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Abstract

Background: Analysis of somatic mutations from tumor whole exomes has fueled
discovery of novel cancer driver genes. However, ~ 98% of the genome is non-
coding and includes regulatory elements whose normal cellular functions can be
disrupted by mutation. Whole genome sequencing (WGS), on the other hand, allows
for identification of non-coding somatic variation and expanded estimation of
background mutation rates, yet fewer computational tools exist for specific
interrogation of this space.

Results: We present MutEnricher, a flexible toolset for investigating somatic
mutation enrichment in both coding and non-coding genomic regions from WGS
data. MutEnricher contains two distinct modules for these purposes that provide
customizable options for calculating sample- and feature-specific background
mutation rates. Additionally, both MutEnricher modules calculate feature-level and
local, or “hotspot,” somatic mutation enrichment statistics.

Conclusions: MutEnricher is a flexible software package for investigating somatic
mutation enrichment that is implemented in Python, is freely available, can be
efficiently parallelized, and is highly configurable to researcher's specific needs.
MutEnricher is available online at https://github.com/asoltis/MutEnricher.

Background
Analysis of somatic mutations throughout the protein-coding genome, particularly via

tumor whole exome sequencing (WES), has fueled the discovery of many cancer driver

genes [1]. However, the vast majority of the genome (~ 98%) is non-coding and contains

regulatory elements (e.g. enhancers and promoters) that influence cell/tissue-type specific

processes [2]. Methodologically, whole genome sequencing (WGS) allows for genome-

wide discovery of somatic variation and may identify novel non-coding driver mutations.

Recent studies of non-coding somatic variation identified recurrent mutations in the TERT

promoter across several cancer types [3, 4] and the FOXA1 promoter in breast cancer [5].

A variety of computational tools are available for somatic analysis of protein-coding genes

[1, 6], while fewer exist for interrogating the non-coding genome. Though studies have
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devised a variety of analytical strategies for interrogating non-coding somatic mutations,

software packages implementing these routines are generally not readily available [4, 5, 7].

Existing tools capable of analyzing this space include OncodriveFML, which permutes

variant impact data to assess mutation burden [8], fishHook, which employs a Gamma-

Poisson regression framework to model somatic mutation counts along with genomic

covariates [9], and MOAT, which permutes regional annotations and mutation locations to

identify loci with significant mutation burdens [10].

Here, we describe MutEnricher, a flexible toolset that performs somatic mutation

enrichment analysis of both protein-coding and non-coding genomic loci from WGS

data. MutEnricher computes both overall mutational burden and “hotspot” enrich-

ments in its analytical routines. MutEnricher is composed of two distinct analysis

modules: 1) coding, which identifies genes harboring recurrent non-silent somatic

mutations (applicable to both WES and WGS data) and 2) noncoding, which identi-

fies enrichment of somatic variation in user-defined non-coding genomic regions.

MutEnricher also implements several methods for computing background mutation

rates, including a clustering procedure that groups features (i.e. genes or non-coding

regions) by user-defined genomic covariates (e.g. replication timing, sequence GC

content, etc.). MutEnricher is implemented in Python (compatible with both major

versions 2 and 3), is parallelizable, and is highly configurable to users’ specific datasets.

Implementation
Overview

MutEnricher (Fig. 1) performs somatic mutation enrichment analyses via two distinct

modules accessible through the main run script (mutEnricher.py): the coding

Fig. 1 Schematic representation of MutEnricher’s analysis procedures. MutEnricher’s coding module
determines enrichment of genic non-silent somatic mutations (red stems) against a background that
includes silent (black stems) and non-coding (purple stems) mutations, whereas its noncoding module
determines enrichment of non-coding mutations in user-defined genomic intervals, which may include
promoters (red region), enhancers (blue regions), etc. The lower boxes summarize MutEnricher’s procedures,
describing inputs, analytical steps, and outputs
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module, which assesses enrichment of non-silent somatic mutations within coding gene

sequences, and the noncoding module, which determines somatic enrichment within

user-defined genomic regions (e.g. promoters or enhancers). Both modules compute

overall feature (i.e. gene or non-coding region) burden and “hotspot” enrichment signif-

icances using binomial statistics by default, with background mutation rates calculated

according to one of several user-selected methods. While MutEnricher is designed to

work with whole genome somatic mutation calls, the coding module is also capable

of analyzing targeted or WES data. Both MutEnricher modules report independent

burden and hotspot p-values along with combined significance estimates for interroga-

tion by investigators. General run and methodological information are provided here

while further details are provided in the Supplementary Information.

Required inputs and file formats

Somatic mutation data is provided to MutEnricher as a list of bgzip-compressed and

tabix-indexed somatic variant call format (VCF) files. Coding gene impact annotations

(e.g. via ANNOVAR [11]) are required for the coding module to distinguish non-

silent versus silent mutations, while no such annotations are required for the noncod-
ing module. MutEnricher interrogates somatic mutation densities in user-defined

features of interest; in the coding module, these are coding genes and are provided to

MutEnricher with a gene transfer format (GTF) file, while features of interest in the

noncoding module are genomic regions defined in an input BED format file. MutEn-

richer’s coding module is also capable of accepting mutation annotation format

(MAF) files containing mutations derived from targeted or WES data.

Background mutation rate calculations

MutEnricher implements several methods from which users can select for computing

background mutation rates, which are necessary for gene and region enrichment calcu-

lations. Three main methods are available: 1) global, 2) local, and 3) covariate clustered.

With the global method, gene/region backgrounds are computed as the sum of sample

somatic mutation counts within all features divided by the total length; thus, with this

method, all features within a sample have the same background rate. For the second

method, a local background mutation rate is calculated per-gene/region for each sam-

ple. Here, local windows (1–2Mb in length) are scanned around each feature in each

sample and the background mutation rate for the samples’ feature is set to the maximal

observed rate from this procedure. The third method clusters features by similarity of

user-supplied genomic covariates (e.g. GC content, replication timing, etc.) using affin-

ity propagation [12] and calculates per-sample and per-feature rates from the mutation

densities of cluster members. MutEnricher supplies utilities to assist users in creating

covariate input files for both modules. Finally, an additional method is implemented

that combines the behaviors of the local and covariate clustering methods, whereby

features are again grouped by genomic covariates but a wider, local window is scanned

when determining mutation densities. For all genes/regions, the final background

mutation rate is calculated as the geometric mean of sample-wise rates for all samples

possessing at least one foreground somatic mutation (non-silent mutation in coding

analysis or any mutation in non-coding analysis) in the features of interest.
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Burden and “hotspot” statistical testing

MutEnricher implements two statistical strategies for determining somatic mutation

enrichments. The first method (the default) uses the binomial distribution to determine

the significance of observing n samples containing somatic mutations in a given feature

of length L with background probability pn:

Binomialp − value ¼
XN

i¼n

N
i

� �
pn

i 1 − pnð Þ N − ið Þ

Here, N is the total number of samples analyzed and pn is determined from the

estimated nucleotide mutation rate p obtained from one of the available background

calculation methods and the length of the feature L:

pn ¼ 1 − 1 − pð ÞL

In the coding module, n is the number of samples with at least one non-silent

somatic mutation in a gene, while n in the noncoding module is the number of

samples with any observed somatic mutation in a region.

MutEnricher also allows users to compute gene/region enrichment statistics using a

negative binomial testing strategy that determines the significance of observing k

mutations within a given feature of length L and background mutation rate p among N

samples according to:

NBp − value ¼
Xx − k

r¼0

k þ r − 1
r

� �
pk 1 − pð Þr

In the coding module, k is the total number of non-silent somatic mutations found

within a gene and x is the gene’s coding length multiplied by the total number of tested

samples (i.e. x = L x N). In the noncoding module, k is the total number of somatic

mutations found within the region and x is the length of the region multiplied by the

total number of samples.

In addition to computing overall gene/region burden enrichments, MutEnricher also

finds significant “hotspot” enrichments by progressively grouping somatic mutations

within short linear distances (e.g. 50 base pairs, a user-defined parameter) and directly

testing these sub-regions for significance (similar to [4]). The noncoding module

additionally implements a permutation-based weighted average proximity (WAP)

scheme (described in [5]) as another test for mutation clustering. MutEnricher reports

both independent burden and hotspot p-values along with combined significance esti-

mates using Fisher’s method. All statistical tests are subsequently corrected for multiple

hypotheses using the Benjamini-Hochberg FDR procedure [13].

Datasets, run characteristics, and comparisons to existing tools

We obtained several somatic MAF files from TCGA cohorts and ran MutEnricher’s

coding module on these in an exome-specific mode. During these runs, we required

candidate hotspots to have at least five somatic mutations from at least three patients.

We compared MutEnricher results from each cancer type against results from

MutSigCV [14], MutSig2CV [15], fishHook [9], and OncodriveFML [8]. We also

obtained breast, liver, and medulloblastoma whole genome somatic mutation data from
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[16] to test both MutEnricher’s coding and noncoding modules on WGS data. We

compared MutEnricher coding results on these data to fishHook and OncodriveFML,

and additionally compared noncoding module results to MOAT [10]. Further details

are provided in the Supplementary Information and analysis run times on synthetic

WGS data are reported in Supplementary Table 1.

Results and discussion
We ran MutEnricher’s coding module on seven WES-derived mutation datasets from

TCGA and compared these results to MutSigCV, MutSig2CV, fishHook, and Oncodri-

veFML significance calls (corrected p-values < 0.01). Overall, we observed strong over-

lap among genes called statistically significant by MutEnricher’s burden testing strategy

with those also called by MutSigCV (100% median/~ 76% mean overlap, dataset-wise

overlap significance all < 2.8e-4 by hypergeometric test, Supplementary Table 2A).

Genes not identified as significant by direct burden testing but significant when

hotspots were considered include KRAS in BRCA (burden FDR = 1, combined FDR =

4.2e-7) and BRAF in GBM (burden FDR = 1, combined FDR = 7.8e-12). We compared

MutEnricher’s combined burden and hotspot results to MutSig2CV significance calls,

which considers three types of evidence levels, and again found substantial overlap be-

tween significant gene calls (69% median/55% mean overlap, Supplementary Table 2B).

MutEnricher burden results were also consistent with fishHook results (81.8% median/

66.3% mean overlap, Supplementary Table 2C) and, to a lesser degree, with Oncodri-

veFML (62.5% median/53.5% mean overlap, Supplementary Table 2D); these latter

results are likely a consequence of the distinct variant impact permutation strategy

employed by OncodriveFML. Overall, results from these tools on TCGA lung datasets

(LUAD and LUSC) were highly variable (e.g. 539 significant genes in LUAD by

MutSigCV, 4 by fishHook); MutEnricher’s consistency with all tools was higher when

these cancer types were not considered (Supplementary Tables 2A-D).

We next tested MutEnricher’s coding and noncoding modules on breast, liver,

and medulloblastoma whole genome somatic mutation calls from Alexandrov et al.

[16]. We compared coding and non-coding analysis results to fishHook and Oncodri-

veFML and additionally tested non-coding results against MOAT’s annotation-based

algorithm. Significantly mutated genes called by MutEnricher and fishHook were highly

consistent (87.5% median/84.7% mean overlap), while OncodriveFML results differed

from both tools (Supplementary Tables 3A-B). Genes called by MutEnricher and

fishHook included TP53, GATA3, and PIK3CA in breast, TP53 and ALB in liver, and

DDX3X and SMO in medulloblastoma. For non-coding analyses, we focused on liver

somatic mutations as hepatocellular carcinomas are known to possess recurrent

hotspot mutations in the TERT promoter [17]. We used two separate definitions for

gene promoters in these analyses: 1) 100 basepairs immediately upstream of gene

transcription start sites (TSSs) and 2) 2 kilobases upstream of gene TSSs with extension

into the 5′ untranslated region (5′ UTR). With the short promoter definition, all tools,

with the exception of OncodriveFML, identified the TERT promoter as highly statisti-

cally significant (Fig. 2, Supplementary Table 4). Five samples in this cohort possess a

TERT proximal promoter hotspot mutation that creates an ETS binding site [17]. With

the longer promoter definition, the reported significance levels for this region dropped

for most tools, often beyond thresholds for significance. MutEnricher’s hotspot

Soltis et al. BMC Bioinformatics          (2020) 21:338 Page 5 of 8



detection method, however, helped identify this longer TERT promoter region as highly

significant (combined burden plus hotspot FDR = 2.95e-14). Thus, MutEnricher is less

sensitive to specific boundary definitions of non-coding regulatory elements because it

interrogates overall regional burdens as well as hotspots.

Conclusions
Here, we presented MutEnricher, an open source, highly customizable, and well

documented toolset that analyzes both coding and non-coding somatic mutation

enrichment. We demonstrated general consistency between MutEnricher and other

available tools that analyze the coding and/or non-coding genome on a variety of WES

and WGS datasets. We also highlighted advantages of MutEnricher’s combined burden

and hotspot testing strategies towards driver gene and non-coding element identifica-

tion. Particularly with respect to non-coding elements, this combined strategy enables

MutEnricher to robustly identify mutation recurrence from variable definitions of the

same regulatory elements (e.g. “short” versus “long” promoters). In addition, MutEnri-

cher can be run quickly with a variety of parameters, allowing users to test various

assumptions and alternative hypotheses. As WGS is increasingly being employed to

identify novel somatic alterations, particularly towards the study of many cancers, we

believe MutEnricher will be a valuable analytical tool for the research community.

Availability and requirements
Project name: MutEnricher

Project home page: https://github.com/asoltis/MutEnricher

Operating system: Linux, macOS (source code); Docker-compatible systems

Programming language: Python 2 & 3

License: MIT license

Any restrictions to use by non-academics: None

Fig. 2 TERT promoter region (hg19 chr5:1295105–1,295,262 short region; chr5:1295105–1,297,162 long region)
displaying hotspot somatic mutations (chr5:1295228 G➔A) identified in liver cancer whole genome datasets.
MutEnricher full region (burden) and full promoter plus hotspot (+ hotspot) significance calls are also displayed
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03695-z.

Additional file 1. MutEnricher Supplementary Information. MutEnricher supplementary methods and results.
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FDR: False discovery rate; TCGA: The Cancer Genome Atlas; TSS: Transcription start site; UTR: Untranslated region
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