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Abstract

Background: Machine learning has been utilized to predict cancer drug response
from multi-omics data generated from sensitivities of cancer cell lines to different
therapeutic compounds. Here, we build machine learning models using gene
expression data from patients’ primary tumor tissues to predict whether a patient
will respond positively or negatively to two chemotherapeutics: 5-Fluorouracil and
Gemcitabine.

Results: We focused on 5-Fluorouracil and Gemcitabine because based on our
exclusion criteria, they provide the largest numbers of patients within TCGA.
Normalized gene expression data were clustered and used as the input features for
the study. We used matching clinical trial data to ascertain the response of these
patients via multiple classification methods. Multiple clustering and classification
methods were compared for prediction accuracy of drug response. Clara and
random forest were found to be the best clustering and classification methods,
respectively. The results show our models predict with up to 86% accuracy; despite
the study’s limitation of sample size. We also found the genes most informative for
predicting drug response were enriched in well-known cancer signaling pathways
and highlighted their potential significance in chemotherapy prognosis.

Conclusions: Primary tumor gene expression is a good predictor of cancer drug
response. Investment in larger datasets containing both patient gene expression and
drug response is needed to support future work of machine learning models.
Ultimately, such predictive models may aid oncologists with making critical
treatment decisions.
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Background
The goal of personalized medicine is to tailor treatments for individuals based on

unique characteristics of their genetic background. Given the vast variety of cancers

and the inherent molecular heterogeneity of the disease, personalized medicine in

cancer can be particularly effective [1]. By studying molecular profiles of tumors,

one can potentially discover biomarkers for drug sensitivity, resistance or adverse

effects that may be helpful in predicting drug response [2, 3]. Recent successes

demonstrated small molecule inhibitors which target pathways upregulated in

cancer patients [4]. Further, breast cancer has long served as a model for successful

personalized oncology, by administering treatments specific for HER2-positive

patients [5].

While personalized oncology has shown signs of promise, not all cancers have such

well-defined targetable pathways [6]. This has led to the recent emergence of machine

learning for predicting cancer drug response. However, the success of predictive models

depends largely on the availability of substantial amounts of training data. For this

reason, most predictive studies to date have utilized genomic and transcriptomic

profiles from panels of cancer cell lines as features for building models [7–18], as

documented in a recent review [19]. This method, though encouraging, has had rather

minimal success. Low interpretability and limited accuracy are the drawbacks of

predicting in vivo response based on in vitro data. Further, technical challenges include

high dimensionality of molecular data which is prone to overfitting and can lead to

deceptive associations from intrinsically multiplex gene networks [20]. Together, these

challenges have muddled attempts to build clinically relevant predictive models for

drug response.

Here, we attempt to develop an improved model for predicting drug response in

patients. We apply several well-established machine learning techniques to address

the technical challenges. First, to reduce dimensionality we utilize optCluster [21],

an R package for determining the optimal clustering algorithm and optimal number

of clusters. OptCluster identifies highly similar or repetitive expression patterns

from genes, and clusters them into gene modules. This method reduces the num-

ber of features while also minimizing the amount of information loss. Secondly, we

predict drug response using the random forest algorithm [22] in order to protect

against overfitting; a common issue with many machine learning methods. Random

forest is an ensemble method which builds decision trees. This approach deters

overfitting by incorporating a variety of features and leveraging a majority vote

when performing classification [23].

The utility of drug response models built from in vitro data is often limited,

because of the genetic and environmental differences between cell lines and

patient-derived samples. Not until recently, has in vivo data been publicly available

for research. For the first time, an extensive compendium of pan-cancer datasets

has been released by The Cancer Genome Atlas (TCGA), which provide both

clinical drug response data and gene expression profiles from primary tumor

patient samples spanning multiple cancer types [24]. In this study, we take a novel

approach to build predictive models (Fig. 1) for drug response by utilizing this

in vivo data. We observe robust prediction and we evaluate predictive gene

modules that are implicated in biological pathways critical to drug response.
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Results
Drug selection results

Our study is based on data obtained from the National Cancer Institute’s TCGA data-

base [24]. TCGA provides both patients’ clinical trial data and transcriptomic data from

patients’ primary tumor samples. This data includes expression levels for 60,483 genes

including protein-coding genes, non-coding RNA genes and pseudogenes. We used the

Genomic Data Commons API to download the Upper-Quartile Normalized Fragments

per Kilobase per Million mapped reads (UQ-FPKMs) from the patients’ primary tumor

samples. The clinical trial data consisted of 12,051 records with data for 32 cancer

types. Each record contains clinical trial data for an individual patient. There are mul-

tiple clinical trials in the database and a patient has one record for each clinical trial of

which they participated (i.e. a patient can have two records if they participated in differ-

ent trials). Each record includes information about: drugs administered, patient demo-

graphics, temporal data of the study, and response of the patient. For the purposes of

classification, we define a responder as a patient who had partial or complete response

and a non-responder as a patient who had a clinical progressive disease or stable

Fig. 1 Scheme of data division throughout our study. Shown here is the workflow for training and
validating the 5-FU model. The same method applies to the GCB model. a Gene expression data for
five cancer types with 5-FU drug response data were downloaded from TCGA. b Three steps were
performed on the training data made up from all five cancer types: clustering via OptCluster, feature
selection via random forest and prediction via random forest with cross-validation to train the model.
c Model validation was performed on half of the most populous cancer type (STAD) held out as an
independent validation data set
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disease response. One pan-cancer model for each drug was created by including all the

cancer types that the selected drug had treated. Only patients on single drug therapy

throughout the entire duration of treatment were retained in the study. Based on these

criteria, Fluorouracil (5-FU) and Gemcitabine (GCB) were chosen because they

provided the highest number of records. Our study included two models: (1) 5-FU pan-

cancer and (2) GCB pan-cancer. See Table 1 for the counts of each model.

OptCluster results

We report the results of the most accurate clustering algorithm from optCluster in

Table 2. Clara coupled with several classification algorithms provided the best gene

modules with a cross-validation mean accuracy of 84.1% (sd:10.7%) for 5-FU and 82.3%

(sd:8.6%) for GCB. In Fig. 2, we see how accuracy changes relative to the number of

selected clusters. The peak accuracy was with 32 and 50 clusters for 5-FU and GCB,

respectively. We tested other classification methods, support vector machines and

logistic regression, but both yielded worse results. Cross-validation accuracy for support

vector machine was 81% for 5-FU and 71.5% for GCB and logistic regression was 77.0%

for 5-FU and 73.0% for GCB. There was minimal impact on accuracy when including

demographic data of the patients (gender, age, cancer type and cancer stage) [5-FU:

83.6%; Gemcitabine: 79.1%]. Prediction accuracies from the cross-validation analysis of

both drugs, as well as validation on a separately held-out dataset, are summarized in

Table 2.

In Fig. 3a-b, the cross-validation predicted probabilities for non-responders and re-

sponders are plotted. The 5-FU model is particularly strong at identifying responders

(97% sensitivity) while the GCB model is better at classifying non-responders (100%

specificity).

Model validation & ROC curves

The ROC curves in Fig. 3c-d demonstrate the sensitivity and specificity of the cross-

validated model based on training data and additional validation based on test data.

The prediction performance on the test data showed an increase in the accuracy for

GCB by 3 percentage points to 85.7%. We did not see the same improvement in 5-FU,

which dropped to 52.9% accuracy. The training data for both models performed with

AUC = 0.98. More interestingly, we see the GCB validation curve still classifies well

with AUC = 0.71, while the 5-FU validation curve is barely above the random classifier

line; showing it doesn’t perform much better than chance. This decrease in accuracy

Table 1 Patient counts for each model by response

Model Responder Count Non-responder Count Total Count

Fluorouracil pan-cancera 34 24 58

Gemcitabine pan-cancerb 37 55 92
aFluorouracil pan-cancer includes: colon adenocarcinoma, esophageal carcinoma, pancreatic adenocarcinoma, rectum
adenocarcinoma, stomach adenocarcinoma
bGemcitabine pan-cancer includes: bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell
carcinoma and endocervical adenocarcinoma, cholangiocarcinoma, head and neck squamous cell carcinoma, liver
hepatocellular carcinoma, lung adenocarcinoma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma,
pheochromocytoma and paraganglioma, sarcoma, skin cutaneous melanoma, testicular germ cell tumors, uterine corpus
endometrial carcinoma
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may be attributed to sample size or difficulty predicting on the cancer type (stomach

adenocarcinoma) used for this validation.

Gene set enrichment analysis

Once we established an optimal model for predicting drug response, we performed a

gene set enrichment analysis using PANTHER [25]. We analyzed the genes within each

of the clara gene modules (S1 Table, Additional file 1). The significantly enriched

biological pathways for Gemcitabine are Inflammation mediated by chemokine and

cytokine signaling pathway (P = < 9.3 × 10–4), T cell activation (P = 2.4 × 10–5) and B

cell activation (P = 9.9 × 10–5). For a list of the top 20 pathways based on the percent-

age of genes within that pathway refer to the S2 Table, Additional file 1. In addition,

Fig. 4 shows the relationship of gene expression level between responders and non-re-

sponders for each of these pathways. A high positive number, such as in P00018

Table 2 Number of clusters and mean accuracy for pan-cancer models

Fluorouracil Gemcitabine

Clustering Method # Considered
Clustersb

# Selected
Clustersc

Average
Accuracy

# Considered
Clustersb

# Selected
Clustersc

Average
Accuracy

Optcluster (Clara) with RFa 204 32 84.1% 192 50 82.3%

Optcluster (Clara) with SVMa 204 32 81.0% 192 50 71.5%

Optcluster (Clara) with logistic
regression

204 32 77.0% 192 50 73.0%

Optcluster (Clara) with RF
and demographics

204 32 83.6% 192 50 79.1%

Model Validation (Clara) 204 32 52.9% 192 50 82.1%

Model Validation
(Clara with Tuning)

204 32 52.9% 192 50 85.7%

aRF is for random forest; SVM is for support vector machine
bNumber of considered clusters represents the number of clusters entered into random forest for variable
importance ranking
cNumber of selected clusters is number of clusters selected by random forest for classification

Fig. 2 Accuracy of random forest by number of clusters (using clara clustering algorithm). a Mean accuracy
(200x cross-validation) was calculated using 1–204 clusters in order of importance from the 5-FU pan-cancer
model. b Mean accuracy (200x cross-validation) was calculated using 1–192 clusters in order of importance
from the GCB pan-cancer model
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indicates that the mean gene expression for the responders in pathway, P00018, are

higher than that of the non-responders. The opposite holds true for the negative

values.

Discussion
In our study we have shown that primary tumor gene expression can be a good

predictor of cancer drug response. By utilizing different clustering and classification

methods we predicted cancer drug response with validation accuracy of up to 86%.

Our analyses show the GCB model performs stronger than the 5-FU model (Table 2).

We attribute the GCB model’s high prediction accuracy to multiple facets. First, the

GCB model had a more substantial sample size of 92 patients. This was undoubtedly

beneficial, as the algorithm was able to take advantage of the increased diversity in the

training data to build a rigorous model that was able to successfully predict on a new

dataset. Secondly, when clustering gene expression levels with a similarity threshold,

Fig. 3 Random forest classifier performance for pan-cancer models. a Comparison of the cross-validation
predicted probabilities between non-responders and responders for the 5-FU pan-cancer model. b
Comparison of the cross-validation predicted probabilities between non-responders and responders for the
GCB pan-cancer model. c ROC curve for 5-FU pan-cancer model; Cross-validation (Sensitivity: 0.97
Specificity: 0.66 AUC: 0.98) Model-validation (Sensitivity: 0.64 Specificity: 0.33 AUC: 0.56). d ROC curve for
GCB pan-cancer model; Cross-validation (Sensitivity: 0.80 Specificity: 1.0 AUC: 0.98) Model-validation
(Sensitivity: 0.70 Specificity: 0.94 AUC: 0.71)
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the GCB data was grouped into fewer clusters; an indication the dataset was more

homogenous and better-suited for dimension reduction. Further, random forest cross-

validation accuracy was optimized at a higher number of clusters than 5-FU (73% more

genes), leading us to believe the larger sample size of GCB helped the model to better

differentiate informative features from noise. Another important variation between

models is the specific cancer type on which validation performance was evaluated. Our

5-FU training model was only able to predict with 76% accuracy on STAD patients (see

S3 Table, Additional file 1) compared to the 84.1% overall accuracy. This provides

evidence that the pan-cancer model was better at predicting drug response for certain

cancer types.

We infer from our results that some drugs target mechanisms that are shared across

most cancers, while others may target mechanisms specific to certain cancer families.

Our GCB pan-cancer model predicts all cancer types at comparable levels to that of

the overall accuracy. On the other hand, a much higher variation in accuracy is seen

from the 5-FU model (S3 Table, Additional file 1). In the cases where the targeted

mechanisms of a drug are different across cancer families, we would expect to see a

reduction in the prediction accuracies of cancers with dissimilar mechanisms. When

more data becomes available, future work can test the performance of models built on

molecularly similar cancers of the same histology or anatomy, as suggested by a recent

study [26].

While biologically informed models have been shown to be successful [27–30], we

decided to infer the biology from our empirically-derived model using gene set enrich-

ment analysis. Our analysis reveals that many biological pathways relevant to drug

metabolism and cancer are present in the most predictive gene modules. Several path-

ways were found in both 5-FU and GCB pan-cancer models. 7.1% and 3.3% of genes in

the Integrin signaling pathway were present in 5-FU and GCB models, respectively (S2

Table, Additional file 1). Integrins are adhesive receptors that allow cells to respond to

signals from the surrounding microenvironment by interacting with extracellular

Fig. 4 Average t-statistics for PANTHER pathways enriched in final models. Plots show the average t-statistic
for most prevalent pathways. Mean gene expression values for each gene in a given pathway were
compared for non-responders vs responders. a 309 identified genes from 5-FU pan-cancer model across
pathways with highest gene percentage. b 1158 identified genes from GCB pan-cancer model across
pathways with highest gene percentage
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matrix [31]. They have been implicated in cell adhesion-mediated drug resistance, a

pro-survival and anti-apoptotic function [32]. A second pathway in common is the

WNT signaling pathway, which has 11.8% and 5.7% of its genes found in 5-FU and

GCB models, respectively (S2 Table, Additional file 1). Previous research has linked this

pathway to tumorigenesis via cell fate determination and cell migration [33]. Moreover,

upregulation of the WNT pathway is involved in more than 30% of gastric cancer cases

[34]. Stomach adenocarcinoma is the most populous cancer type in the 5-FU pan-

cancer data (Table 1), potentially driving this model’s selection of gastric cancer

associated genes. The GCB pan-cancer model is significantly enriched for genes from

the “inflammation mediated by chemokine and cytokine signaling” pathway (P = 9.3 ×

10–4). Chemokines direct trafficking and migration of immune cells and inhibition of

these proteins has been proven effective in preventing the accumulation of leukocytes

near sites of inflammation [35]. We believe the presence of these pathways in our

models provides insight into their biological relevance and tactics for predicting cancer

drug response.

Conclusions
The results of our final approach for prediction cancer drug responses were

conclusively accurate and, more importantly, interpretable. Our classifier selected

genes that are integral parts of drug metabolism and cancer biology. This combin-

ation of accuracy and interpretability has been difficult to achieve in predictive

models attempted in the past. We attribute our success to the utilization of in-vivo

gene expression data, which eliminates the need to extrapolate human drug re-

sponses from cell line or other in-vitro features. Furthermore, our implementation

of optCluster and random forest provided us with a method to perform dimension

reduction in a biologically informative manner. Feature ranking, as we have shown,

selects biologically relevant genes, that may yield new therapeutic targets. While

recent discussion has suggested machine learning can appear as “alchemy” [36], we

encourage the continued effort in the field of personalized cancer medicine as it

bears great potential for benefiting patients. To conclude, predicting cancer drug

response from patient RNA-seq data will be an important tool for personalized

oncology. We anticipate that predictive models, such as the ones we present, will

continue to grow more powerful and will aid clinicians and patients in selecting

first or second-line therapies.

Methods
Clustering & Variable Selection

We focused our study on pan-cancer models. Pan-cancer models were shown, by a

previous study [14], to out-perform single cancer models. Further, we performed

our own empirical analysis with similar results strengthening this choice (see Sup-

plementary Methods, Additional file 1). Next, we implemented clustering (i.e.

grouping gene) to reduce the number of dimensions. We evaluated six clustering

algorithms (clara, hierarchical, k-means, model, pam, and sota) [37–41] using the top

5000 genes, based on highest gene expression variability (S1 Figure, Additional file 1).
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Then we chose the clustering algorithm that provided the highest percentage of correct

predictions (prediction accuracy).

To determine accuracy, we used the mean value for each gene cluster, hereunto gene

module, as a feature for prediction. The number of observations (58 for 5-FU and 92

for GCB) was much lower than the chosen number of clusters (~ 200), so feature selec-

tion was performed. We used the machine learning technique, random forest, to deter-

mine feature importance. Random forest utilizes a forest of decision trees to split the

data into multiple subsets based on predictive power. To stabilize the ranked list of

feature importance, we took the mean Gini value for each gene module after 200

random forest runs. The mean decrease of Gini index was selected because it is the

recommended performance metric for imbalanced data [42].

To find the best clustering algorithm for our study, we performed clustering and classi-

fication in a five-step process (S2 Figure, Additional file 1). We used the R package,

optCluster, and relied on internal validation to determine the stability of the clusters [21].

1. The algorithm was run with N number of clusters (where N is in the range of

180–220; accuracies were observed to drop outside this cluster number range).

2. Random forest was used to determine feature importance and perform feature

selection.

3. For each top n most important features (where n is between 1 to N), random

forest was used to classify each patient.

4. The highest classification method was logged for the best value of N and n for

each clustering method and for each drug model.

5. The best model from the previous step was selected and the parameters were

tuned to capture any additional accuracy.

We completed a comprehensive analysis by trying other classification methods and

including other types of data. We compared the accuracy obtained from random forest

to the that of logistic regression and support vector machines using the optimal

random forest features. We also tested if the model would improve by including

demographic data of the patients (gender, age, cancer type and cancer stage) on the

accuracy of the model. All approaches yielded worse results.

Model validation

The final 5-FU and GCB models were trained on their respective pan-cancer data in

which half of the patients from the most populous cancer, STAD or PAAD respectively,

were held out as validation sets (Fig. 1). To reduce the impact of small sample size in

the pan-cancer models, we used bootstrapping as an up-sampling method to increase

the size of the training set by 50%. The up-sampled training set consisted of: (1) all the

original samples and (2) a random sample selected from the original training set. The

random sample is half the size of the original training set and generated by sampling

with replacement. The two validation sets consisted of 17 randomly selected STAD

patients and 28 randomly selected PAAD patients for the 5-FU and GCB models re-

spectively. We validated our selected models by calculating the prediction accuracy on

the independent validation sets comprised from 50% of the most populous cancer type.
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Statistical methods: gene enrichment analysis

Our hypothesis stated the selected genes in our final model would be enriched for

pathways involved in drug metabolism or cell signaling. To test this hypothesis, we

performed two statistical tests. First, we performed a PANTHER overrepresentation

test. Using the results of the PANTHER analysis, we performed a t-test comparing

the mean gene expression of responders and non-responders for the top twenty

pathways based on the percent of genes hit against the total number of genes in

the pathway (See Table S2, Additional file 1).
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