rons was set to 100. The batch size was set to 128 and the number of epochs was set to 50
during the training. The size of each convolution kernel was 3, 4, and 5, which was set to
128 feature maps, and the dropout probability was set 0.5 and 0.8. The convolutional layer
activation function was a ReLU function. In the hierarchical attention layer, the heads
number of the first attention mechanism layer was set to 8, the vector dimension was set
to 32, the second layer of attention mechanism had a headcount of 8, and a vector dimen-
sion of 32. In the capsule neural network, the dimension was set to 32, and the dynamic
route iteration number was 3. The learning rate was set to 0.01. Then, all parameters of
the models were optimized by using Adam [30] to minimize the categorical cross-entropy
loss. The computing environment is Ubuntu 16.04.5 LTS and the hardware environment
is GeForce GTX Titan Xp. Our source code is available at https://github.com/dqshuai/
text_classification-of-biomedicine.

Results and discussion

Datasets and evaluation metrics

In our experiment, we used the corpus from the BioCreative II Interaction Article
Sub-task, BioCreative III Article Classification Tasks and the BioCreative VI Precision
Medicine Track to mine for protein interactions and mutations for a precision medicine
task. The statistics of all corpus are presented in Table 1.

In the PM corpus experiments, 10% of the PM training sets were randomly selected as
the development set to tune the models’ hyperparameters and the remaining data were
used to train our model. We evaluated the models on the open test set provided by the
organizers of the BioCreative VI PM document triage task. We proved the effectiveness
of our model by testing it on the other corpus, the test sets of IAS and ACT.
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Table 1 Dataset statistics

Corpus Positive Negative Total
PM Training set 1729 2353 4028
PM Test set 704 723 1427
IAS Training set 3536 1959 5495
IAS Test set 338 339 667

ACT Training set 1140 1140 2280
ACT Development set 682 3318 4000
ACT Test set 910 5090 6000

The Precision (P), Recall (R) and F-score (F1) were used to measure our model’s per-
formance on the biomedical document triage task of PM corpus and IAS corpus, which
were calculated by the official evaluation scripts . P, R, and F were calculated as follows:

P =TP/((TP + FP))

R = TP/((TP + EN))
F1 =2PR/((P+ R))

The F1 value is a comprehensive evaluation of the precision and the recall, which is
an evaluation the overall performance. TP compares the actual positive examples to the
positive examples that the model identified correctly, known as true positive examples,
FP compares the actual negative examples to the positive examples that the model iden-
tifies incorrectly, known as false positive examples, and FN compares the actual positive
examples to the negative examples, known as false negative examples. We can use the
confusion matrix to express those clearly.

Performance of our method

Baseline methods

Before inputting text into the model, some preprocessing of the original corpus was con-
ducted. First, we extracted the texts and lables from the original corpora. Secondly, the
text data was removed some invalid data points, such as those with empty text. More-
over, we use regular matching to keep only the letters and numbers. Then we began to
process the sentence-level and word-level corpus to prepare for input into the model.
For the input data of the attention mechanism, the extracted text needed to be split into
sentences, then the sentences were split into words, and some noisy sentences were selec-
tively removed. In order for the length of each text to be consistent when the model was
trained, text padding was performed with < PAD/ >.

We compared our biomedical document triage method with some baseline methods,
including CNN, capsule network, and self-attention, using the word em-bedding trained
by Word2Vec tool as the model input.

CNN: This is a traditional method for text classification. In our work, this network
consisted of the word representing layer, convolution layer, max-pooling layer, dropout
layer, dense layer, and Softmax layer, successively. We used two convolution layers for the
128 feature maps, which were learned for each of two different filters size 3,8 and the step
size is set to 2 in the max-pooling layer. The parameters of the dropout layer were set at
0.5 and 0.8.

Capsule network: This method was first used to recognize highly overlapping digits.
In our work, we use the capsule network based on a CNN to process the text, which is
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for the BioNLP field. We used the neuron vectors to replace the neuron scalar nodes in
the traditional deep neural network and used the dynamic routing protocol to replace
the max-pooling layer in the CNN to train the new neural network. The capsule vector
dimension was set to 32, and the dynamic route iteration was set to 3. Therefore, the
capsule network was made up of the word representing layer, convolution layer, capsule
layer, dropout layer, dense layer, and Softmax layer, successively.

Self-attention: Self-attention was first used in machine translation tasks to surpass and
replace the recurrent neural network. In our baseline work, we combine the CNN with
the self-attention to classify biomedical documents. We set the number of multi-head
attention heads at 8 and the vector dimension of the attention mechanism at 64. This
neural network was made up of a word embedding representation, self-attention layer,
convolution layer, dropout layer, dense layer, and Softmax layer, successively.

The results of the baseline methods are shown in Table 2. From Table 2, we can make the
followings observations. Firstly, CNN only used the language pretraining model trained
by Word2Vec tool to get information from the text, which achieves an F-score of 0.664.
Secondly, the capsule network effectively improved the F-score from 0.664 to 0.686. The
results indicate that the dynamic routing algorithm of capsule networks was able to
capture more features from the text information. Thirdly, integrating self-attention can
significantly improve the performance of the CNN model (by an average improvement
of 4.3% in F-score). The experimental results suggest that both capsule networks and
attention mechanism are helpful in biomedical document triage task.

Effects of hierarchical attention mechanism

In Table 3, we evaluated the effect of a hierarchical attention mechanism on the PM
corpus. From Table 3, we can see that the performance of the hierarchical attention
mechanisms based on CNN was significantly higher than the CNN alone (an aver-
age improvement of 5.1% in F-score) and the self-attention based on CNN (an average
improvement of 0.8% in F-score). The experimental results show that the hierarchical
attention mechanisms greatly improved the precision value and captured more depen-
dency features between words and sentences than the self-attention mechanism which
only mines word-level information. The attention mechanism can reduce the problem of
dependence information loss in the long biomedical document text.

Effects of capsule network

In Table 4, we evaluated the effect of capsule networks on the PM corpus. From Table 4,
we can see that the single capsule network performed better than the single CNN (an aver-
age improvement of 2.2% in F-score). The capsule network based on hierarchical attention
achieved better performance than and the CNN based on the hierarchical attention (an
average improvement of 0.8% in F-score). The proposed hierarchical attention-based cap-
sule network model achieved the best performance in all methods when we use the

Table 2 The results of baseline methods

Methods p R F1
CNN 0.581 0.774 0.664
Capsule network 0.629 0.755 0.686

Self-Attention 0.584 0.895 0.707
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Table 3 The results of hierarchical attention

Methods p R F1

CNN 0.581 0.774 0.664
CNN-+self-attention 0.584 0.895 0.707
CNN+hierarchical attention 0.623 0.840 0.715

capsule network based on hierarchical attention, which had an average improvement
of 5.9% in F-score compared to the baseline of CNN. The precision and recall were
both improved by this method. Hierarchical attention can cover the shortage of the self-
attention in precision while the capsule network can further improve the hierarchical
attention in recall. The capsule network can capture more feature information at lower
levels even there are complicated sentences in biomedical document.

Performance comparison on PM corpus

In Table 5, we compared our method with other state-of-the-art methods on the PM
corpus. It should be noted that the PrecMed Baseline [10] is the baseline method in the
BioCreative VI PM document triage task and the PrecMed-best [10] is the method that
got the highest F-score in the BioCreative VI PM document triage task challenge. “Team
418” got the highest precision and “Team 421” got the highest recall in the BioCreative
VI PM document triage task challenge team competition. To the best of our knowledge,
the ensemble model has had the best performance to date. Many deep learning models
were used to improve the performance including five individual neural network models
including LSTM (long-short term memory), CNN, LSTM-CNN (combine the LSTM and
the CNN), recurrent CNN, and hierarchical LSTM. At last, they got an F-score of 0.710
by combining five models’ results with three different alternatives.

Compared with other methods, our method has achieved the highest F-score (0.723)
on the PM corpus. From Table 5, we can see our model’s F-score is 2.8 percentage points
higher than the best performance in the BioCreative VI PM challenge. In particular,
our method achieved an improvement of 1.3% over the ensemble model (0.710 F-score).
What’s more, our model is relatively simple to implement unlike the ensemble model
where high effort is required to construct the neural network models, which need much
more time and energy to combine and integrate. To our knowledge, it is the first time
to explore the complementarity of hierarchical attention and capsule network to classify
long biomedical texts.

Performance of our model on ACT corpus and IAS corpus

To demonstrate the generalization of our methods, we added some comparison exper-

iments on the other corpus. One is the ACT corpus from the BioCreative III Article

Table 4 The results of capsule network

Methods P R F1

CNN 0581 0.774 0.664
Capsule network 0.629 0.755 0.686
CNN-+hierarchical attention 0623 0.840 0.715

CapsNet+hierarchical attention 0.624 0.895 0.723
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Table 5 Performance compared with other methods on PM corpus

Methods P R F1

PrecMed Baseline [10] 0610 0.636 0.622
Team 418 0.629 0.766 0.691
Team 421 0.570 0874 0.690
PrecMed-best [10] 0.603 0.821 0.695
Ensemble model 0.629 0.815 0.710
CapsNet+hierarchical attention 0.624 0.895 0.723

Classification Task and the other is the IAS corpus from the BioCreative II Interaction
Article Sub-task. The corpus statistics are shown in Table 1.

We evaluated our hierarchical attention-based capsule model on the ACT corpus. The
results of our method compared with the top teams in the BioCreative III ACT challenge
are shown in Table 6. The participating teams were provided with a training set of 2,280
abstracts and a development set of 4,000 abstracts, while the evaluation was carried out
on a test set of 6,000 abstracts through comparison to manual labels generated by domain
experts. They measured the performance of the ten participating teams in this task over
a total of 52 runs. Table 6 gives the best result of each participating team in their many
runs. The experimental results show that our method achieves an F-score of 0.618 on the
ACT corpus, which outperforms the top teams in BioCreative III ACT challenge.

We also evaluated our model on the IAS corpus, shown in Table 7. Table 7 gives the best
result achieved by each participating team. From Table 7, it can be seen that most of the
teams achieved a high recall, but a modest precision. Our method also achieved the best
F-score on the IAS corpus. All in all, our method is superior to the other state-of-the-art
methods when applied to these three public corpora.

Visualization of attention mechanisms

Considering that almost all the neural networks related to deep learning are used in
the form of “black boxes”, we visualize the attention mechanism in order to increase
the interpretability of the model. An example sequence is used to visualize the atten-
tion mechanisms in Fig. 7. The line connecting the two words represents the association
of the two words. The deeper the color is , the closer the relationship between the two
words will be. As can be seen from the figure, the self-attention mechanism can learn the
dependence of the words in-side the sentence. The blue lines represent the dependence

Table 6 Performance compared with other methods on ACT corpus

Methods p R F1

Team 65 - - 0.598
Team 70 - - 0.549
Team 73 - - 0614
Team 81 - - 0311
Team 88 - - 0.344
Team 89 - - 0.608
Team 90 - - 0.596
Team 92 - - 0.572
Team 100 - - 0.594
Team 104 - - 0.539

Our method 0.570 0.676 0618
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Table 7 Performance compared with other methods on IAS corpus

Methods P R F1

Team 4 0.712 0.792 0.750
Team 6 0.708 0.860 0.777
Team 7 0.684 0.858 0.761
Team 11 0.676 0.781 0.725
Team 14 0.746 0470 0.757
Team 19 0.645 0.565 0.602
Team 27 0.607 0.852 0.709
Team 28 0.750 0810 0.779
Team 30 0.686 0.789 0.643
Team 31 0.667 0.594 0.629
Team 37 0.575 0.946 0.715
Team 41 0.619 0.890 0.730
Team 44 0.688 0.868 0.764
Team 48 0.588 0.863 0.700
Team 49 0.526 0.985 0.685
Team 51 0.717 0.828 0.769
Team 52 0.692 0.834 0.757
Team 57 0.703 0.875 0.780
Team 58 0.667 0.730 0.697
Our method 0.704 0.879 0.782

information of a single-head attention mechanism, from which we can find that the word
‘hypersensitive’ can learn the dependence relationship with the word ’role; "has; ‘develop-
ment’ and "adaptation’ The purple lines represent the dependence information of another
single-head attention mechanism, from which we can see that the word "hypersensitive’
learns some different dependence relationship with different word ’acid; ’aba; 'role; ’stress;
‘adaptation, ‘abal; "habl; and a’ The multi-head attention mechanism in Fig. 7 combines
the dependence information of the two single-head attention to extend the model’s abil-
ity to focus on different locations and provide multiple “representative subspaces” for the
attention layer. It is possible to objectively observe the ability of self-attention mechanism
finds the dependencies between words in a sentence by visualization of self-attention,
indicating that there is an important position in the field of BioNLP for the attention
mechanism. In addition, the attention mechanism is also one of the few deep learning
models that can be visualized and can be analyzed in detail.

Error analysis

We manually analyzed why our hierarchical attention-based capsule network model failed
to better classify biomedical documents in the PM corpus experiments. The prediction
results confusion matrix is shown in Table 8, from which we can see the number of false
positives and true negatives for the classification error.

Table 8 The confusion matrix on PM corpus

Actual Predict
True False
True 865 142

False 522 98
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Fig. 7 The visualization of the multi-head attention mechanism. The blue lines represent the dependence
relationship between the words in the single-head self-attention mechanism and the purple lines represent
the dependence relationship between the words in the multi-head self-attention mechanism

We found that the significant classification error was the identification of negative
examples as positive examples by our model. We analyzed the reason as follows. When
an article included some strong PPI indicators or some words similar to the examples,
our model mistook it as a positive example that is actually negative. Figure 8 gives the
false positive examples, the words causing the misunderstanding are in bold. We can see
that the text of PMID (PubMed ID): 9685346 contains some words such as protein, inter-
action, and mutation, which are strong positive keywords in PPIm articles, however, it
does not describe PPI influenced by genetic mutations. Similarly, our model misclassified
the PMID: 9685346 as a positive example because it has similar expressions with positive
articles while it is actually negative.

When we analyzed the reason that the actual positives are deemed negatives, we found
that some strong positive keywords were missing, or that the positive indicators did not
appear in the positive articles. It is difficult to accurately classify true positive PPIm arti-
cles when their appearance is rare (even zero) in the training set. For example, the article
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Fig. 8 The false positive examples and false negative examples on PM corpus. a the false positive examples
on PM corpus. b the false negative examples on PM corpus

with PMID: 17308308 actually describes PPI influenced by genetic mutations, but com-
mon positive keywords such as ‘mutation’ are replaced by the words like ’spliceosomal,
a word that rarely appears in the training set. Our model misclassified such positive
instances as negative. In the future, a post-processing step could be helpful for these cases.

Conclusion

Biomedical document triage is a crucial task in biomedical NLP, which is the first step in
assisting literature curation workflows. Both attention mechanism and capsule networks
are the recent advantages in neural networks. In this paper, we present a hierarchical
attention-based capsule model for biomedical document triage. The proposed model
employed the dynamic route algorithm and hierarchical attention mechanism to capture
the important features across sentences. We evaluated our model on three BioCreative
corpora. Experimental results showed that both hierarchical attention mechanism and
capsule networks can improve performance in biomedical document triage. It is encour-
aging to see that our method achieved the state-of-the-art performance on all three
corpora.

In future work, we will explore the effectiveness of pretrained deep contextualized word
representations, such as Bert and ELMo, in biomedical document triage tasks. In addi-
tion, post-processing may further improve the performance of our model. The current
state-of-the-art methods in biomedical document triage are primarily based on super-
vised machine learning and thus are highly dependent on sufficient labeled data. However,
creating labeled datasets is prohibitively expensive and labor-intensive in the biomedical
domain. Hence, reducing the dependency of methods on labeled training data is a key
challenge in this domain. We will also plan on employing semi-supervised learning or
transfer learning in biomedical document triage.
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