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Abstract

Background: Glioblastoma multiforme (GBM) is one of the most common malignant
brain tumors and its average survival time is less than 1 year after diagnosis.

Results: Firstly, this study aims to develop the novel survival analysis algorithms to
explore the key genes and proteins related to GBM. Then, we explore the significant
correlation between AEBP1 upregulation and increased EGFR expression in primary
glioma, and employ a glioma cell line LN229 to identify relevant proteins and
molecular pathways through protein network analysis. Finally, we identify that AEBP1
exerts its tumor-promoting effects by mainly activating mTOR pathway in Glioma.

Conclusions: We summarize the whole process of the experiment and discuss how
to expand our experiment in the future.

Keywords: Glioblastoma multiforme (GBM), Survival analysis, Adipocyte enhancer-
binding protein 1 (AEBP1), Data mining, mTOR pathway

Background
Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors

and its average survival time is less than 1 year after diagnosis [1]. The occurrence of

GBM is considered as a complicated biological phenomenon with multiple external

simulating factors, genes and stages. The major challenge in the field is to translate the

almost unique progress in deciphering the highly complex molecular genetic nature of

GBM into advances that allow for better prognosis rate and survival of affected

patients [2].
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Currently, cancer researchers usually employ the survival analysis to explore genes

that are closely related to GBM [2–5]. For example, Xia et al. [2] developed a CoxSi-

sLasso survival analysis algorithm to identify gene signature for GBM by processing

P> > N (the dimension of the factors P are less than the number of samples N) type of

data [2]. However, since CoxSisLasso survival analysis algorithm does not consider the

interactions among genes, its predictive accuracy is very limited. Therefore, we propose

our first research question: Can we develop a more efficient survival analysis algorithm

to explore the gene signature of GBM for P> > N type of data?

Secondly, current commonly used genomics [6] or proteomics [7] biotechnologies

have limitations in quantitatively measuring gene expression and protein contents,

which prevent us from developing the precise mathematical model. Thus, we propose

our second research question: In order to explore the key proteins by using quantitative

gene/protein data, can we employ cutting-edge biotechnologies, such as the CRIS

PR(clustered regularly interspaced short palindromic repeat sequences) [7–9] to knock

out the key gene and then use RPPA(reverse phase protein arrays) [10–15] to high-

throughput screen the corresponding protein data?

Thirdly, although a few GBM studies ([2, 3, 16–22]) considered the multi-scale data

from intracellular, cellular and tissue scales, they neither develop the high efficient

computational biology algorithm nor use experimental data to validate their findings in

genomic and proteomic level. Thus, we propose our third research question: can we

build a precise multi-scale mathematical model that can be used to understand the

origin of the GBM from systematic view?

This study aimed to address the above research questions and the following novel ap-

proaches have been taken: (1) Firstly, we improved previous additive survival analysis

algorithm(CoxSisLasso) [2, 9, 23] to investigate the key genes for GBM survival by con-

sidering genes’ interaction as well as used immune-chemistry experiments and TCGA

data [24] to validate the findings. (2) Secondly, in order to study the effect of key gene

on the expression of which proteins, we employed the CRISPR [7–9] and RPPA [10–

15] biotechnologies to knock out the explored key gene and obtain the quantitative

gene/protein data. (3) Thirdly, we used the aforementioned quantitative gene/protein

data to develop a precise multi-scale mathematical model to find key proteins, which

can be used to investigate the origin of the GBM from the genetic, protein and tissue

level starting from explored key gene as well as use the related experiments to evaluate

our findings.

In summary, this study has developed an efficient survival analysis algorithm to iden-

tify GBM related Adipocyte enhancer-binding protein 1 (AEBP1) gene, and then used

the related quantitative gene/protein data to explore the key proteins and molecular

mechanism for GBM. Results show significant correlation between AEBP1 upregulation

and increased EGFR expression in primary glioma. A glioma cell line LN229 was used

to identify major protein players and molecular pathways through RPPA analysis after

AEBP1 overexpression and AEBP1 knockdown. We reveal that AEBP1 exerts its

tumor-promoting effects by mainly activating mTOR pathway in Glioma.

Methods
The pipeline of the study is illustrated in Fig. 1.
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Survival data

We use a multi-study microarray database of GBM expression profiles (n = 227) from

the Georgetown Database of Cancer G-DOC [2], based on the Affymetrix U133 plus

2.0 GeneChip microarray platform. The original microarray datasets are normalized

and preprocessed by R software package. After preprocessing step, there are 227 sam-

ples and 54,675 genes left in the data matrix. Next, the interquartile range (IQR)

Fig. 1 Pipeline of the study. a The survival curves for AEBP1 [24]. b Schematic diagram illustrating the
protein network regulated by AEBP1
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threshold is employed to screen out the genes with small variance value. After that,

there are only 227 samples and 10,992 genes left in the GBM gene expression and sur-

vival time data matrix.

Improved survival analysis algorithm (ImpCoxSisLasso)

We extend our previously well-developed CoxSisLasso strategy [2] by considering the

gene interactions to develop ImpCoxSisLasso algorithm(Eq. 1–4).

β̂LASSO ¼ arg min −
X
k∈D

xTk β − log
X

j∈Rk
exp xTj β
� �� �h i

þ λ
Xp
j¼1

β j

��� ���
( )

ð1Þ

where β is an unknown p-dimensional regression coefficient vector and xi is a vector of

potential predictors for the ith individual. Based on the samples, β̂LASSO is the LASSO

[2] estimator of the unknown parameter coefficients β. D is the set of indices of the

events and Rk denotes the set of indices of the individuals at risk in time tk. k and i rep-

resent the index for the set D and set Rk, respectively. The tuning parameter λ is used

to control the sparsity of the estimator.

β̂m ¼ arg max
βm
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where the index of selected covariates for the nonzero components in β̂LASSO is denoted

by C0 and each remaining covariate except C0 is denoted by xm, where m∈{1,2,...,p}. We

choose the significant covariates with P-Value smaller than a threshold value, 1/p for

example.

min
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where Θ is the collection of the augmented selected predictors C0∪C1 with C0 denoting

the index of selected covariates with Lasso, and C1 denoting the chosen covariates by

Eq. 2.
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βC ;βi1 ;i2
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where C denotes the index of finally selected covariates by Eq. 3. and the product xi1xi2
with i1 ≠ i2, i1 and i2∈C denote the interactions between the selected genes. Here, i1 and

i2 represent the index for the interactions’ terms. Then, Fig. 2 describes ImpCoxSi-

sLasso algorithm as the following.
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Immune chemistry experiment

Immunofluorescence staining was performed on GBM tissue sections as previously de-

scribed. The specimens were rapidly isolated and post fixed in 4% PFA for 24 h and

then soaked in 40% sucrose for 1 day. GBM tissue sections (10 μm) were obtained using

a cryostat (Leica CM3050S-3-1-1, Bannockburn, IL, USA) and permeabilized with 0.3%

Triton X-100 in PBS for 30 min. Sections were blocked with 5% donkey serum for 1 h

and slices were incubated with a solution of 0.6 mg/ml diaminobenzidine and 0.05%

H2O2 for 2 min. After that, incubation was terminated with three 10-min phosphate-

buffered saline washes. Finally, slices were mounted onto gelatin-coated slides and

dried overnight before placing a coverslip on them. Representative sections for each

GBM tissue were then photographed.

Cell lines, plasmids

The LN229 cell line was purchased from ATCC [25]. The pcDNA-AEBP1 Plasmid

was provided by Professor Ro from Dalhousie University, Canada [26]. Plasmid for

sgRNA-AEBP1 was constructed by inserting two guide RNA from exon 12 of

AEBP1 into pPB-Cas9-puro at the cloning site. We named the construct with

insert as pPB-Cas9-puro-AEBP1-f1/r4.

AEBP1 overexpression experiment

Cell line LN229 was seeded at 4 × 105 cells/well in a 60 mm plate and incubated in

standard culture medium at 370 °C overnight. Culture plates designated for pcDNA

vector or pcDNA-AEBP1 transfection were done in triplicates. Transfection was done

the next day using Fugene 6 transfection reagent from Roche. We used Reagent to

DNA ratio of 3:1 during the transfection. Cells were harvested 48 h after transfection.

Growing Cells in culture plates were trypsinized, spun down and washed with PBS for

Fig. 2 The ImpCoxSisLasso algorithm
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two times. Cell pellet was stored at -80 °C for RPPA analysis. Cells from one plate of

vector transfection and another plate of pcDNA-AEBP1 transfection were lysed for

Western blotting analysis to confirm the expression of AEBP1 at the same time of

RPPA cell pellet preparation.

AEBP1 CRISPR-cas9 knockdown experiment

Cell line LN229 was seeded at 4 × 105 cells/well in a 60 mm plate as above. Culture

plates designated for vector or sgRNA-AEBP1 transfection were done in triplicates.

Transfection was performed the next day after seeding using Fugene 6 transfection re-

agent from Roche and followed the same procedure as above. 48 h after transfection,

puromycin was added to each culture dish at a final concentration of 1.5μg/ml. Trans-

fected LN229 cells survived puromycin selection and grew well. LN229 cell pellet was

prepared in the same way as above and stored at -800C for RPPA analysis. RPPA pro-

cessing of frozen cell pellets: Frozen cell pellets were submitted to the RPPA core facil-

ity at M.D. Anderson Cancer Center. At the RPPA core, protein was extracted by

applying RPPA lysis buffer to the cell pellets. Protein lysates were serially-diluted in

lysis buffer and printed on nitrocellulose-coated RPPA slides. Slides were incubated

with around 300 validated primary antibodies followed by binding with corresponding

Biotinylated secondary antibodies and Avidin-Biotinylated Peroxidase (Vectastain Elite

ABC kit, Vector Lab). Signals were detected by DAB colorimetric reaction. Signals on

the slides were scanned and quantified as per protocol at the core facility.

Polymerase chain reaction (PCR)

Total RNA was extracted from cultured cells using Trizol reagent (Invitrogen, Cama-

rillo, CA, USA). Isolated RNA was reverse-transcribed into cDNA using a cDNA syn-

thesis kit (Vazyme, Jiangsu, China), in accordance with the manufacturer’s protocols.

qPCR was performed using synthetic primers and SYBR Green (Thermo, Rockford, IL,

USA) with an IQ5 Detection System. After incubating at 50 °C for 2 min and 95 °C for

10 min, the samples were subjected to 40 cycles of 95 °C for 15 s and 60 °C for 1 min.

The sequences of the primers specific for target genes are listed in Table 1.

Results
Key genes selection

By integrating the genes selected by ImpCosSisLasso and previous studies [2], Fig. 3

demonstrates that AEBP1 is the only mutual explored gene for ImpCoxSisLasso, Cox

Lasso, Coxsis and CoxSisLasso, which implies that AEBP1 is very potential for the sur-

vival time of GBM. The key genes selected by ImpCoxSisLasso are listed in Table 2 and

Table 1 The sequences of the primers specific for target genes

Target gene The sequences of the primers specific

HES1-F 5’GGCGGCTAAGGTGTTTGGAGG3’

HES1-R 5’GGGCCGCTGGAAGGTGACAC3’

HK2-F 5’AGGGGACTTTGATATCGACATTG3’

HK2-R 5’GCCCCCCACTCCATATTGATAC3’
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Supplementary Tables S1.1, 1.2, 1.3. The genes selected by previous algorithms [2] are

shown in Supplementary Table S1.4.

Performance comparison for different survival analysis algorithms

Here, we use Receiver operating Characteristic (ROC) and Area Under Curve (AUC)

[21] curves to compare the performance of the aforementioned algorithms [2]. Both

ROC (Fig. 4a) and AUC (Fig. 4b) curves show that ImpCoxSisLasso outperforms the

CoxLasso, CoxSis and CoxSisLasso algorithms [2].

Immune-chemistry experiment

Figure 5a, b and c demonstrate that AEBP1 is positively detectable in GBM. Figure 5d,

e and f also show that EGFR is positively expressed in GBM. Next, Table 3 shows that

there is a strong correlation between AEBP1 and EGFR, since the p value of Chi square

test [16] is less than 0.05. Lastly, Supplementary Table S2 lists the protein expressions

for AEBP1 and EGFR in immune-chemistry experiment, as well as we use Fig. 1a to

demonstrate the impact of AEBP1 on the survival time for GBM patients.

Protein network analysis

Firstly, we increase and keep the AEBP1 expression for LN229 cell lines in the experi-

mental group and control group, respectively. Then, we carry out RPPA experiment

twice for these two groups. Finally, the AEBP1 Up data set (Supplementary Table S3.1)

shows 287 related proteins’ expression.

Fig. 3 Venn plot for the key gene

Table 2 Selected genes by ImpCoxSisLasso strategy

Key gene

AEBP1, CDCA7L, SNTB1, TELO2, SLC35D1, FOXG1, ARIH2_INTS1, ZNF786_AEBP1, ZNF786_INTS1, ZNF786_SGCD,
ZNF786_EIF3A, ZNF786_CDCA7L, ZNF786_TELO2, AEBP1_IL17RC, INTS1_SGCD, INTS1_IL17RC, INTS1_SLC35D1,
GDNF_IL17RC, SGCD_TELO2, IL17RC_TELO2, CBLN1_TELO2, SLC35D1_TELO2

You et al. BMC Bioinformatics 2020, 21(Suppl 13):383 Page 7 of 14



Secondly, we knock out the AEBP1 by CRISPR-cas9 and keep the AEBP1 expression

for LN229 cell lines in the experimental group and control group, respectively. Then,

we carry out RPPA experiment twice for these two groups. Finally, the AEBP1 Down

data set (Supplementary Table S3.2) shows 302 related proteins’ expression.

Thirdly, we use Eq. 5. to compute the fold change between experimental and control

group for both AEBP1 Up and Down data set, respectively.

FCi ¼

Xm
j¼1

ExPij

Xm
j¼1

CoPij

ð5Þ

Here, FCi is the fold change between experimental (ExPij) and control group (CoPij). i

represents the index of the proteins. j represents the index for the experiment, and m

represents the replicates number. ExPij and CoPij are the proteins’ expression measured

by RPPA experiment.

Fig. 4 Algorithm performance comparison (a) ROC and (b) AUC

Fig. 5 Immunohistochemistry and survival analysis results. A, B and C show high (++), low (+) and negative
(−) AEBP1 expression in GBM, respectively. And D, E and F show high (++), low (+) and negative (−) EGFR
expression, respectively
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Judgei FCið Þ ¼ UP FCi > 1
DOWN FCi≤1

�
ð6Þ

Next, we use Eq. 6. to determine which proteins are promoted or inhibited by AEBP1.

For AEBP1 Up data set, the promoted proteins are listed in Supplementary Table S4.1

as AEBP1 promoted data set. For AEBP1 Down data set, the inhibited proteins are

listed in Supplementary Table S4.2 as AEBP1 inhibited data set.

Lastly, we compare the experimental group (ExPij) and control group (CoPij) for both

AEBP1 Promoted and Inhibited data sets by T test [3]. The null hypothesis is that the

average expression level of a protein under experimental condition is equal to the level

under control conditions. After we compute the P-value for both AEBP1 promoted data

set and AEBP1 inhibited data set, 7 proteins’ expression are statistically significant in

AEBP1 promoted data set (Table 4) and AEBP1 inhibited data set (Table 5), respect-

ively. The detail data is listed in Supplementary Table S5.

Since manually reviewed experimental evidences already turn out that ACC1-R-C

(ACC1) [27], EMA-M-C (EMA) [28], Raptor-R-V (Raptor) [29], Rictor_pT1135-R-V

(Rictor) [30] and SOD1-M-V (SOD1) [31] are related to AEBP1, we then carry out PCR

experiment for HES1-R-V (HES1) and Hexokinase-II-R-V (HK2) in Cell Line LN-18,

LN-229, and U251 to confirm the correlation between the expression of these two

proteins and AEBP1, respectively.

PCR verification

Figure 6 and Supplementary Table S6 indicate that the expressions of both HES1 and

HK2 are positively related to the expression of AEBP1. Therefore, we conclude that all

the proteins listed in Tables 4 and 5 are related to the expression of AEBP1.

Discussion
This study aims to investigate the origin of the GBM from systematic view. Three

research questions were proposed and addressed.

Since previous additive survival analysis algorithms (CoxLasso, CoxSis and CoxSi-

sLasso [2]) do not consider the gene’s interaction, they neither agree with the nature of

biology [32–35] nor have the high predictive accuracy. Here, after we integrate inter-

action item into Eq. 4 of ImpCoxSisLasso algorithm, we not only can explore the gene

Table 3 Statistical analysis of IHC data for AEBP1 and EGFR protein in GBM

AEBP1 positive (++&+) AEBP1 negative (−) Row Total

EGFR+ 18 11 29

EGFR- 2 7 9

Column total 20 18 38

P-Value 0.036485093

Table 4 AEBP1 promoted dataset

Protein Name FCi P-value

ACC1-R-C 1.06701864 0.01841297

EMA-M-C 1.36047171 0.02989766

HES1-R-V 1.15596 0.00029086
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signature of GBM for P> > N type of data (Table 2), but also Fig. 4 turns out that

ImpCoxSisLasso algorithm is much better than the previous [2]. Moreover, Fig. 3

shows that both ImpCoxSisLasso algorithm and our previous survival algorithms (Cox-

Lasso, CoxSis and CoxSisLasso [2]) mutually find AEBP1 as the key gene related to the

survival time of GBM patients. Lastly, we use TCGA data [24] (Figs. 1a) and 5 to cross

validate the impact of AEBP1 gene on GBM.

In this report, Table 3 and Fig. 5 demonstrated that there is a significant correlation

between the expression of AEBP1 and EGFR in patient samples of GBM. Through over-

expression or knockdown of AEBP1 gene in glioma cell line LN229 and RPPA analysis,

we can show that a panel of proteins (Tables 4 and 5) are significantly affected by the

manipulation of AEBP1 expression. By a stringent cutoff of p < 0.05, HK2(Fig. 6), SOD1

[36], Raptor [37], Rictor [38] were markedly downregulated when AEBP1 expression

was knocked down. Using the same cutoff standard, ACC1 [39], HES1(Fig. 6) and EMA

[28] were significantly upregulated when AEBP1 was overexpressed.

Through extensive literature research [36, 37, 40, 41], we found that affected proteins

by either AEBP1 overexpression or knockdown converge to the regulation of mainly

one signaling pathway: the MTOR pathway. MTOR forms two different complexes,

MTORC1 and MTORC2. HK2 is a downstream effector of MTORC1 through the tran-

scriptional regulation of transcription factor HIF1 [41]. It integrates energy metabolism

with cancer cell survival. MTORC1 directly regulates Superoxide dismutase 1 (SOD1)

through phosphorylation [36]. SOD1 can in turn act as a nuclear transcription factor to

Table 5 AEBP1 inhibited dataset

Protein Name FCi P-value

Hexokinase-II-R-V 0.98022947 0.00639911

Raptor-R-V 0.9132965 0.03564656

Rictor_pT1135-R-V 0.95940456 0.02726222

SOD1-M-V 0.97722104 0.03054562

Fig. 6 Gene expression of HES1 and HK2 in different cell lines with AEBP1 siRNA knockdown. Here, X-axis
represents the cell line, Scramble siRNA and AEBP1 siRNA treatment. Y-axis represents the fold changes of
different genes in mRNA levels as a result of AEBP1 knockdown. a, b and c show the HES1 mRNA
expression in Cell Line LN-18, LN-229, and U251 respectively. d, e and f show the HK2 mRNA expression in
Cell Line LN-18, LN-229, and U251 respectively. Data presented were from qRT-PCR experiment
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fend off oxidative stress [14] in cancer cells [31]. Raptor is an interacting partner of

MTORC1 [40] and phosphorylation of Raptor by MTORC1 is essential for the kinase

activity of MTORC1 on its substrates [37]. Dissociation of Raptor from MTORC1

resulted in the inhibition of MTOR signaling activity [29].

On the other hand, Rictor is an essential partner of MTORC2 [42, 43]. Blocked asso-

ciation of Rictor from MTORC2 led to the inhibition of MTORC2 activity and cancer

cell death in glioma cell line in vitro [30]. In addition, overexpression of Rictor was as-

sociated with increased MTORC2 activity and tumor growth in glioma patients [44].

ACC1 is a SREBP1 target gene [39]. MTORC1 signaling controls the expression of

SREBP1 and consequently regulates SREBP1 target gene ACC1 expression [27]. HES1

(Hairy and Enhancer of Split 1) is a downstream target of Notch signaling pathway [45,

46]. HES1 antagonizes PTEN-induced inhibition of MTOR signaling activity [47]. EMA

(Epithelial Membrane Antigen) is a glycosylated protein encoded by MUC1 gene [28].

Although the cytoplasmic tail of EMA has roles in signal transduction, the relationship

between EMA and MTOR signaling pathway is not clear at this moment. But EGFR

signaling activation increased MUC1 gene expression in some cancer cell lines [48].

Taken together, our results indicate that AEBP1 regulates the expression of Raptor

and Rictor, key binding partners of MTORC1 and MTORC2. AEBP1 also has an im-

portant role in regulating the expression of HES1 which promotes MTOR activity by

inhibiting PTEN function [47, 49]. Enhanced MTOR signaling by AEBP1 stimulates

downstream expression of MTOR targets HK2 and ACC1 or increases phosphorylation

of MTOR target SOD1. The net effect of AEBP1 overexpression in glioma is the activa-

tion and promotion of MTOR signaling pathway in cancer cells. We illustrate the

effects of AEBP1 with different molecular players on MTOR pathway in a schematic

model (Fig. 1b).

AEBP1 overexpression in glioma is associated with higher tumor grade and worse

prognosis [50]. AEBP1 as therapeutic target for cancer treatment has not drawn much

attention. However, clinical trials are under way to test the effectiveness of MTOR in-

hibitors in the treatment of different types of cancers [51]. Indeed, it has been reported

that MTOR inhibitors are effective in a subset of patients with Rictor gene amplification

in lung cancer [52] and gastric cancer [38]. MTOR inhibitors are actively investigated

in preclinical cancer cell line and mouse models of GBM with various success [51, 53].

Experimental results from these preclinical studies place MTOR as the pivotal target in

treating GBM [53]. A search of clinical trials in the USA revealed 34 trials using MTOR

inhibitors in glioma patients (www.clinicaltrials.gov last accessed on July 20th, 2019).

Most of these clinical trials are still under way. Completed trials showed limited suc-

cesses. In terms of our findings, we may need to take into consideration the expression

levels of AEBP1 in patients’ tumor samples when planning clinical trials of MTOR in-

hibitors on GBM or evaluating clinical responses of MTOR inhibitors in the treatment

of GBM.

Conclusions
In conclusion, in step one, our improved survival analysis model not only finds that the

key gene, but also has better performance and efficiency. In step two, through CRISPR

and RPPA techniques, we get reliable protein data, and then search for the seven key

proteins by a precise multi-scale mathematical model. And last, we analyze the
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relationship between AEBP1 and key proteins to identify that AEBP1 exerts its tumor-

promoting effects by mainly activating mTOR pathway in Glioma.

Although the results show that we can find the mechanism of AEBP1 in mTOR, we

can still improve it. For instance, in protein network, we can consider adding machine

learning algorithm to find the key protein. In the future, we can even improve the

survival time of patients through the explored pathway mechanism.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03674-4.

Additional file 1. This file contains all the supplementary tables and figures.

Abbreviations
GBM: Glioblastoma multiforme; AEBP1: Adipocyte enhancer-binding protein 1; CRISPR: Clustered regularly interspaced
short palindromic repeat sequences; RPPA: Reverse phase protein arrays; IQR: Interquartile range; PCR: Polymerase
Chain Reaction; ROC: Receiver operating Characteristic; AUC: Area Under Curve

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 21 Supplement 13, 2020: Selected articles from the
18th Asia Pacific Bioinformatics Conference (APBC 2020): bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-13.

Authors’ contributions
LZ participated in the design of the study. YJY and WJL collected and analyzed the data. XFR did the experiment. YJY,
WJL, TTL, MX, HRZ and LZ wrote and edited the manuscript. All authors read and approved the final manuscript.

Funding
Publication costs are funded by the National Natural Science Foundation of China [Nos.61372138 and Nos.11701469]
and the National Science and Technology Major Project [2018ZX10201002]. Top-notch Talent Cultivation Plan of South-
west Hospital (SWH2018BJKJ-05).

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and the additional file.

Ethics approval and consent to participate
the experimental protocol and the retrospective analysis of GBM specimens were approved by the Ethical Committee
of Southwest Hospital.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Computer Science, Sichuan University, Chengdu 610065, China. 2Department of Neurosurgery, Southwest
Hospital, Third Military Medical University, Chongqing, P.R. China. 3College of Mathematics and Statistics, Southwest
University, Chongqing 400715, P.R. China. 4School of Computing, Ulster University, Coleraine, Londonderry, Northern
Ireland, UK.

Published: 17 September 2020

References
1. Ahmadloo N, et al. Treatment outcome and prognostic factors of adult glioblastoma multiforme. J Egypt Natl Canc Inst.

2013;25(1):21–30.
2. Xia Y, et al. Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma

multiforme patients by a novel survival analysis model. BMC Genomics. 2017;18(Suppl 1):950.
3. Zhang L, et al. EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients.

J Mol Cell Biol. 2017;9(6):477–88.
4. Ladha J, et al. Identification of genomic targets of transcription factor Aebp1 and its role in survival of Glioma cells. Mol

Cancer Res. 2012;10(8):1039–51.
5. Wangaryattawanich P, et al. Survival analysis of pre-operative GBM patients by using quantitative image features. In:

International Conference on Control; 2014.

You et al. BMC Bioinformatics 2020, 21(Suppl 13):383 Page 12 of 14

https://doi.org/10.1186/s12859-020-03674-4
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-13


6. Pudelko L, et al. Glioblastoma and glioblastoma stem cells are dependent on functional MTH1. Oncotarget. 2017;8(49):
84671–84.

7. Wei N, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One. 2014;9(9):e106718.
8. Walters BJ, et al. Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the

Brain. Front Genet. 2016;6:362.
9. Xie Y, et al. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent

stem cells. Sci Rep. 2017;7(1):2320.
10. Nishizuka SS, Mills GB. New era of integrated cancer biomarker discovery using reverse-phase proteinarrays ☆. Drug

Metab Pharmacokinet. 2016;31(1):35–45.
11. Pushparaj PN, et al. siRNA, miRNA, and shRNA: in vivo applications. J Dent Res. 2008;87(11):992–1003.
12. Shull AY, et al. RPPA-based protein profiling reveals eIF4G overexpression and 4E-BP1 serine 65 phos-phorylation as

molecular events that correspond with a pro-survival phenotype in chronic lymphocytic leukemia. Oncotarget. 2015;
6(16):14632–45.

13. Ludovini V, et al. Reverse phase protein array (RPPA) combined with computational analysis to unravel
relevant prognostic factors in non- small cell lung cancer (NSCLC): a pilot study. Oncotarget. 2017;8(47):
83343–53.

14. Ummanni R, et al. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small
cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery ☆. Biochim Biophys Acta.
2014;1844(5):950–9.

15. O., N., BerEP4 and AE1/3 are Reliable Markers of Epithelial Content for Biomarker Discovery Using Reverse Phase Protein
Arrays (RPPA). 2016.

16. Zhang L, et al. Building up a robust risk mathematical platform to predict colorectal Cancer. Complexity. 2017;2017:14.
17. Zhang L, Zhang S. Using game theory to investigate the epigenetic control mechanisms of embryo development:

comment on: "epigenetic game theory: how to compute the epigenetic control of maternal-to-zygotic transition" by
Qian Wang et al. Phys Life Rev. 2017;20:140–2.

18. Zhang L, et al. Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based
on a jellyfish-based LAUPs analysis application (JBLA). Bioinformatics. 2018;34(21):3624–30.

19. Zhang L, et al. Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP)
scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale.
2016;8(31):14877–87.

20. Zhang L, et al. Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating
experimental data into a systems biological model. Bioinformatics. 2019;26:btz542. https://doi.org/10.1093/
bioinformatics/btz542.

21. Zhang L, et al. Computed tomography angiography-based analysis of high-risk intracerebral haemorrhage patients by
employing a mathematical model. BMC Bioinformatics. 2019;20(Suppl 7):193.

22. Zhang L, et al. Comprehensively benchmarking applications for detecting copy number variation. PLoS Comput Biol.
2019;15(5):e1007069.

23. Tong X, et al. Development of an agent-based model (ABM) to simulate the immune system and integration of a
regression method to estimate the key ABM parameters by fitting the experimental data. PLoS One. 2015;10(11):
e0141295.

24. Katarzyna T, Patrycja C, Maciej W. The Cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp
Oncol. 2015;19(1A):68–77.

25. Maglott DR, Nierman WC. Clone and genomic repositories at the American type culture collection. Genomics. 1990;8(3):
601–5.

26. Majdalawieh A, Zhang L, Ro H-S. Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory
responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell. 2007;18(3):930–42.

27. Jeon T, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab. 2012;23(2):
65–72.

28. C, Y., M. JL, and I. NK. MUC1 and cancer immunotherapy, vol. 1; 2017.
29. Oshiro N, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function.

Genes Cells. 2004;9(4):359–66.
30. Angelica BS, et al. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in

glioblastoma. PLoS One. 2017;12(4):e0176599.
31. Tsang CK, et al. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat

Commun. 2014;5(1):3446.
32. Van Dijk D, Sharma R, Nainys J, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell.

2018;174(3):716–729.e27.
33. Van Dijk D, et al. MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-

sequencing data. bioRxiv. 2017:111591.
34. Howard TD, et al. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum

Genet. 2002;70(1):230–6.
35. Upstillgoddard R, et al. Machine learning approaches for the discovery of gene–gene interactions in disease data. Brief

Bioinform. 2013;14(2):251–60.
36. Tsang CK, et al. SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation. Mol Cell. 2018;

70(3):502–15.
37. Foster KG, et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J Biol Chem.

2010;285(1):80–94.
38. Kim ST, et al. Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric

Cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition. Ann Oncol. 2016;28(3):547–54.
39. Yin G, et al. mTOR complex 1 signaling regulates the balance between lipid synthesis and oxidation in hypoxic

lymphocytes. Biosci Rep. 2017;37(1):BSR20160479.

You et al. BMC Bioinformatics 2020, 21(Suppl 13):383 Page 13 of 14

https://doi.org/10.1093/bioinformatics/btz542
https://doi.org/10.1093/bioinformatics/btz542


40. Kim D, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.
Cell. 2002;110(2):163–75.

41. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria
and TORCing to autophagy. Cell Death Differ. 2015;22(2):248–57.

42. Kocalis H, et al. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol Metab. 2014;3(4):
394–407.

43. Sarbassov DD, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent
pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.

44. Masri J, et al. mTORC2 activity is elevated in Gliomas and promotes growth and cell motility via overexpression of
Rictor. Cancer Res. 2007;67(24):11712–20.

45. Schnell SA, et al. Therapeutic targeting of HES1 transcriptional programs in T-ALL. Blood. 2015;125(18):2806–14.
46. Schreck KC, et al. The notch target Hes1 directly modulates Gli1 expression and hedgehog signaling: a potential

mechanism of therapeutic resistance. Clin Cancer Res. 2010;16(24):6060–70.
47. Wong GW, et al. HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCR -selected

mouse thymocytes. Blood. 2012;120(7):1439–48.
48. Dharmaraj N, Engel BJ, Carson DD. Activated EGFR stimulates MUC1 expression in human uterine and pancreatic cancer

cell lines. J Cell Biochem. 2013;114(10):2314–22.
49. Bhattacharya K, Maiti S, Mandal C. PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma via

Rictor hyperphosphorylation at Thr1135 and direct the mode of action of an mTORC1/2 inhibitor. Oncogenesis. 2016;
5(5):e227.

50. Kohsaka S, et al. Epiregulin enhances tumorigenicity by activating the ERK/MAPK pathway in glioblastoma. Neuro-
oncology. 2014;16(7):960.

51. Fan Q, Nicolaides T, Weiss WA. Inhibiting 4EBP1 in Glioblastoma. Clin Cancer Res. 2018;24(1):14–21.
52. Cheng H, et al. RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from

treatment with mTORC1/2 inhibitors. Cancer Discov. 2015;5(12):1262–70.
53. Fan Q, et al. A kinase inhibitor targeted to mTORC1 drives regression in Glioblastoma. Cancer Cell. 2017;31(3):424–35.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

You et al. BMC Bioinformatics 2020, 21(Suppl 13):383 Page 14 of 14


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Survival data
	Improved survival analysis algorithm (ImpCoxSisLasso)
	Immune chemistry experiment
	Cell lines, plasmids
	AEBP1 overexpression experiment
	AEBP1 CRISPR-cas9 knockdown experiment
	Polymerase chain reaction (PCR)

	Results
	Key genes selection
	Performance comparison for different survival analysis algorithms
	Immune-chemistry experiment
	Protein network analysis
	PCR verification

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

