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Abstract
Background: Protein-DNA interaction governs a large number of cellular processes,
and it can be altered by a small fraction of interface residues, i.e., the so-called hot spots,
which account for most of the interface binding free energy. Accurate prediction of hot
spots is critical to understand the principle of protein-DNA interactions. There are
already some computational methods that can accurately and efficiently predict a
large number of hot residues. However, the insufficiency of experimentally validated
hot-spot residues in protein-DNA complexes and the low diversity of the employed
features limit the performance of existing methods.

Results: Here, we report a new computational method for effectively predicting hot
spots in protein-DNA binding interfaces. This method, called PreHots (the abbreviation
of Predicting Hot spots), adopts an ensemble stacking classifier that integrates different
machine learning classifiers to generate a robust model with 19 features selected by a
sequential backward feature selection algorithm. To this end, we constructed two new
and reliable datasets (one benchmark for model training and one independent dataset
for validation), which totally consist of 123 hot spots and 137 non-hot spots from 89
protein-DNA complexes. The data were manually collected from the literature and
existing databases with a strict process of redundancy removal. Our method achieves a
sensitivity of 0.813 and an AUC score of 0.868 in 10-fold cross-validation on the
benchmark dataset, and a sensitivity of 0.818 and an AUC score of 0.820 on the
independent test dataset. The results show that our approach outperforms the existing
ones.

Conclusions: PreHots, which is based on stack ensemble of boosting algorithms, can
reliably predict hot spots at the protein-DNA binding interface on a large scale.
(Continued on next page)
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Compared with the existing methods, PreHots can achieve better prediction
performance. Both the webserver of PreHots and the datasets are freely available at:
http://dmb.tongji.edu.cn/tools/PreHots/.

Keywords: Protein-DNA complexes, Hot spots, Ensemble stacking classifier, Feature
selection

Background
With the rapid development of structural biology technologies such as X-ray crystal-
lography, NMR spectroscopy, and cryo-electron microscopy, a large number of tertiary
structures of biological macromolecules have been generated [1]. However, the interpre-
tation of these structures and the recognition of critical residues lie far behind the step
of structure generation. Proteins and DNA are two kinds of most important biological
macromolecules of life compounds. The interactions of proteins and DNA are essential
for many crucial cellular processes, including gene expression and regulation, DNA repli-
cation and repair. For example, genes are regulated by the DNA-binding proteins that
bind to some specific DNA sequences [2, 3]. Although DNA-protein binding interfaces
contain a large number of residues, the associations between DNA and proteins are gov-
erned by a small fraction of residues with high binding affinity, which are also called hot
spots. Hot spots are considered the most crucial residues for the formation and stabi-
lization of protein complexes. Hence, accurate identification of hot spots is important to
understand molecular regulation mechanisms and provide solutions to disease diagnosis
and treatment [4].

At present, many experimental techniques have been used to measure protein-
DNA binding free energy by site-directed mutagenesis, such as surface plasmon reso-
nance (SPR) [5], isothermal titration calorimetry (ITC) [6] and fluorescence resonance
energy transfer (FRET) [7]. However, these experimental techniques are not only ineffi-
cient and laborious, but also not suitable for dealing with the vast amounts of residues.
Therefore, efficient and effective computational methods for identifying protein-DNA
binding hot spots are greatly desirable and urgently needed.

Computational approaches can complement the experimental methods and make
large-scale predictions efficiently. Molecular dynamics simulations and feature-based
approaches are effective ways to identify hot spots. Two molecular dynamics simula-
tion methods, SAMPDI [8] and PremPDI [9], were proposed to predict the change of
protein-DNA binding free energy. SAMPDI utilizes the modified Molecular Mechan-
ics Poisson-Boltzmann Surface Area (MM/PBSA) approach [10] along with additional
knowledge-based features to predict binding affinity changes upon single mutation, while
PremPDI relies on molecular mechanics force fields and fast side-chain optimization
algorithms to evaluate the effects of single mutations on protein-DNA interactions.
As for feature based approaches, a method called mCSN-NA [11] was developed,
which uses graph-based signatures to predict the impact of a single mutation on
protein-nucleic acid binding. Another feature-based approach PrPDH [12] was devel-
oped to predict protein-DNA binding hot spots. Although substantial advances have
been made, there is still much space to explore for accurately identifying DNA-binding
hot spots.

http://dmb.tongji.edu.cn/tools/PreHots/
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In this work, we develop a novel computational approach PreHots (the abbreviation
of Predicting Hot spots), which is based on stack ensemble of boosting algorithms, for
effectively predicting hot spots in protein-DNA binding interfaces. To this end, a dataset
was constructed, which contains 260 samples from 89 protein-DNA complexes. More
than half of the data are manually collected from the literature by ourselves, and the rest
data are from the databases of ProNIT [13] and dbAMEPNI [14]. We totally calculated
157 features for fully representing hot spots, including not only the properties of the tar-
get residue but also target residues’ network information. From these features, a set of
19 informative features are selected by using a sequential backward selection algorithm.
Extensive experiments were conducted on the benchmark dataset and the independent
dataset to evaluate the proposed method, with comparison to existing methods. The
experimental results show that our method can significantly boost the performance of
DNA-binding hot spots prediction.

Methods
Figure 1 shows the workflow of the proposed method PreHots. First, a new reference
dataset that consists of 123 hot spots and 137 non-hot spots from 89 protein-DNA com-
plexes is constructed. The data are manually collecting from the literature and databases
with a strict process of redundancy removal. Then, four types of features are encoded to
characterize the target residues, including network features, exposure features, sequence
features and structural features. Next, the informative features are selected by using
sequential backward selection method. Following that, three boost classifiers, includ-
ing categorical boosting (Catboost) [15], extreme gradient boosting (XGBoost) [16] and
gradient tree boosting (GTB) [17] classifiers, are taken as the base models to form an
ensemble stacking classifier (ESC), by a meta-model that adopts logistic regression (LR)
[18] classifier. Finally, prediction results are output by the ESC model based on the
selected feature set.

Datasets

We constructed an initial dataset, containing experimentally measured binding free
energy changes of 660 mutations from 162 protein-DNA complexes, which were obtained

Fig. 1 The workflow of PreHots
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by combining two databases and manually searching the literature. Among them, 79
protein-DNA crystal structures were obtained from the database of ProNIT [13] and
dbAMEPNI [14], and the other 83 protein-DNA crystal structures were manually col-
lected from the literature.

To build high quality protein-DNA binding hot spots dataset, we used two methods to
determine the interface residues. Solvent accessibility area (SAS) is widely used to iden-
tify interfacial residues, which can be obtained by calculating the difference of absolute
solvent accessibility (�ASA >1Å) and the ratio of relative solvent accessibility (RASA
>5%). And to make the results more accurate and stable, the ASA and RASA values of
residues are calculated from protein structures by using Naccess [19]. Another method is
to calculate the distance between the target residue and the DNA strand. If the distance
is less than 5Å, the target residue can be considered as the interface residue. Moreover,
we removed redundant homology sequences, where the similarity of protein sequences
is more than 40% by using CD-HIT [20]. In this study, we define hot spots as the inter-
face residues with the change in binding free energy (��G) ≥1.0 kcal/mol, and the others
are defined as non-hot spots. Finally, the constructed dataset consists of 123 hot spots
and 137 non-hot spots from 89 complexes. In order to construct a balanced dataset to
reduce the potential bias of the machine learning method, 64 protein-DNA complexes
were randomly selected to form the benchmark dataset, which contains 90 hot spots and
90 non-hot spots. The rest of 25 protein-DNA complexes constitute the independent
dataset, including 33 hot spots and 47 non-hot spots. To the best of our knowledge, our
dataset is the largest one for predicting protein-DNA binding hot spots.

Performance measures

We do performance evaluation by 10-fold cross-validation. The benchmark dataset is ran-
domly divided into 10 subsets, each of which contains approximately the same number of
samples. For each round, nine subsets are merged as the training set, while the remaining
one subset is used for testing.

For comprehensively assessing the performance of our model, we adopted seven widely
used evaluation metrics, including accuracy (ACC), sensitivity (SEN/Recall), specificity
(SPE), precision (PRE), F1-score (F1), Matthew’s correlation coefficient (MCC) and the
area under the ROC curve (AUC). ACC, SEN, SPE, PRE, F1 and MCC are defined as
follows:

SEN = TP
TP + FN

(1)

SPE = TN
TN + FP

(2)

PRE = TP
TP + FP

(3)

ACC = TP + TN
TP + TN + FP + FN

(4)

F1 = 2 × SEN × Precision
SEN + Precision

(5)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)
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Above, TP is the number of true positives, FP is the number of false positives, TN is the
number of true negatives and FN is the number of false negatives, respectively.

Feature description

In order to explore informative features that play important role in the prediction of
protein-DNA binding hot spots, we collected a comprehensive feature set that consists of
157 features, which can be roughly divided into four groups: residue interaction network
features, solvent exposure features, and traditional features based on protein sequence
and structure. More details about these feature are given below.

Residue interaction network features

As a representative kind of protein structures, residue interaction networks (RINs) have
been widely and successfully used for revealing the effect of residues mutation, func-
tional region and protein folding [21]. The traditional way to build RINs is to calculate
the distance between Cα atoms of two residues within a certain threshold, which ranges
from 5 to 9Å [22, 23]. But in fact, the interaction of protein-DNA depends on several
intermolecular factors such as hydrogen bonds, van der Waals contacts, ionic bond and
several other factors [24, 25]. The stability of protein-DNA interaction is maintained by
forming hydrogen bonds between amino acid side chain residues of protein and DNA
bases [26]. Therefore, the construction of RINs based on whether there is an intermolec-
ular interaction between any two nodes, including residue and DNA, in the protein-DNA
complexes by using RING [27]. In this study, five intermolecular interactions are con-
sidered: hydrogen bond, Van der Waals, disulfide bond, salt bridge, π-π stacking and
π-cation.

To make the network contain more knowledge, each edge weight is assigned with the
distance between two corresponding nodes. We calculate 10 RINs features that represent
the importance of the target residue in the RINs, including node degree, clustering, close-
ness, betweenness, eigenvector, eccentricity, average neighbor degree, flow closeness,
square clustering and Katz centrality.

Solvent exposure features

Solvent exposure of amino acid is crucial for exploring and predicting protein interac-
tion and function. Solvent exposure features consist of several types of features, including
half-sphere exposure (HSE), contact number (CN), residue depth (RD), accessible sur-
face area (ASA) and relative accessible surface area (RASA). The solvent accessible has
been extensively and successfully utilized to predict protein-protein interaction hot spots
[28–31]. The limitation of solvent accessible is that it cannot provide any information
about completely buried residues. Compared with traditional solvent accessible, half-
sphere exposure (HSE) can describe the local environment of the target residue better
from another perspective [32]. RD represents the average atom depth of target residue
atoms, while CN is the number of residues in the sphere within a specific distance [33].

In this study, we calculated the characteristics of half-sphere exposure, contact number
and residue depth, which could complement the solvent exposure information of interface
residues. Based on protein sequence, a series of computing tools have been developed
for predicting HSE, CN. We choose the method of HSEpred [32] and SPOT-1D [34] to
calculate these features. For protein structure, we use hsexpo [33] to calculate the above
three types of features, including HSE, CN and RD.
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Structure-based features

Based on the three-dimensional structures of proteins, structure-based features were cal-
culated, including hydrogen bonds, consensus scores, secondary structures, fluctuation
score and solvent accessible surface area.

1. Hydrogen bonds (Hbond). The stability of protein-DNA interaction is maintained
by forming hydrogen bonds between amino acid side chain residues of protein and DNA
bases [26]. The hydrogen bond of protein-DNA complexes were calculated by using
HBPLUS [35].

2. Consensus scores. Consensus score is a linear combination of residue interface
propensity score, residue energy score and residue conservation score. Here, we used
ENDES [36] to calculate consensus score, while the side chain energy score and relative
solvent accessibility can also be obtained.

3. Secondary structure (SS). As an important feature, the secondary structural charac-
teristics of residues were obtained from both sequences and structures of proteins. The
definition of secondary structures of proteins (DSSP) [37] defines the secondary structure
according to atomic coordinates in the protein data bank (PDB) [1]. In addition, several
tools can predict the secondary structure of residue from protein sequence, including
SPOT-1D [34], NetSurfp2 [38] and SPIDER3 [39].

4. Fluctuation score. The study of protein fluctuation is helpful to understand protein
structures. FlexPred was used to predict the value of residue fluctuations [40]. Meanwhile,
B-factor, represents the dynamic motion of atoms in a protein, was extracted from the
PDB file.

5. Solvent accessible surface area. Solvent accessible surface area, including available
surface area (ASA) and relatively accessible surface area (RASA), which has a strong cor-
relation with hot spot prediction [12]. We applied Naccess [19] to calculate the ASA and
RASA of residues from protein-DNA complexes.

Sequence-based features

Based on previous studies, we calculated many features of protein-DNA binding residues
from protein sequences.

1. Position-specific scoring matrix (PSSM). It is well known that PSSM is an essen-
tial feature for predicting hot spots [4, 28, 31]. PSSM score represents the relationship
between the frequency of amino acid substitutions and that expected by chance. Nega-
tive numbers indicate less frequent substitutions than expected by chance, while positive
numbers mean more frequent substitutions than expected.

2. Conservation score. Conservative analysis of residues is extensively used to identify
functionally important residues in protein sequences. The conservation score of residues
can be calculated by using Jensen-Shannon divergence [41].
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3. Solvent accessible surface area. Apart from deriving solvent accessibility from pro-
tein structure, we also used SPIDER3 [39] and NetSurfp2 [38] to calculating ASA and
RASA from protein sequence.

4. Physicochemical features. Amino acid indices database (AAindex) collects vari-
ous biochemical and physicochemical characteristics of amino acids [42]. In this work,
protein-DNA binding hot spots are described by eight physicochemical characteris-
tics: propensities, polarity, hydrophilicity, average accessible surface area, atom-based
hydrophobic moment, flexibility parameter for no rigid neighbors, hydrophobicity and
polarizability.

5. Blocks substitution matrix (BLOSUM). BLOSUM62 [43] means that sequence sim-
ilarity is more than 62% in terms of sequence alignment. We calculated BLOSUM62, the
most widely used amino acid scoring matrix, whose scores indicate the similarity between
two types of amino acids.

6. Local structural entropy (LSE). Previous research found that local structural entropy
is related to the stability of protein, and it was successfully used for predicting protein-
protein interaction hot spots. In this work, we calculated the LSE [44] value of each
residue within a protein sequence.

7. Disordered regions (DISO). Recognizing protein disorder regions contributes to the
understanding of protein function and protein fold pathway. SPOT-Disorder [45] and
RaporX-Property [46] were used to predict disorder regions of protein-DNA binding
residues.

Feature selection

For high-dimensional datasets, feature selection can effectively remove some irrelevant
features, which contributes to lifting the efficiency of learning tasks and making the model
easier to be understood. We used a sequential backward selection (SBS) algorithm to
select a subset of informative features that are highly relevant to protein-DNA binding hot
spots from the initial set of 157 features. Sequential backward selection (SBS), which is a
heuristic search algorithm, removes one feature each time till an optimal feature subset is
generated. Here, each resulting feature set is evaluated by using 10-fold cross-validation
with the ESC classifier. Such 10-fold cross-validation procedure is repeated 30 times and
the average performance over 30 trials is taken as the result. Besides, we combine the
independent dataset and each cross-validation test dataset as the test dataset, which is
used to evaluate features and obtain the evaluation score at each 10-fold cross-validation.
The evaluation metric of feature selection is represented by Ec, calculated as follows:

Ec = 1
R

R∑

R=1

{
1
n

n∑

n=1
(ACCi+SENi+SPEi+MCCi+AUCi)

}
(7)

where R is the number of cross-validation; n is the number of iterations of 10-fold cross-
validation; ACCi, SENi, SPEi, MCCi, and AUCi indicate the values of accuracy, sensitivity,
specificity, Matthew’s correlation coefficient and AUC score of the i-th 10-fold cross-
validation, respectively.
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In the SBS method, features are iteratively removed one by one from the initial fea-
ture set. In the first round, each feature is deleted once (resulting in 157 subsets of 156
features). If the ESC classifier based on a certain feature subset achieves the higher Ec,
this feature subset is left for the next round of feature selection. Such a feature selection
process would continues till Ec does not increase any more.

Ensemble stacking classifier

Stacking, also called super learning [47], is an ensemble machine learning method
that constructs the base-level models and meta-model by combining different machine
learning classifiers. The construction of base-level models is based on the bench-
mark dataset, and the meta-model is trained on the outputs of the base-level models.
The ensemble stacking classifier (ESC) can overcome the disadvantage of single clas-
sifier and make the prediction more robust than a single model. In this study, we
choose three boost classifiers as the base-level models, which are categorical boosting
(Catboost) [15], extreme gradient boosting (XGBoost) [16] and gradient tree boost-
ing (GTB) [17] classifiers, and the meta-model adopts logistic regression (LR) [18]
classifier.

Results and discussion
Performance of the ensemble stacking classifier

Ensemble stacking classifier (ESC) is an ensemble technique that the output of the first-
level (base) classifiers is taken as the input of the second-level classifier by constructing
a two-level model. In this study, the first-level classifiers consist of categorical boosting
(Catboost) [15], extreme gradient boosting (XGBoost) [16] and gradient tree boost-
ing (GTB) [17] models, and the second-level classifier is a logistic regression (LR) [18]
model. To check whether ESC is suitable for predicting hot spots in the complexes, we
compared ESC with ensemble vote classifier (EVC) and some popular machine learn-
ing models, including random forests (RF) [48], GTB, support vector machine (SVM)
[49], Catboost and XGBoost. Among them, the ensemble vote classifier (EVC) is another
ensemble technique, which integrates different machine learning algorithms and pre-
dicts hot spots by using the average predictive probability of all algorithms. To avoid
the randomness of cross-validation results, we do 10-fold cross-validation 30 times and
the averaged result of all 30 cross-validation trials is taken as the final result. Table 1
shows the results of ESC and the compared methods. We can see that the ensem-
ble techniques are generally superior to the other machine learning methods. And,
ECS outperforms EVC and can significantly improves the performance of hot- spots
prediction.

Table 1 Performance comparison between ESC and five existing classifiers

Method ACC SEN SPE PRE F1 MCC AUC

RF 0.683 0.696 0.684 0.687 0.669 0.374 0.758

SVM 0.685 0.673 0.695 0.670 0.665 0.366 0.793

CatBoost 0.722 0.731 0.726 0.734 0.721 0.455 0.806

GTB 0.711 0.743 0.733 0.718 0.705 0.468 0.816

EVC 0.725 0.741 0.721 0.699 0.694 0.446 0.826

ECS 0.783 0.795 0.753 0.784 0.782 0.562 0.833
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Performance of feature selection

Feature selection is crucial for building accurate classification models, which aims to
select a small number of informative features. In this study, our initial feature set consists
of 157 candidate features, which can be divided into four groups: residue contact network
features (network), solvent exposure features (exposure), sequence features and struc-
tural features. We used a sequential backward selection (SBS) method to choose relevant
and informative features from the initial feature set. SBS uses a stepwise feature selection
scheme, which iteratively removes features one by one from the feature set. The evalua-
tion criterion (Ec) represents the average prediction performance of ESC when selecting
features. Figure 2 shows how Ec changes during the process of stepwise feature selection.
Ec reaches the maximum when the number of selected features is 19. Consequently, these
19 features form our optimal feature set.

To assess the advantage of the SBS method, we compared it with four existing meth-
ods, including random forest (RF), recursive feature elimination (RFE) [50], maximum
relevance minimum redundancy (mRMR) [51] and the block Hilbert-Schmidt indepen-
dence criterion (HSIC) Lasso [52]. The commonly used methods are RF, RFE and mRMR,
which use the mean decrease Gini index (MDGI), SVM-based recursive feature elimi-
nation and max relevance and min redundancy criteria to evaluate the importance of
features, respectively. The block HSIC Lasso (HSIC Lasso) is a relatively novel method,
which adopts an effective nonlinear feature selection algorithm based on HSIC Lasso to
select informative biological features. To obtain reliable results, we ran 30 times of 10-
fold cross-validation and took the average performance as final result. Table 2 shows the
performance of the five feature selection methods on the benchmark dataset. We can see
that SBS can select better features, which are helpful to predict protein-DNA binding hot
spots. And the ESC classifier with SBS achieves the best prediction performance, with a
0.535 MCC and a 0.853 AUC.

Significance of selected features

By using the SBS feature selection method, we obtain an optimal feature set, which con-
tains 19 features as shown in Table 3. The ranking of these selected features is based

Fig. 2 The change of Ec value in the process of stepwise feature selection
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Table 2 Performance comparison between SBS and four existing feature selection methods

Method ACC SEN SPE PRE F1 MCC AUC

RF (28) 0.744 0.739 0.749 0.716 0.715 0.483 0.823

RFE (20) 0.739 0.723 0.730 0.719 0.718 0.452 0.830

mRMR (25) 0.755 0.787 0.746 0.766 0.761 0.531 0.835

HSIC Lasso (30) 0.740 0.777 0.727 0.746 0.744 0.500 0.841

SBS (19) 0.767 0.784 0.766 0.776 0.741 0.535 0.853

on F-score, which is to measure the distinguishing ability of features between hot and
non-hot spots. The most important features include PSSM, hydrogen bonds, secondary
structure and RINs features. Two exposure features (as novel features) are selected into
the optimal feature set, which indicates that they are important features for identify-
ing DNA-binding hot spots. Fig. 3 shows more details about the distribution of selected
features in different feature categories. Six secondary structural features are selected. In
previous works, secondary structural has been considered as a fundamental and essen-
tial features to improve prediction performance. In this work, we derived secondary
structural features from two levels of protein structures and sequences, which can pro-
vide a more comprehensive description of secondary structural characteristics of target
residues. Besides, ASA, exposure features and consensus score also contribute signifi-
cantly to the prediction of hot spot residues. These results suggest that the ten categories
of 19 optimal features can complement each other and accurately describe the hot spot
residues, thus collectively improve the prediction performance.

Performance comparison with state-of-the-art methods

Here, we further compare our method with four existing protein-DNA binding hot spots
prediction methods, including PrPDH [12], PremPDI [9], mCSM-NA [11] and SAMPDI
[8], on the benchmark dataset and the independent test dataset. PrPDH uses a clas-
sification model to identify hot-spots from various interface residues, while PremPDI,
mCSM-NA and SAMPDI use regression models to predict the change of Protein-DNA
binding free energy.

Table 4 presents the results on the benchmark dataset, where the prediction results of
existing methods are from their websites. In general, our method performs better than

Table 3 The rankings of the 19 selected features

Rank Feature name Type Rank Feature name Type

1 PSSM(R) Sequence 11 Lse score Sequence

2 H-Bond in HBPLUS Structure 12 phi in SPOT-1D Sequence

3 ALPHA in Xssp Structure 13 COMBINED2
score in ENDES

Structure

4 Current_flow_closeness_centrality Network 14 ACC in Xssp Structure

5 Q3_prob_3 in NetSurfp2 Sequence 15 RSA in NetSurfp2 Sequence

6 HSEa-u in SPOT-1D Exposure 16 P(8-G) in SPOT-1D Sequence

7 COMBINED1 score in ENDES Structure 17 CN in hsexpo Exposure

8 SIDESCORE score in ENDES Structure 18 Conservation
score

Sequence

9 Q8_prob_1 in NetSurfp2 Sequence 19 Blosum(E) Sequence

10 P(8-I) in SPOT-1D Sequence

These features fall intro four types, i.e., network features, exposure features, structure features and sequence features
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Fig. 3 The number of each class features on the optimal feature set

the other methods in terms of six of the seven metrics (ACC, SEN, SPE, FRE, F1, MCC
and AUC). Only our SPE is smaller than that of the mCSM-NA method.

Table 5 gives the results on the independent test dataset. Compared with the exist-
ing methods, our method significantly improves the prediction performance. Concretely,
81.8% of the true hot spots are correctly predicted (SEN = 0.818) and 76.6% of the non-
hot spots are correctly predicted (SPE = 0.766). Except for SPE, our method achieves the
highest values of the other metrics, especially for the comprehensive indexes MCC (0.576)
and AUC (0.82). These results show that our method is superior to the existing methods
in identifying protein-DNA binding hot spots.

Case study

The λ exonuclease (λexo) and DNA complex.

λexo is an ATP-independent enzyme that binds double-stranded DNA (dsDNA) to form
the λexo-DNA complex (PDB ID: 3SM4, chain: A) [53]. Four mutated interfacial residues
of the λexo-DNA complex have experimentally been identified and shown in Fig. 4. The
hot spots residues (��G) ≥1.0 kcal/mol are K49_A and R137_A, and the rest are non-hot
spots (K76_A and M53_A). Our approach successfully identified all the hot spots, while
only a non-hot spot (K76_A) was wrongly identified. In addition, PremPDI, PrPDH and
SAMPDI only correctly predicted two non-hot spots (K76_A and M53_A), while the two
hot spots were wrongly predicted. mCSM-NA only correctly predicted one non-hot spots
(M53_A). This example shows that our method can effectively identify hot spots from
protein-DNA complexes than the major existing methods.

Table 4 Performance comparison between our method with four existing methods on the
benchmark dataset

Method ACC SEN SPE PRE F1 MCC AUC

PreHots 0.789 0.813 0.801 0.785 0.784 0.597 0.868

PrPDH 0.683 0.667 0.700 0.690 0.678 0.367 0.779

PremPDI 0.756 0.711 0.800 0.780 0.744 0.513 0.790

mCSM-NA 0.461 0.056 0.867 0.284 0.093 -0.133 0.314

SAMPDI 0.544 0.444 0.644 0.556 0.494 0.091 0.522
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Table 5 Performance comparison between our method with four existing methods on the
independent dataset

Method ACC SEN SPE PRE F1 MCC AUC

PreHots 0.788 0.818 0.766 0.711 0.761 0.576 0.820

PrPDH 0.600 0.545 0.638 0.514 0.529 0.182 0.628

PremPDI 0.463 0.333 0.553 0.344 0.338 -0.114 0.411

mCSM-NA 0.563 0.121 0.872 0.400 0.186 -0.010 0.472

SAMPDI 0.545 0.272 0.727 0.400 0.324 0.000 0.525

DNA-bound SUP-1228−121 complex.

The structure of DNA-bound SUP-1228−121 (PDB ID:4CH1, chain: A) can provide
accurate clue to the mechanism of DNA recognition [54]. The defined hot spot
residues are K36_M, Y44_A, E63_K, R103_M, A110_T and G113_E, and the remain-
ing three residues (Y78_F, N106_A and N108_A) are non-hot spots (see Fig. 5).
For these nine mutated residues, PremPDI identified three of the six hot spots
(K36_M, R103_M and A110_T) and one non-hot spot (Y78_F). PrPDH predicted two
residues as hot spots (R103_M and A110_T) and the others as non-hot spots. SAM-
PDI identified one residue as hot spot (Y44_A) and the others non-hot spots, while
mCSM-NA predicted all residues as non-hot spots. On the contrary, except for a
hot spot (K36_M), our method predicted correctly all the other residues. This sug-
gests that our method has the highest accuracy, which is desirable for many biological
applications.

Fig. 4 The hot spot residues of λexo-DNA complex (PDB ID: 3SM4) identified by experiments. The green
surface denotes the protein chain (chain A) while the purple and yellow surfaces represent the DNA chains
(purple: chain E and yellow: chain D). The red color represents experimentally identified hot spot residues
and the blue color represents experimentally determined non-hot spot residues
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Fig. 5 The hot spot residues of DNA-bound SUP-1228−121 complex (PDB ID: 4CH1) identified by experiments.
The green surface denotes the protein chain (chain A) while the purple surface represents the DNA chain
(chain B). The red color represents experimentally identified hot spot residues and the blue color represents
experimentally determined non-hot spot residues

Webserver

A user-friendly webserver of PreHots has been implemented, which is available at: http://
dmb.tongji.edu.cn/tools/PreHots/. The input to PreHots should be the PDB file, which
contains at least one protein chain and one DNA strand. The user can select the chain
of protein and DNA, and submit the job to the server. Then, PreHots will return a list
of residues, which are predicted to be potential DNA-binding hot spots based on the
ensemble classifier with optimally features. Interface residues are colored according to
the predicted confidence score. For visual display, users can use the 3D viewer to display
prediction results and download the results. Multiple PDB files can be submitted simulta-
neously, and the jobs are executed in parallel on a cluster server with multiple computing
nodes to lift prediction efficiency.

Conclusion
Computational approaches can effectively and efficiently distinguish hot spots and non-
hot spots from protein-DNA complexes on a large scale. In this work, we present a
new computational method named PreHots for predicting hot spots in protein-DNA
complexes. Compared with the existing methods, PreHots uses a high-quality dataset
manually curated from literature and databases and with a strict process of redundancy
removal. A large number of related features (network, exposure, sequence and structure)
were calculated to characterize the residues from various aspects. To improve predic-
tion performance, we used the SBS feature selection method to get the optimal feature
set and constructed the classification model by the ESC method that integrates four
well-performing models. Our method overcomes the drawbacks of single classifiers and
makes the prediction more robust. We conducted extensive experiments to evaluate the

http://dmb.tongji.edu.cn/tools/PreHots/
http://dmb.tongji.edu.cn/tools/PreHots/
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proposed method, and compared it with existing methods on both a benchmark dataset
and an independent test dataset. Experimental results show that our approach achieves
higher overall performance than the existing methods. We believe that our method is
an invaluable tool of identifying hot spot residues in protein-DNA complexes and can
provide insights for the characterization of protein-DNA binding sites.
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