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Abstract

Background: Quantitative polymerase chain reaction (qPCR) is the technique of
choice for quantifying gene expression. While the technique itself is well established,
approaches for the analysis of qPCR data continue to improve.

Results: Here we expand on the common base method to develop procedures for
testing linear relationships between gene expression and either a measured
dependent variable, independent variable, or expression of another gene. We further
develop functions relating variables to a relative expression value and develop
calculations for determination of associated confidence intervals.

Conclusions: Traditional qPCR analysis methods typically rely on paired designs. The
common base method does not require such pairing of samples. It is therefore
applicable to other designs within the general linear model such as linear regression
and analysis of covariance. The methodology presented here is also simple enough
to be performed using basic spreadsheet software.

Keywords: Confidence intervals, Linear relationship, Lognormal, qPCR analysis,
Statistics

Background
The cells of an organism contain a large set of genes that encode information for con-

structing RNA and protein. Despite access to all of this information, individual cells

may only transcribe a very small percentage of their genes [1]. Comparisons between

unique cell types may show dramatic differences not only in the specific genes

expressed but also in the expression level of commonly accessed genes [2]. Further-

more, expression levels are not expected to remain constant; in fact, our expectation is

that expression levels will change in response to internal and external inputs, develop-

mental state, and even disease state [3–5].
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A central goal would be to elucidate a set of genes expressed and determine exactly

how expression changes in response to external and internal signals and ultimately link

this response to phenotypic changes. For this goal, quantification of gene expression

could be performed in a variety of different ways via different methodologies [6], but

the most common is to use differences in mRNA concentrations to quantify what is

called relative expression that utilizes the polymerase chain reaction (PCR) to make de-

tection of differences in initial RNA concentration possible [7]. Quantitative PCR

(qPCR) has become the gold standard for such quantification and has become the tech-

nique of choice for diverse research questions [8–10].

The growth of amplicons within a qPCR reaction is expected to follow a logistic

growth model where the increase in amplicons is exponential up until the point

where reagents in the qPCR reaction begin to become limiting [8]. Because of this,

Livak and Schmittgen [11] use the number 2 in their calculation of relative expres-

sion (equation 1) to indicate the potential for a doubling of the amplicon number

each PCR cycle:

Rel:Exp: ¼ 2 − Cq;GOI − TreatmentA − Cq;REF − TreatmentAð Þ − Cq;GOI − TreatmentB − Cq;REF − TreatmentBð Þ½ �
¼ 2 − ΔCqAð Þ − ΔCqBð Þ½ � ¼ 2 − ΔΔCq ð1Þ

This equation couples together the Cq values from Treatment A for both a gene of

interest (GOI) and a reference gene (REF) and does the same for Treatment B. The dif-

ference in the exponent in Cq values for GOI and REF is referred to as a ΔCq value,

and the difference between two ΔCq values as a ΔΔCq value [11].

From a theoretical perspective amplicons are expected to double each PCR cycle, yet

many have shown that for various reasons this does not happen [12–14], and neglecting

this fact can have measurable impacts on gene expression calculations [15, 16]. Others

[15, 17] have developed methods for determining relative expression by incorporating a

measure of the growth rate of a population of amplicons, called an efficiency value (E).

Rel:Exp: ¼ E
− Cq;GOI − TreatmentA − Cq;GOI − TreatmentBð Þ
GOI

E
− Cq;REF − TreatmentA − Cq;REF − TreatmentBð Þ
REF

ð2Þ

Though not readily apparent in this formulation, the Pfaffl method equation (equa-

tion 2 [17]) also works with both ΔCq and ΔΔCq values (see [15] for mathematical

exposition).

The technique of qPCR occupies a central position in the work flow, preceded

by the design and execution of the main experiment and extraction of nucleic acid.

qPCR is then followed by the analysis of data and finally the post-hoc calculation

of a relative expression value (Fig. 1). Though these steps are separated by qPCR,

they are in fact linked, in that experimental design dictates how gene expression

should be analyzed and relative expression determined. It is worth noting that the

commonly used models, specifically the 2 − ΔΔCq method [11] (2001; over 106,5000

citations as of March 2020) and the Pfaffl method [17] (2001; over 26,000 citations

as of March 2020), were developed to analyze paired experimental designs. In this

case, the experimental design is paired in nature, and so then would be the ana-

lysis. Paired models have their place and have proved very useful in determining

expression of a gene 1) before and after treatment or 2) between two tissue types
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within the same organism. However, many types of experimental designs exist be-

yond paired designs that can be used to address a multitude of experimental ques-

tions. Such questions suggest the need for the development of alternative

approaches.

The common base method for the analysis of qPCR data [18] has inherent advantages

over traditional methodologies and lends itself for use with other types of analyses

within the general linear model (Fig. 2). Here we further develop statistical methodolo-

gies for unpaired models with a focus on linear relationships, specifically regression and

analysis of covariance (ANCOVA). As with the common base method [18], we work

with efficiency-weighted ΔCq values and develop relative expression calculations with

associated confidence intervals post hoc.

The Common Base method

The common base method calculations are kept in the logscale for as long as possible.

Remaining in the logscale allows for the use of the more familiar arithmetic mean in-

stead of the geometric mean and permits the use of parametric statistics [18]. Any

choice of base for a logarithm may be made as long as it is used consistently. We have

chosen to use base-10 logarithms throughout this work.

The common base method uses Cq and Efficiency (E) values to calculate an

efficiency-weighted CðwÞ
q value. Let r denote a particular biological replicate, t denote a

sample type, and g denote a particular gene (equation 3).

C wð Þ
q;r;t;g ¼ log Er;t;g

� �
∙Cq;r;t;g ð3Þ

The CðwÞ
q;r;t;g value is then normalized using a reference gene or genes, where GOI is

the gene of interest and REF is a reference gene (equation 4 [18];).

ΔC wð Þ
q;r;t ¼ C wð Þ

q;r;t;GOI −
1
n

Xn
i¼1

C wð Þ
q;r;t;REFi

ð4Þ

The advantage of such values is that each efficiency-weighted ΔCq value can be

treated separately in unpaired models that incorporate categorical and/or continuous

variables. The major goal of our work here is to show that the common base method

can be expanded to other statistical tools, including regression and analysis of covari-

ance (ANCOVA). We will provide the mathematical approach for consideration of

Fig. 1 Work flow for an experiment showing main experiment, qPCR experiment, and the common base
method (with statistical testing and the visualization of the relative expression value)
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linear relationships, where at least one of the variables is ΔCðwÞ
q , including calculation of

ΔΔCðwÞ
q values, relative expression ratios, and associated confidence intervals. We begin

with regression and proceed into ANCOVA.

Results

ΔCðwÞ
q as the Dependent Variable.

We begin with consideration of the case where the dependent variable (y) is ΔCðwÞ
q ,

while the independent is a non-gene expression variable (x). For example, consider the

concentration of a hypothetical hormone α1 in plant leaves and expression of gene G in

Fig. 2 Representations of (a) paired model with associated ΔCðwÞ
q and ΔΔCðwÞ

q values and (b) unpaired

model with associated ΔCðwÞ
q and ΔΔCðwÞ

q values where treatment variables are categorical
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these same leaves, using ΔCðwÞ
q of G. We may be interested in how these two variables

are related. For each individual, we could measure both α1 concentration and quantify,

through qPCR, an efficiency-weighted Cq of gene G as ΔCðwÞ
q . Suppose that all necessary

assumptions for a regression (linearity, homoscedasticity, independence, and normality)

have been met by our data set. Note that the assumptions of regression analysis are

covered in any introductory statistics text.

Once the regression analysis has been performed, it is now possible to calculate rela-

tive expression ratios as a function of hormone concentration along with associated

confidence intervals. As discussed earlier, in unpaired models ΔΔCðwÞ
q values are used

to calculate relative expression ratios (R) after statistical analyses have occurred (Fig. 2).

Suppose the line of best fit is of the form.

ΔCðwÞ
q̂ ¼ ŷ ¼ mxþ b ð5Þ

where ŷ is used to denote the predicted value of ΔCðwÞ
q given a value of x based on the

linear equation (Fig. 3a).

We can then rework the linear equation into a form that will yield an equation whose

input is the concentration of hormone α1 and whose output is a relative expression ra-

tio R. We first must choose a fixed input concentration of hormone α1 to be a “base-

line” level (x0) for comparison. For our example, let x0 be the mean α1 concentration1

found in the original experiment. Let

y0̂¼ mx0 þ b ð6Þ

be the output predicted from the x0 concentration of hormone α1. We will now subtract

(equation 6) from (equation 5) to produce an equation that outputs predictions for

ΔΔCðwÞ
q values based on predicted ΔCðwÞ

q values and the choice of baseline x0 (Fig. 3b). In

other words,

ΔΔCðwÞ
q̂ ¼

�
ΔCðwÞ

q̂ for x
�
−
�
ΔCðwÞ

q̂ for x0
�
¼ ŷ − y0̂¼ ðmxþ bÞ − ðmx0 þ bÞ ¼ mðx − x0Þ

ð7Þ

where each ΔΔCðwÞ
q uses the baseline concentration of hormone α1 and varies the

chosen concentrations of hormone α1 within the range of values used in the experi-

ment (Fig. 3b). By applying an exponential function to (equation 7), we arrive at an ex-

ponential equation for relative expression ratio using the baseline. As a formula,

R̂ ¼ 10 − ΔΔCðwÞ
q̂

¼ 10 − mðx − x0Þ¼ 10mðx0 − xÞ ð8Þ

In other words, from a plot of ΔCðwÞ
q and x (Figure 4a, Table 1), we have an

equation that takes as input concentration x of hormone α1 and outputs a pre-

dicted R̂ that is relative to the baseline concentration of α1 x0 (Figure 4c, Table 1).

Notice that using x = x0 as the input in (equation 8) predicts a relative expression

1The choice of baseline x0 will be discussed in a later section.
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ratio of 1, which is exactly as it should be. We can predict that a plant with a hor-

mone concentration of 8.85 pg/mL would have an expression of Gene G that is

27% ( R̂ ¼ 0:73Þ lower than that of plants with average hormone concentration.

(Any values for the independent variable may be chosen to predict R as long as

they do not occur outside of the minimum and maximum values used in the

study). It is important to note that relative expression plots tend to be inverse ver-

sions of ΔCðwÞ
q plots since high values of ΔCðwÞ

q indicate lower levels of gene expres-

sion than lower values.

Fig. 3 (a) Layout of regression showing variables used in calculations. (b) Representation of calculated ΔΔCðwÞ
q̂

and R̂ values
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Confidence interval calculations from regression

While functions describing the relationship between two variables have great value,

they only represent point estimates of output values for each input. However, assuming

that the statistical assumptions for a valid regression have been met, one can also pro-

duce confidence intervals2 to envelope the point estimates resulting from the regression

formula, allowing for meaningful error bars to be placed around point estimates. We

will demonstrate that in order to calculate confidence intervals for relative expression

value estimates, we first need to calculate the confidence intervals for ΔΔCðwÞ
q . These

confidence intervals are derived from the confidence interval around the regression

Fig. 4 Results of regression analysis between concentration of hormone α1 and ΔCðwÞ
q where the two variables are

(a) highly correlated (r2 = 0.962) and (b) correlated (r2 = 0.709). Plot of predicted relative expression ratios (̂R) for (c)
regression in A with 95% confidence interval (CI) and for (d) regression in B with 95% confidence interval (CI). (e). Plot

of predicted relative expression ratios (̂R) based on a linear regression between concentration of hormone α1 and
ΔCðwÞ

q with 95% confidence interval (CI). Relative expression and CI in (c and d) are based on comparisons to average

concentration of hormone α1 measured, while (e) compares to the largest concentration of hormone α1 measured.
Vertical dotted lines indicate x0

2In linear regression, it is standard to have both confidence intervals and prediction intervals. We have
chosen to use confidence intervals, but everything that we have developed can be used to calculate prediction
intervals.
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slope m. Most statistical software tools (e.g., SPSS or Minitab), and even Excel, will

compute the confidence interval for a regression slope as part of the standard regres-

sion output. This output is typically given as the low end and high end slope values of

the 95% confidence interval in a form such as (L,U), though many tools allow for

reporting of other confidence intervals. The formulas for L and U can be found in any

introductory statistics textbook that covers inference related to linear regression.

We return to the setting where the concentration of hormone α1 x and ΔCðwÞ
q value

y are linearly related and fit a linear formula as in (equation 5). Let x be an arbitrary in-

put value in the range of data values collected in your study, and let x0 be the fixed

baseline input value with associated linear output as in (equation 6). In our example,

we fix x0 to be the mean value of x, but any fixed choice will work. Recall from (equa-

tion 7) that ΔΔCðwÞ
q̂

¼ mðx − x0Þ . Thus, the only random element in the estimate of

ΔΔCðwÞ
q̂ is the slope m, and so the uncertainty of ΔΔCðwÞ

q̂ is solely a function of the un-

certainty around m.

Suppose that the confidence interval (CI) on the slope parameter m is (L,U). Then

the confidence interval for ΔΔCðwÞ
q̂ is given by.

CI for ΔΔCðwÞ
q̂

¼ ðLðx − x0Þ;Uðx − x0ÞÞ or ðUðx − x0Þ; Lðx − x0ÞÞ ð9Þ

depending upon whether (x − x0) is positive or negative for each x. In order to calcu-

late the corresponding confidence interval for the predicted relative expression ratio R̂,

we apply the exponential transformation to the interval calculated in (equation 9) (Fig.

4c) and mimic our end formula in (equation 8).

Table 1 Hypothetical data used to generate Figure 4a where ΔCðwÞ
q is the dependent variable.

Calculation of predicted relative expression, R̂, values follows 10mðx0 − xÞ , where m = − 0.139, and
these values are plotted in Figure 4c. x0 = 9.85 is the mean x. The 95% confidence interval for the
slope m is (−0.162, −0.117)

α1 concentration (pg/
mL)

ΔCðwÞ
q

α1 concentration (pg/
mL)

R̂ Lower
Confidence
Interval

Upper Confidence
Interval

8.7 0.633 8.7 0.692 0.651 0.734

8.9 0.568 8.9 0.738 0.702 0.774

9.4 0.534 9.1 0.787 0.756 0.817

9.5 0.474 9.3 0.839 0.815 0.862

9.8 0.487 9.5 0.894 0.878 0.910

10.1 0.428 9.7 0.953 0.946 0.960

10.2 0.387 9.9 1.016 1.014 1.019

10.4 0.398 10.1 1.083 1.070 1.098

10.6 0.360 10.3 1.155 1.129 1.183

10.9 0.296 10.5 1.231 1.191 1.274

10.7 1.313 1.257 1.373

10.9 1.399 1.327 1.479
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CI for R̂ ¼ 10L x0 − xð Þ; 10U x0 − xð Þ
� �

or 10U x0 − xð Þ; 10L x0 − xð Þ
� �

ð10Þ
Depending upon whether (x0 − x) is positive or negative. (Notice the change in order

of x and x0 made to match the order given in (equation 8).) From our example, the

95% confidence interval around our estimate of R given a hormone concentration of

8.85 pg/mL is 0.69–0.76 indicating relative expression of 69–76% compared to that of

individuals with average hormone α1 concentration.

For any regression, r2 is an indication of the overall quality of the equation of the best

fit line. Lower r2 values tend to increase the size of the confidence intervals around

Table 2 Hypothetical data used to generate Figure 4b. Calculation of predicted relative expression,

R̂, values follows 10mðx0 − xÞ , where m = − 0.139, and the values are plotted in Figure 4d. x0 = 9.85 is
the mean x. The 95% confidence interval for the slope m is (− 0.212, − 0.066)

α1 concentration (pg/
mL)

ΔCðwÞ
q

α1 concentration (pg/
mL)

R̂ Lower
Confidence
Interval

Upper Confidence
Interval

8.7 0.683 8.7 0.692 0.572 0.840

8.9 0.568 8.9 0.738 0.630 0.866

9.4 0.598 9.1 0.787 0.695 0.892

9.5 0.424 9.3 0.839 0.766 0.920

9.8 0.537 9.5 0.894 0.844 0.948

10.1 0.428 9.7 0.953 0.930 0.977

10.2 0.337 9.9 1.016 1.008 1.025

10.4 0.491 10.1 1.083 1.039 1.129

10.6 0.360 10.3 1.155 1.071 1.244

10.9 0.334 10.5 1.231 1.104 1.371

10.7 1.313 1.138 1.511

10.9 1.399 1.173 1.666

Table 3 Calculation of predicted relative expression, R̂, values using hypothetical data from Table

1. Calculation of R̂ values follows 10mðx − x0Þ , where m = − 0.139, and these values are plotted in
Figure 4e. x0 = 10.9 is the largest x value. The 95% confidence interval for the slope m is (− 0.162,
− 0.117)

α1 concentration (pg/mL) R̂ Lower Confidence Interval Upper Confidence Interval

8.7 0.495 0.440 0.553

8.9 0.527 0.474 0.583

9.1 0.562 0.511 0.616

9.3 0.599 0.551 0.650

9.5 0.639 0.593 0.686

9.7 0.681 0.639 0.724

9.9 0.726 0.689 0.764

10.1 0.774 0.742 0.806

10.3 0.825 0.799 0.851

10.5 0.880 0.861 0.898

10.7 0.938 0.928 0.948

10.9 1 1 1
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predicted relative expression ratios because as the r2 value lowers, the margin of error

around the predicted slope value increases (Fig. 4b, d; Table 2).

A Comment on Choosing the Baseline Value for the Independent Variable.

Notice that the widths of our confidence intervals are functions of the distance between in-

put x and the baseline value x0 (equation 10). The uncertainty that leads to the error for the

estimates is solely due to uncertainty in the slope m, which means that the choice in baseline

value x0 does not alter the uncertainty. However, the choice of x0 does play a role in how that

uncertainty is translated into a confidence interval around a given ΔΔCðwÞ
q̂ . As such, choosing

x0 to be the mean value for x will result in overall smaller error bars and more symmetrically

distributed error bars around estimates compared to choosing x0 to be one of the extreme

values (minimum or maximum) (Fig. 4e; Table 3).

The selection of x0 should always be influenced by the experimental design. In our

example, we selected the mean value of x for the baseline value x0 since values of hor-

mone α1 concentration and ΔCðwÞ
q values were determined from randomly chosen

plants. Suppose, however, that there is a tendency for the variable x to take on a certain

value x0 in nature. If your experiment is to test the effects on gene expression by vary-

ing or manipulating the value of x, then it may make better sense to use the unmanipu-

lated value x0 as the baseline in your calculations instead of the mean value of x, as that

value serves as a natural point of comparison in your experiment. Such decisions

should be made prudently.

In the absence of any other motivating factors or when the values of the independent

variable will not be manipulated in the course of the experiment, we generally advocate

choosing the mean value of x as the baseline value x0.

A comment on slope of the regression line

The p-value in a linear regression is used to test the null hypothesis m = 0. In our ex-

ample above, we were able to reject the null hypothesis and obtained the formula

(equation 8) as a result. Notice that if we were unable to reject the null hypothesis, we

would be left with the assumption that the slope is not significantly different from zero,

and (equation 6) would result in the constant function ŷ ¼ b, meaning that we have no

evidence that the concentration of α1 has any effect on gene expression. (Equation 8)

would yield R̂ ¼ 1, showing that changes in α1 concentration have no impact on the

relative expression ratio for the gene in question.

ΔCðwÞ
q as the Independent Variable.

It may be of interest to determine the effect of the expression of a gene on some

measureable quantity (y). Such an approach is common in experiments where the level

of expression of a gene is explicitly manipulated either by varying the strength of the

promoter or varying the number of gene copies. The result would be two values for

each individual, the efficiency-weighted ΔCðwÞ
q for a particular gene or gene array and a

response variable, y. For example, suppose that a particular gene’s expression is thought

to correlate with promiscuity in a certain species of animal as measured by time (min.)

spent huddling with their partner (conceptual example derived from [19]). In this case,

we would be using ΔCðwÞ
q values as the independent variable x, and y (time spent hud-
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dling) would be the dependent. The mathematics for this case is the inverse of the case

above.3

Suppose that the assumptions for a valid linear regression have been met and pro-

duce a line of best fit with associated statistics (Fig. 5a, Table 4).

ŷ ¼ m�ΔC wð Þ
q þ b ¼ mxþ b ð11Þ

To calculate a functional form that involves relative expression ratios R and confi-

dence intervals, one should judiciously choose a baseline value for gene expression

ΔCðwÞ
q , which we label as x0 for brevity. We set

ΔΔC wð Þ
q ¼ x − x0 ¼ ΔC wð Þ

q − x0 ð12Þ

and have by0 ¼ mx0 þ b . As relative expression ratio R ¼ 10 − ΔΔCðwÞ
q , we can solve for

ΔΔCðwÞ
q in terms of R to see that

ΔΔC wð Þ
q ¼ − log Rð Þ ð13Þ

Therefore, subtracting by0 ¼ mx0 þ b from (equation 11) yields the formula

ŷ − by0 ¼ mðx − x0Þ ¼ mΔΔCðwÞ
q ¼ −m�logðRÞ ð14Þ

We can rearrange that into a final form by adding by0 to both sides of the equation

ŷ ¼ by0 −m�logðRÞ ð15Þ

(Equation 15) tells us that for a given R, or relative expression ratio between two

values (x and x0), we expect a specific change in time spent huddling (Fig. 5b, Table 4).

In our hypothetical case, individuals with 50% higher expression of the promiscuity

gene (R = 1.5) have an increase in huddling time of 73.0 s. Note that this value is only

applicable to a comparison with the currently chosen x0; in other words, a 50% increase

in expression relative to x0. If you require a different set of comparisons, then you will

require a new baseline for comparison.

As with all predictions of y, we recommend confidence interval calculations. We can

generate formulas for confidence intervals to place around predicted values of the

dependent variable given values of R. Suppose that the confidence interval on the slope

parameter m is (L, U). Substitute this expression into (equation 15) and simplify to cal-

culate a confidence interval for ŷ based on a specified value of R.

CI for ŷ ¼ ðcy0 −U�logðRÞ; by0 − L�logðRÞ Þ ð16Þ

where the order of L and U is swapped because of the negative multiplier in the

3As the cases of ΔCðwÞ
q as dependent variable and ΔCðwÞ

q as independent variable are inverses, they each
present essentially the same information but in two different manners. The nature of the experiment should
help guide which approach is preferred. We advocate using ΔCðwÞ

q as the independent variable only in

situations where ΔCðwÞ
q is a manipulated variable, i.e., the experimental design manipulated the level of some

gene’s expression. Otherwise, we suggest relegating ΔCðwÞ
q to the dependent variable. When ΔCðwÞ

q is a
dependent variable, you will be able to calculate a predicted relative expression ratio from a given input value
x. When ΔCðwÞ

q is the independent variable, you will only be able to calculate a predicted change in variable y
compared to a predicted baseline given an input relative expression ratio, instead of predicting an absolute
calculation for y. The former situation is slightly easier to plot and describe.
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formula. Given our hypothetical example above, the 95% CI for huddling time given a

50% increase in expression would be an increase in huddling time of 61.3 s – 84.6 s.

ΔCðwÞ
q as Both Independent and Dependent Variable.

Another useful technique might be to relate ΔCðwÞ
q values for two separate genes. This

case is the intersection of the two cases listed above, but we include the derivation to

make it explicit. The resulting regression would allow us to establish that the ΔCðwÞ
q of

one gene is related to the ΔCðwÞ
q of a second gene. We may choose one of the gene’s

ΔCðwÞ
q values to represent the independent variable (gene A) and the other’s ΔCðwÞ

q

values to represent the dependent variable (gene B). The resulting model will show

how a specific ΔCðwÞ
q;A value for gene A can be used to predict a ΔCðwÞ

q;B value for gene B.

One can then also place a confidence interval around that prediction. On the other

hand, one can swap the positions of the genes to make predictions of ΔCðwÞ
q;A values for

Fig. 5 (A) Results of regression between ΔCðwÞ
q and T ime spent huddling. (B) Plot of predicted change in

time spent huddling (min.) with 95% confidence interval (CI) based on relative expression ratio. x0 value is
the average x
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gene A given ΔCðwÞ
q;B values for gene B and similarly place confidence intervals around

the predictions. The choice in independent variable will give one value either for the re-

gression slope or its reciprocal and will vary the margin of error for that slope resulting

in different widths for the confidence intervals.

Suppose that the independent variable x is given by ΔCðwÞ
q;A describing expression of

gene A and the dependent variable y is given by ΔCðwÞ
q;B describing expression of gene B.

Suppose that a valid linear regression (Figure 6A, Table 5) has produced the formula

ŷ ¼ ΔCðwÞ
q;B̂ ¼ m�ΔCðwÞ

q;A þ b ¼ mxþ b ð17Þ

We fix a baseline level for ΔCðwÞ
q;A, which we label as x0, and get y0̂¼ mx0 þ b as usual.

Given ΔCðwÞ
q;A ¼ x − x0, we then subtract y0̂¼ mx0 þ b from (equation 17) and use nota-

tion similar to (equation 12) for gene A and B to produce

ΔΔCðwÞ
q;B̂ ¼ ŷ − y0̂¼ mðx − x0Þ ¼ mΔΔCðwÞ

q;A ð18Þ

Applying an exponential function to both sides and applying some algebra reveal

cRB ¼ 10 − ΔΔCðwÞ
q;B̂ ¼ 10 − mΔΔCðwÞ

q;A ¼
�
10 − ΔΔCðwÞ

q;A

�m
¼ Rm

A ð19Þ

showing that the relative expression ratio for B is the mth power of the relative expres-

sion ratio for A in this case (Figure 6B, Table 5). From our example, individuals with

10% higher expression of gene A (RA = 1.1) are predicted to express gene B at a 3.6%

higher rate (cRB ¼ 1:036) relative to individuals with average gene A expression.

Yet again we can generate formulas for confidence intervals for each value of cRB pre-

dicted by a given value of RA. As in all earlier cases, all uncertainty derives directly from

the uncertainty in the slope parameter. Suppose that the confidence interval on slope

Table 4 Hypothetical data used to generate Fig. 5a. Calculation of predicted huddling time, ŷ,
values follows y0̂−mlogðRÞ, where m = − 6.907, and these values are plotted in Fig. 5b. x0 = 0.457
is the mean x, and y0̂¼ 9:847. The 95% confidence interval for the slope m is (−8.011, −5.803)

ΔCðwÞ
q

Time spent huddling
(min.)

ΔΔCðwÞ
q

R ŷ Lower Confidence
Interval

Upper Confidence
Interval

0.633 8.7 0.177 0.666 8.628 8.433 8.823

0.568 8.9 0.112 0.774 9.077 8.954 9.200

0.534 9.4 0.0775 0.837 9.312 9.226 9.397

0.474 9.5 0.0175 0.961 9.726 9.707 9.745

0.487 9.8 0.0305 0.932 9.636 9.603 9.670

0.428 10.1 −0.0285 1.068 10.044 10.012 10.075

0.387 10.2 −0.0695 1.174 10.327 10.250 10.404

0.398 10.4 −0.0585 1.144 10.251 10.187 10.316

0.360 10.6 −0.0965 1.249 10.514 10.407 10.620

0.296 10.9 −0.1605 1.447 10.956 10.778 11.133
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m is (L, U). Substitute this expression into (equation 19) and simplify to calculate a

confidence interval for cRB based on a specified value of RA (Figure 6B, Table 5).

CI for cRB ¼ ðRL
A;R

U
A Þ or ðRU

A ;R
L
AÞ ð20Þ

depending upon whether RA > 1 or 0 < RA < 1. For our example, the 95% confidence

interval around cRB is 1.027–1.044, which corresponds to a predicted expression of gene

B at 2.7–4.4% higher than that of individuals with average gene A expression.

A note on the assumption of linearity

There are important assumptions that must be met for regression analysis to be consid-

ered appropriate. These assumptions are covered in any general statistics text, and so

Fig. 6 (A) Results of regression between ΔCðwÞ
q of gene B and ΔCðwÞ

q of gene A. (B) Plot of predicted relative

expression ratio of gene B (RB̂ ) with 95% confidence interval (CI) based on relative expression ratio of gene

A (RÂ ) with 95% confidence interval (CI). x0 value is the mean x
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we omit them here to conserve space. However, one of these assumptions, that of lin-

earity, is worth discussing further. All of the work above assumes that there is a linear

relationship between variable x and ΔCðwÞ
q , ΔCðwÞ

q and variable y, or between ΔCðwÞ
q;A and

ΔCðwÞ
q;B . In these cases, the linear relationship between y and x resulted in either an expo-

nential relationship between relative expression ratio R and x, a logarithmic relationship

between R and y, or a power relationship between RA and RB. Theoretically, the func-

tional relationships between measured variables and measures of gene expression (in

our case the efficiency-weighted Cq, ΔCðwÞ
q ) could assume any number of shapes de-

pending on the gene of interest, the experimental condition, and even the species [5,

20], leading to other functional relationships between R and x, R and y, and RA and RB.

In cases where x and y are not linearly related, it is common to apply transformations

to the data to improve linearity. A properly chosen transformation can allow for the

linearity assumption to be met and a linear regression to be performed. However, the

mathematical approach to calculating R is constrained by the specific transformation

that was chosen.

The common base method is amenable for considering many functional types; how-

ever, for this paper we focus on only a few cases that we hope will illustrate the general

concept. Above, we developed the calculations for the relationship between relative ex-

pression ratio R and an independent variable x that is exponential (R = kbx) when ΔCðwÞ
q

and x are linearly related. We also developed a logarithmic formula y = a + b*log(R) for

linear relationships between a dependent variable y and R when they are linearly re-

lated. We finally showed that a power function (RB ¼ Rm
A ) results when ΔCðwÞ

q;A and

ΔCðwÞ
q;B are linearly related.

ΔCðwÞ
q as the Dependent Variable and Log-Transformed x.

Earlier we showed how linear relationships between ΔCðwÞ
q and another variable re-

sulted in exponential or logarithmic relationships. We now develop the calculations to

show that power functions (R = kxa), including linear proportions (R = kx) as a special

Table 5 Hypothetical data used to generate Figure 6A. Calculation of predicted relative expression,
RB̂ , values follows R

m
A , where m = 0.367, and these values are plotted in Figure 6B. x0 = 0.457 is the

mean x. The 95% confidence interval for the slope m is (0.278, 0.456)

ΔCðwÞ
q;A ΔCðwÞ

q;B ΔΔCðwÞ
q;A

RA RB̂ Lower Confidence Intervals Upper Confidence Intervals

0.633 0.882 0.177 0.666 0.861 0.831 0.893

0.568 0.845 0.112 0.774 0.910 0.889 0.931

0.534 0.833 0.078 0.837 0.937 0.922 0.952

0.474 0.829 0.018 0.961 0.985 0.982 0.989

0.487 0.811 0.031 0.932 0.975 0.968 0.981

0.428 0.806 −0.029 1.068 1.024 1.018 1.030

0.387 0.798 − 0.070 1.174 1.061 1.045 1.076

0.398 0.766 −0.059 1.144 1.051 1.038 1.063

0.360 0.771 −0.097 1.249 1.085 1.064 1.107

0.296 0.755 −0.161 1.447 1.145 1.108 1.184
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case when a = 1, occur when ΔCðwÞ
q and log(x) have a linear relationship. Suppose that

such a linear relationship exists.

ΔC wð Þ
q ¼ m log xð Þ þ b ð21Þ

In other words, suppose that the relationship between x and y is logarithmic (Fig-

ure 7A). Such plots are linearized by log-transformation of x (Figure 7B, Table 6). For

example, suppose that expression of a particular bacterial gene is predicted by the dens-

ity of the bacteria in culture. The function relating ΔCðwÞ
q to density of cells shows that

ΔCðwÞ
q responds more to a change in density when the bacterial count is low than when

the bacterial count is high.

Fig. 7 (A) Plot of log rhythmic relationship between cells / nL and ΔCðwÞ
q . (B) Results of regression analysis

with log(cells/nL) and ΔCðwÞ
q . (C) Plot of predicted relative expression ratio (R̂) as a function of log(cells/nL)

with 95% confidence interval. x0 value (vertical dotted line) is the mean x
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Suppose then that log(x) (log (number of cells / nL)) and y (ΔCðwÞ
q ) fit a linear rela-

tionship with the line of best fit

ΔCðwÞ
q̂ ¼ ŷ ¼ mlogðxÞ þ b ð22Þ

We again choose a fixed baseline value x0 for the variable x and subtract equations

using inputs x and x0 as we did with (equation 5) and (equation 6) yielding

ΔΔCðwÞ
q̂ ¼ ŷ − by0 ¼ mðlogðxÞ − logðx0ÞÞ

ð23Þ

After applying the exponential transformation, we have

R̂ ¼ 10
− ΔΔCðwÞ

q̂ ¼10 − mðlogðxÞ − logðx0ÞÞ¼10mðlogðx0Þ − logðxÞÞ ð24Þ

Using algebraic properties of the logarithm, we produce

R̂ ¼ 10m log x0ð Þ − log xð Þð Þ ¼ 10m log
x0
xð Þ ¼ 10 log

x0
xð Þm½ � ¼ x0

x

� �m
ð25Þ

In conclusion, when efficiency-weighted ΔCðwÞ
q values have a logarithmic relationship

to x, then we obtain a power function relationship between relative expression ratio R

and x (Figure 7C, Table 6).

R̂ ¼ x0
x

� �m
ð26Þ

Again, notice that inputting a concentration of hormone α1 x = x0 will result in a pre-

dicted relative expression ratio of 1 as we would expect.

In the case where log(x) and ΔCðwÞ
q are linearly related, the process for calculating a

confidence interval only needs slight alterations compared to our first case. By tracking

(equations 9, 23—27), we see that appending log() around each x or x0 will result in the

correct formula. Therefore, we adjust (equation 10) and apply some algebraic properties

of logarithms (as in (equation 26)) to obtain:

CI for R̂ ¼ x0
x

� �L
;

x0
x

� �U
� �

or
x0
x

� �U
;

x0
x

� �L
� �

ð27Þ

Table 6 Hypothetical data used to generate Figure 7A, B. Calculation of predicted relative

expression, R̂, values follows ðx0x Þm , where m = − 0.116, and these values are plotted in Figure 7C.
x0 = 139.8 is the mean x. The 95% confidence interval for the slope m is (−0.123, −0.109)

Cells / nL log(cells/nL) ΔCðwÞ
q R̂ Lower Confidence Interval Upper Confidence Interval

385.61 2.586 0.345 1.125 1.117 1.133

260.29 2.415 0.368 1.075 1.070 1.079

176.41 2.247 0.381 1.027 1.026 1.029

115.56 2.063 0.405 0.978 0.977 0.979

74.72 1.873 0.433 0.930 0.926 0.934

49.29 1.693 0.445 0.886 0.880 0.893

33.37 1.523 0.468 0.847 0.838 0.855

23.12 1.364 0.488 0.812 0.801 0.822
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depending upon whether the ratio x0
x is greater than 1 or less than 1 for each value of x,

which in turn is equivalent to whether (x − x0) is positive or negative (Figure 8C). From

our example above (Table 6), a concentration of cells of 70 cells / nL would be pre-

dicted to have a 7.7% lower expression (R̂ ¼ 0:923Þ than cells at the average concentra-

tion of 140 cells / nL with a 95% CI of a decrease in expression of 7.3–8.2%.

ΔCðwÞ
q as the Independent Variable and Log-Transformed y

Where the relationship between x and y is log-linear (Figure 8A, Table 7), it may be

necessary to log transform the dependent y values to establish a linear relationship with

ΔCðwÞ
q as the independent variable (Figure 8B). For example, in a species of insect, a

particular gene is implicated in determining the size at pupation. Slight changes in gene

Fig. 8 (A) Plot of exponential relationship between ΔCðwÞ
q and y. (B) Results of regression analysis with ΔCðwÞ

q

and log(y). (C) Plot of predicted y, ŷ, as a function of relative expression ratio with 95% confidence interval.
x0 value is the mean x
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expression at high expression levels have minimal effects on the size at pupation. How-

ever, at lower levels of expression, small changes in expression have disproportionate

effects.

Suppose that the assumptions for a valid linear regression have been met with a line

of best fit

log ŷð Þ ¼ m�ΔC wð Þ
q þ b ¼ mxþ b ð28Þ

Again, one should judiciously choose a baseline value for gene expression ΔCðwÞ
q ,

which we label as x0. We again set

ΔΔC wð Þ
q ¼ ΔC wð Þ

q − x0 ð29Þ

and have logðy0̂Þ ¼ mx0 þ b. Thus,

y0̂ ¼ 10 m�x0þbð Þ ð30Þ

Subtracting the equation for logðy0̂Þ from (equation 29) yields the formula

logðŷÞ − logðy0̂Þ ¼ mðx − x0Þ ¼ mΔΔCðwÞ
q ð31Þ

We apply some logarithmic properties to obtain the following:

log

�
ŷ
y0̂

�
¼ logðŷÞ − logðy0̂Þ ¼ mΔΔCðwÞ

q ð32Þ

Next, apply the exponential function.

ŷ
y0̂

¼ 10mΔΔCðwÞ
q ¼

�
10 − ΔΔCðwÞ

q

� − m
¼ R − m ð33Þ

Finally, solve for ŷ to obtain the power function (Figure 8C, Table 7):

ŷ ¼ y0̂R
− m ð34Þ

This equation tells us that for a given R, or relative expression ratio between two

values, we expect a specific change in response variable y (Figure 8C, Table 7). We can

generate formulas for confidence intervals to place around predicted values of the

dependent variable given values of R. Suppose that the confidence interval on the slope

Table 7 Hypothetical data used to generate Figure 8A, B. Calculation of predicted y, ŷ, values
follows y0̂R

− m , where m = 7.878 and y0̂¼ 31:094, and these values are plotted in Figure 8C. x0 =
0.417 is the mean x. The 95% confidence interval for the slope m is (7.516, 8.241)

ΔCðwÞ
q

Larval length at
pupation

Log(larval length at
pupation)

R ŷ Lower Confidence
Interval

Upper Confidence
Interval

0.345 8.23 0.915 1.180 8.423 7.931 8.944

0.368 12.96 1.112 1.119 12.784 12.271 13.317

0.381 16.49 1.217 1.086 16.183 15.704 16.676

0.405 24.44 1.388 1.028 25.012 24.762 25.263

0.433 44.89 1.652 0.964 41.565 41.014 42.124

0.445 54.76 1.738 0.938 51.673 50.481 52.896

0.468 75.45 1.878 0.889 78.425 75.161 81.840

0.488 110.39 2.043 0.849 112.724 106.246 119.616
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parameter m is (L, U). Substitute this expression into (equation 35) and simplify to cal-

culate a confidence interval for ŷ based on a specified value of R.

CI for ŷ ¼ ðy0̂R − L; y0̂R
− UÞ or ðy0̂R − U ; y0̂R

− LÞ ð35Þ

depending on whichever interval is in the correct order. Given our example, a 10%

higher level of expression (R = 1.1) predicts a decrease in length of larvae at pupation

from 16.4 mm to 14.7 mm. The 95% CI for the length of the larva at pupation is 14.2–

15.2 mm when expression is 10% higher than individuals with average expression. Note

that these results are only applicable with the currently chosen x0.

Other cases

While we treated cases above where the non-gene variable needed to be log-

transformed first to establish a linear relationship, we have not discussed cases where

ΔCðwÞ
q needs such a log-transformation. Although we omit the derivations to conserve

space, placing ΔCðwÞ
q inside of a logarithmic function, setting up a ΔΔCðwÞ

q formula, and

then manipulating to convert ΔΔCðwÞ
q into relative expression ratio R will yield func-

tional formulas that are “doubly exponential” or “doubly logarithmic.” While such for-

mulas are not impossible, they do not appear to be common in nature. Another way to

consider this situation is that since R ¼ 10 − ΔΔCðwÞ
q with ΔΔCðwÞ

q in the exponent of R,

we can view ΔΔCðwÞ
q as something that is already derived through a log-transformation

applied to R. Thus, applying a logarithm to ΔCðwÞ
q would be like applying two layers of

log transformations to R, which does not seem likely to be necessary.

On the other hand, one should not view an omission of any particular functional

form in this work to represent a dismissal of that form as impossible. Nevertheless, our

treatment of linear, exponential, logarithmic, and power forms covers the most com-

mon functional relationships curve shapes for two variables (Figure 9).

Analysis of covariance

The common base method [18] may be used to perform paired and unpaired 2-sample

t-tests and calculate 2-sample t-intervals as well as analysis of variance (ANOVA).

These approaches can fail, however, when the quantities being compared between the

groups are also affected by an uncontrolled quantitative covariate. In that case, analysis

of covariance (ANCOVA) is a powerful analysis tool that combines ANOVA and linear

regression techniques. In a simple, one-way ANCOVA, there will be three variables of

interest: the factor or treatment effect (an independent categorical variable consisting

of at least two groups), the response (a dependent quantitative variable), and a covariate

(an independent quantitative variable).

For example, suppose that we have determined that ΔCðwÞ
q of a gene RT in larvae is

affected by temperature. We might have a suspicion that RT expression is also affected

by the larvae’s diet. We could perform an experiment at a single temperature where lar-

vae are given an experimental and control diet. This would be a traditional use of qPCR

and can be analyzed with the common base method as a 2-sample t-test. However,

since we already know that temperature affects RT, we would be left wondering if the

diet change was effective in altering RT expression across temperatures or if
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temperature and diet interact in some fashion. We could design an experiment that

looks at both temperature and diet at the same time. Instead of designing an experi-

ment with several larvae (replicates) in each combination of temperature and diet (two-

factor ANOVA), we will instead grow larvae in three treatments: two experimental di-

ets and one control diet across a range of temperatures (the covariate) in order to

analyze the effect on expression of RT (the response).

Since we know from previous research that temperature and ΔCðwÞ
q of RT are related

linearly, we really are not interested in performing another experiment to test this hy-

pothesis. Instead we are interested in the effect of diet on ΔCðwÞ
q of RT, and we can de-

termine if this effect is similar across temperatures or whether diet and temperature

interact to alter ΔCðwÞ
q of RT. An ANCOVA is the obvious choice to test this hypoth-

esis. Note that in our example above, temperature is manipulated by the researcher.

However, covariates may also be unmanipulated variables that vary among individuals

that are known to affect y.

The basic process for ANCOVA

(1) Perform separate linear regressions on the response as a function of the covariate

for each of the treatment groups, and determine that at least one of those lines has a

Fig. 9 (A, B) Approximate curve shapes covered in this paper by the common base method
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slope statistically different from zero. (If all slopes are zero, then the covariate may be

ignored, and ordinary ANOVA used instead.)

(2) Verify homogeneity of slopes for the lines. Although it is unlikely that the regres-

sion step produced lines with identical slopes, it is possible that the data fit a model

with an enforced common slope. Testing homogeneity of slopes relies on testing the

significance of the interaction term between the treatment and covariate, diet*tempera-

ture in our example. Depending upon your choice of software, you will probably run

some form of fit for a general linear model (possibly within an ANOVA menu) that ac-

cepts a response, treatment, and covariate. Often in an option for “model,” you can

enter the interaction term. The resulting output should include a p-value for the inter-

action. The p-value for this interaction tests a null hypothesis that the slopes are the

same. If the p-value is greater than 0.05, then you fail to reject the null hypothesis and

may assume the slopes are homogeneous. If the p-value is smaller than 0.05, then the

interaction between the treatment and covariate is significant, and so the slopes of the

lines are likely different. In this case, ANCOVA is not appropriate.

(3) Where slopes are homogeneous, rerun the general linear model routine but with-

out the interaction term in order to recalculate the regression lines with a new enforced

common slope. Most software packages should also offer options for “contrasts” or

“comparisons” that will generate confidence intervals for pairwise comparisons between

treatments. We will avoid dictating which of the many types of contrasts (Fisher,

Tukey, Sidak, or Bonferonni) is preferable.

Relative expression ratios and confidence intervals from ANCOVA

Suppose that all three steps above have gone correctly and that for the three treatments

we now have regression lines that share an enforced common slope. Notice that the

slope, m, is the same for each equation.

ŷ ¼ mxþ b1; ŷ ¼ mxþ b2; and ŷ ¼ mxþ b3 ð36Þ

Then the differences in the lines are measured by b2 − b1, b3 − b1, and b3 − b2
respectively.

In our example, x stands for temperature while y stands for the ΔCðwÞ
q of RT. We use

the subscripts c to denote control diet and t1 and t2 to denote treatment diets. Since

the lines have the same slope, they are all parallel, and each pair has a constant vertical

difference given by the difference between intercept values: bt1 − bc, bt2 − bc, and bt2 −

bt1. As that difference is a measurement on the y-scale, it represents a predicted

ΔΔCðwÞ
q̂ measurement (Figure 10). For example, bt1 − bc and its confidence interval pre-

dict the effect on ΔCðwÞ
q between treatment1 and the control at any given value x of

the covariate. In our example, we are calculating the effect that the two different diets

have on expression of the gene RT while controlling for temperature.

We may now calculate a predicted relative expression ratio R̂ showing the difference

in any pair of factors (e.g., treatment1 effect relative to the control on the gene) at any

given covariate value.
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R̂ ¼ 10 − ΔΔCðwÞ
q̂ ¼ 10 − ðbi − b jÞ ð37Þ

Similar to our regression analysis, we may also calculate a confidence interval for this

predicted relative expression ratio using (equation 38) and the confidence interval (L,U)

calculated for the difference bi − bj between any two factors.

CI for R̂ ¼ 10 − U ; 10 − L
� � ð38Þ

where the order of L and U has switched because of the negative multiplier in the ex-

ponential function.

For our example data (Table 8), a check of the homogeneity of slopes assumption

shows that we can treat our lines as parallel (p = 0.613). Rerunning the analysis without

the interaction term shows that both temperature and diet affect ΔCðwÞ
q . Post-hoc ana-

lysis shows that the treatment diets were both significantly different from the control

(p < 0.001), but the two treatment diets were not different from each other (p = 0.829).

Larvae exposed to the treatment1 diet expressed RT at a level 194% higher than in the

control (95% CI = 181—207%; Figure 11). Larvae exposed to the treatment2 diet

expressed RT at a level 192% higher than in the control (95% CI = 181—207%; Fig-

ure 11). With no difference in RT expression between the two treatments the 95% CI

for relative expression comparing treatment2 to treatment1 (R̂ = 0.993) overlaps 1 with

the 95% CI = 0.930—1.061 (Figure 11).

One of the key assumptions of the ANCOVA process is that the slopes of the regres-

sion lines can be statistically treated as equal, even if they are not calculated to be

exactly equal during individual regression analysis. The analysis generates a common

slope for each trend line, and the differences between the intercepts derive from these

rather than the original slope estimates. In our example above, the common slope is es-

timated to be 0.033. If this homogeneity assumption does not hold, then the ANCOVA

cannot proceed as there is evidence that the difference between the lines is not con-

stant with respect to the covariate.

Fig. 10 ANCOVA plot using data from Table 8. Plotted regression lines use the common slope of 0.033
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Table 8 Hypothetical data used to generate Figures 10, 11. Calculation of relative expression
follows 10 − ðb1 − b2Þ , where b represents the y intercept, and the subscripts c, t1, and t2 represent
control, treatment1, and treatment2 respectively

Treatment Temperature (̊C) ΔCðwÞ
q

Control 22 0.511 bt1 − bc −0.2873

Control 24 0.540 Lower CI −0.3159

Control 26 0.615 Upper CI −0.2586

Control 28 0.694 R̂ 1.938

Control 30 0.798 Upper R̂ 1.814

Control 32 0.801 Lower R̂ 2.070

Control 34 0.895

Control 36 0.985

Treatment1 22 0.238 bt2 − bc −0.2843

Treatment1 24 0.241 Lower CI −0.3129

Treatment1 26 0.394 Upper CI −0.2556

Treatment1 28 0.401 R̂ 1.924

Treatment1 30 0.452 Upper R̂ 1.801

Treatment1 32 0.511 Lower R̂ 2.055

Treatment1 34 0.631

Treatment1 36 0.673

Treatment2 22 0.236 bt2 − bt1 0.0030

Treatment2 24 0.261 Lower CI −0.0257

Treatment2 26 0.388 Upper CI 0.0317

Treatment2 28 0.424 R̂ 0.993

Treatment2 30 0.462 Upper R̂ 0.930

Treatment2 32 0.513 Lower R̂ 1.061

Treatment2 34 0.586

Treatment2 36 0.695

Fig. 11 Relative expression values with 95% confidence intervals for each post-hoc comparison (A, B, C)
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Discussion
As you work through this approach, there are important things to consider.

1. It is preferable that the ΔCðwÞ
q values should be derived from efficiency (E) and

Cq values from a single qPCR plate. Alternatively, each ΔCðwÞ
q value could be de-

rived from a separate qPCR plate. The issue, though, is unexplained variation.

Where ΔCðwÞ
q values derive from different plates, differences between these values

may be attributable to differences among individuals, qPCR plates, wells on the

plate, and the independent variable. Where ΔCðwÞ
q values derive from a single qPCR

plate, variation is attributable to difference among individuals, wells on the plate,

and the independent variable. If several ΔCðwÞ
q values are derived from a single

qPCR plate, while several other values are derived from a second plate, then we

cannot partition variation attributable to plate. The result, then, statistically is to

increase the unexplained variation (reduce r2), which in turn increases our confi-

dence intervals around our y estimates. Determining significance is more difficult

where such an effect exists.

2. For production of the relative expression plots, only use x values within the range

of x values used in the study or experiment.

3. Production of the linear equation through regression analysis allows us to de-

termine y values given x values. Interpretation of this relationship depends upon

the experimental design. Where x values are measured from randomly chosen indi-

viduals (unmanipulated), the relationship is predictive but not necessarily causal.

Care should be exercised in such interpretations. Where x values are manipulated

as part of an experiment, it may be appropriate to apply such causality.

4. Presentation of relative expression values should be accompanied by confidence in-

tervals [18]. It is not enough to report the relative expression value since, depending on

the tightness of the relationship, confidence can vary greatly.

5. Relative expression plots are based on an inverse axis—high ΔCðwÞ
q values rep-

resent lower expression than low ΔCðwÞ
q values. As such, all R plots should be interpreted

with care.

6. It is important to check all of the assumptions for performing a linear regression.

For publication, it is important for readers to see the regression relating ΔCðwÞ
q values

to another variable. This allows readers to assess the linearity assumption. The R plot

containing confidence intervals should also be presented for linear regression analyses.

For ANCOVA results, the plot of ΔCðwÞ
q values by treatment against the covariate is

valuable. Part of the calculation of ΔΔCðwÞ
q is to use b1 − b2. The difference between the

y-intercepts is actually equal to the difference between the two regression lines at the

average covariate value.

7. The experimental design and statistical approach should be addressed explicitly

in the methods section. How are the ΔCðwÞ
q values analyzed? How are the ΔCðwÞ

q

values manipulated to yield ΔΔCðwÞ
q values and ultimately yield relative expression

values with associated confidence intervals? All too often such explanations are

neglected, making it very difficult to evaluate the quality of the research.
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Conclusion
Traditional qPCR analysis is not able to address statistical models other than the paired

t-test. The common base method is amenable for use with any of the statistical models

from the general linear model. Here we have shown how the common base method

may be applied to determine relationships between ΔCðwÞ
q values and an independent

variable, a dependent variable, or another gene’s ΔCðwÞ
q values. We have developed the

concept of how to plot relative expression ratios R compared to an untransformed or

log-transformed dependent or independent variable or to another relative expression

ratio. In this manner, we can predict either how relative expression will change given a

change in a measured variable, how a measured variable will change given an experi-

mental change in expression, or how expression will change given a change in expres-

sion of a second gene.

Methods
Regression

In a simple linear regression analysis, we are attempting to determine if a linear rela-

tionship exists between two variables and, if so, describe the relationship. A linear re-

gression analysis will return a linear equation y =mx + b connecting the two variables x

and y. The analysis will at a minimum yield a coefficient of determination r2 and a p-

value associated with the slope test. The r2 value is a number between 0 and 1 that in-

dicates the amount of variation in y that can be explained by variation in x. The closer

r2 is to 1, the better the linear relationship or fit between the two variables. The p-value

is used to test whether or not the slope m is significantly different from zero.

In the results section we describe cases of linear regression where one of the variables

is the efficiency-weighted Cq;ΔCðwÞ
q . The ultimate goal will then be to show how such a

regression line can be transformed into a nonlinear formula where one of the variables

is a relative expression ratio R. To our best knowledge, conceptualization of relative ex-

pression ratios in this manner is novel.

Abbreviations
ANCOVA: Analysis of covariance; ANOVA: Analysis of variance; GOI: Gene of interest; qPCR: Quantitative polymerase
chain reaction; R: Relative expression value; REF: Reference gene
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