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Abstract
Background: Deciphering the relationship between clinical responses and gene
expression profiles may shed light on the mechanisms underlying diseases. Most
existing literature has focused on exploring such relationship from cross-sectional gene
expression data. It is likely that the dynamic nature of time-series gene expression data
is more informative in predicting clinical response and revealing the physiological
process of disease development. However, it remains challenging to extract useful
dynamic information from time-series gene expression data.

Results: We propose a statistical framework built on considering co-expression
network changes across time from time series gene expression data. It first detects
change point for co-expression networks and then employs a Bayesian multiple kernel
learning method to predict exposure response. There are two main novelties in our
method: the use of change point detection to characterize the co-expression network
dynamics, and the use of kernel function to measure the similarity between subjects.
Our algorithm allows exposure response prediction using dynamic network
information across a collection of informative gene sets. Through parameter
estimations, our model has clear biological interpretations. The performance of our
method on the simulated data under different scenarios demonstrates that the
proposed algorithm has better explanatory power and classification accuracy than
commonly used machine learning algorithms. The application of our method to time
series gene expression profiles measured in peripheral blood from a group of subjects
with respiratory viral exposure shows that our method can predict exposure response
at early stage (within 24 h) and the informative gene sets are enriched for pathways
related to respiratory and influenza virus infection.
(Continued on next page)
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Conclusions: The biological hypothesis in this paper is that the dynamic changes of
the biological system are related to the clinical response. Our results suggest that when
the relationship between the clinical response and a single gene or a gene set is not
significant, we may benefit from studying the relationships among genes in gene sets
that may lead to novel biological insights.

Keywords: Change point, Kernel method, Time-series gene expression data,
Co-expression networks, Dynamic information, Model interpretation

Background
In genomics studies, time-series gene expression data [1–3] often need to be processed
and analyzed. In 2016, DREAMCHALLENGES released an open challenge called ‘Respi-
ratory Viral DREAMChallenge: Discovering dynamicmolecular signatures in response to
virus exposure’ (https://www.synapse.org/#!Synapse:syn5647810/wiki/399108). The aim
was to develop early predictors of susceptibility and contagiousness based on expression
profiles collected prior to and at early time points following viral exposure. Some work
reported the differences of transcriptomics [4–6] in the host response between symp-
tomatic and asymptomatic subjects exposure to respiratory viruses. Additionally, as what
were done by most participants (https://www.synapse.org/#!Synapse:syn5647810/wiki/
402364), some common machine learning algorithms [7] can be used if we treat the chal-
lenge as a prediction problem. The challenge results [see Additional file 1 for parts of
the challenge results] demonstrate that the prediction performance significantly depends
on the participants’ models. However, we need to average the time series data across
time or only use cross-sectional data at a time to perform ensemble learning, and the
dynamic information of the time series data is lost in these approaches. Moreover, in the
early stage of infection (within 24 h), there is little separation of the trajectories of genes
among subjects with different clinical responses. Previous studies [8, 9] also showed that
the individual responses after exposure to respiratory virus are influenced not only by the
baseline immune status of the host but also by the dynamics of the early host immune
response immediately following exposure. If we only consider a single gene, there is no
distinct pattern in both cross-sectional and dynamic data. It is difficult to differentiate
between positive and negative groups by gene expression levels at early stage. In this
paper, we resort to gene sets analysis to correlate exposure response with dynamic gene
expression patterns in gene sets. To consider multiple genes, some methods have been
proposed to infer the relationship between genes. For example, the Dynamic Bayesian
Network (DBN) was used to establish the dynamic regulatory network [10]. We note that
a number of groups have studied time-varying dynamic Bayesian networks (TV-DBN)
to model the varying network structures and reveal the dynamics of biological systems
[11, 12]. The dynamic mixed membership stochastic block model (dMMSB) helps to infer
the biological functions of genes through modeling the dynamic tomography of networks
[13]. The review of differential network biology [14] advocated that differential network
mapping at large scales may provide a deeper understanding of complex biological phe-
nomena. The work [15] analyzed multiple differential co-expression networks based on
time-course RNA-Seq data. ThroughMultiple Differential Modules (M-DMs), they found

https://www.synapse.org/#!Synapse:syn5647810/wiki/399108
https://www.synapse.org/#!Synapse:syn5647810/wiki/402364
https://www.synapse.org/#!Synapse:syn5647810/wiki/402364


Dong et al. BMC Bioinformatics          (2020) 21:370 Page 3 of 18

that dynamic modules are associated with the development of heart failure. These results
in the literature suggest that considering the dynamics of networks may help us to bet-
ter understand disease onset and progression. However, how to extract useful dynamic
information from time-series gene expression data to build predictive model remains a
challenging problem.
To study the relationship between viral exposure response and time-series gene expres-

sion data, we hypothesize that the changes (i.e. dynamics) of the relationship between
genes in gene sets may be informative about viral exposure response, and propose a
statistical framework to characterize and integrate dynamic information for response
prediction where the model parameters have clear biological interpretations. The main
innovations of the paper are: Firstly, we use spectral norm to extract information of
the difference between two networks. Secondly, we model the changes of dynamic co-
expression networks based on the graph-based change point detection method. Thirdly,
we measure the similarity between two subjects by the relationship between gene
trajectories.
The rest of the paper is organized as follows: In the “Results” Section, we evaluate the

performance of our method using both simulated and real data. The results include data
description and preprocessing, preliminary analysis and inference results. This is followed
by the “Discussion” and “Conclusions” Sections. The “Methods” Section first introduces
the notations, then describes the statistical models and inference procedure proposed in
this manuscript.

Results
Simulations

In this section we assess the performance of the proposed algorithm on the data simulated
as follows. For simplicity, we fixed the number of genes G = 80. The sample size N and
total time points T took values from the sets {20, 50, 100} and {40, 80, 150}, respectively.
In the main text, we show the evaluation results under the case {N = 100,T = 40}. For
the other cases, the results are provided in the Supplementary Materials [see Additional
file 1]. We partition these 80 genes into four gene sets indexed by O1, O2, O3 and O4,
respectively, with each gene set containing 20 genes. To model the time series data, we
assume an AR(1) model for the mean expression levels, i.e.

μt = 0.5μt−1 + εt , μ0 = 0, εt ∼ N (0,�0.1) , t = 1, ...,T ,

where �0.1 is the diagonal matrix with 0.1 as the diagonal element. In our model, the
algorithm is based on the relationship between the response label and the change of the
dynamic structure. As described in the “Models” section, we assume that under the null
hypothesis, the covariance matrix of the simulated data is �0 across the time points and
under the alternative hypothesis, the covariance matrix is �0 up to some time point after
which it changes to �1. We assume � = I+ρ ·1−diag(ρ) where ρ is a constant and 1 is
the matrix of 1. For the null hypothesis, ρ = 0 and we consider different scenarios for the
alternative hypothesis when ρ takes value from set {0.1, 0.3, 0.5, 0.7, 0.9}. The time-series
gene expression data are simulated for 50 subjects labelled ‘+1’ through the model,

• xiO1t1 ∼ N
(
μt ,�0

)
, i = 1, ..., 50, t1 = 1, ..., 15,

xiO1t2 ∼ N
(
μt ,�1

)
, i = 1, ..., 50, t2 = 16, ..., 40,
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• xiO2t ∼ N
(
μt ,�0

)
, i = 1, ..., 50, t = 1, ..., 40,

• xiO3t1 ∼ N
(
μt ,�1

)
, i = 1, ..., 50, t1 = 1, ..., 25,

xiO3t2 ∼ N
(
μt ,�0

)
, i = 1, ..., 50, t2 = 26, ..., 40,

• xiO4t ∼ N
(
μt ,�1

)
, i = 1, ..., 50, t = 1, ..., 40.

For 50 subjects labelled ‘−1’, the data are generated by

• yjO1t1 ∼ N
(
μt ,�0

)
, j = 51, ..., 100, t1 = 1, ..., 15,

yjO1t2 ∼ N
(
μt ,�1

)
, j = 51, ..., 100, t2 = 16, ..., 40,

• yjO2t1 ∼ N
(
μt ,�0

)
, j = 51, ..., 100, t1 = 1, ..., 20,

yjO2t2 ∼ N
(
μt ,�1

)
, j = 51, ..., 100, t2 = 21, ..., 40,

• yjO3t1 ∼ N
(
μt ,�1

)
, j = 51, ..., 100, t1 = 1, ..., 25,

yjO3t2 ∼ N
(
μt ,�0

)
, j = 51, ..., 100, t2 = 26, ..., 40,

• yjO4t1 ∼ N
(
μt ,�1

)
, j = 51, ..., 100, t1 = 1, ..., 20,

yjO4t2 ∼ N
(
μt ,�0

)
, j = 51, ..., 100, t2 = 21, ..., 40,

where xiOpt = {
xigt : g ∈ Op

}
, yiOpt = {

yigt : g ∈ Op
}
and p ∈ {1, 2, 3, 4}. Under our simu-

lation models, we know that the first and third gene sets have changes in both the positive
and negative groups, and the changes happen at time points 15 and 25, respectively. For
the second and fourth gene sets, the positive group has no change point and the neg-
ative group has changes at the 20th time point. Therefore, the second and fourth gene
sets are informative about the response label. We compared the proposed algorithm with
commonly used machine learning algorithms, including Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM) and K-Nearest Neighbor
(KNN) [7]. Note that LR is with lasso penalty. The prior probabilities of class member-
ship in LDA use the class proportions in the training set. The kernel function in SVM is
the radial basis function, exp

(
−|u|2

G

)
. The number of neighbors in KNN is set to 3. We

perform 100 simulations, and for each simulation we randomly select 70% subjects as the
training set, and the remaining as the test set. We evaluate the performance of the pro-
posed algorithm from three aspects: change point detection, parameter inference, and
prediction accuracy, respectively.

Change point detection and parameter inference The results under different scenar-
ios are shown in Table 1. We have 4 gene sets indexed 1, 2, 3, and 4, respectively and the
inferred parameters of these 4 gene sets are b1, b2, b3, and b4, respectively. As discussed
in the simulation models, the subject label is the result of different change points in gene
sets 2 and 4. For comparability, the absolute value of parameter b is denoted by |b|. When
ρ is greater than 0.3, |b2| and |b4| are the largest in the 4 parameters which is consistent
with the model structure. So when the difference between �0 and �1 is large enough,
our method can identify the gene sets which contribute more to the response label. In
Table 1, ‘CHP’ represents the average value over 100 replications for the estimation of
change-point position, with the standard deviation in the parentheses. ‘P-value’ is the
average p-value over 100 replications using graph-based change point detection method.
‘CHP(%)’ represents the proportion of times the change point is precisely detected in 100
simulations. When ρ is less than 0.1, the structure difference between �0 and �1 is small,
and the detected change point may not be statistically significant. When ρ is greater than
0.5, there is more than 90% chance to detect the change point.
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Fig. 1 ROC curves. When ρ takes different values from {0.1, 0.3, 0.5, 0.7, 0.9}, average ROC curves over 100
replications of different algorithms are shown. a ρ = 0.1. When the difference between �0 and �1 is small,
the positive and negative groups are difficult to distinguish. The performances of all algorithms are similar.
b ρ = 0.3. The results are similar to that of ρ = 0.1. c ρ = 0.5. Our algorithm is slightly better than the others.
d ρ = 0.7. The proposed algorithm outperforms the other algorithms. e ρ = 0.9. The performance of the
proposed algorithm is substantially better than the others

Prediction accuracy We average the time series data across time points as the input
before they are analyzed by LR, LDA, SVM and KNN. The average ROC curves over 100
simulations of the classification results for each algorithm are shown in Fig. 1, where ‘FPR’
represents false positive rate and ‘TPR’ represents true positive rate.We can see that there
is more advantage of our method with an increasing value of ρ. The average AUC values
are summarized in Table 2. The proposed algorithm has the highest average AUC value
of 100 simulations when ρ is greater than 0.5. Moreover, the ‘AUC’ row of Table 1 shows
the classification performance for the test set. We can see that the value of AUC increases
with the increase of ρ, which is consistent with our model hypothesis, as it is easier to
infer the labels with a larger ρ.
As described in the “Methods” section, our algorithm requires the given gene sets as

input. So the performance of our algorithm may be affected by the way of grouping
genes. We evaluated the performance of our algorithm in different ways of group-
ing genes. The AUC and prediction accuracy may depend on the grouping method,
where a higher enrichment of signals in the pre-defined gene sets will lead to better

Table 2 AUC of different algorithms under different scenarios

ρ Proposed SVM LR LDA KNN

0.1 0.58(0.06) 0.58(0.06) 0.55(0.07) 0.59(0.07) 0.59(0.06)

0.3 0.60(0.06) 0.60(0.06) 0.55(0.07) 0.58(0.07) 0.58(0.06)

0.5 0.65(0.08) 0.60(0.07) 0.56(0.06) 0.59(0.07) 0.59(0.07)

0.7 0.71(0.08) 0.60(0.07) 0.56(0.06) 0.59(0.07) 0.60(0.07)

0.9 0.90(0.07) 0.63(0.08) 0.56(0.06) 0.60(0.06) 0.63(0.09)

Standard deviations are in the parenthesis.
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performance as expected. More details are provided in the Supplementary Materials
[see Additional file 1].

Real data analysis

Data description and preprocessing

In this section, we evaluate the performance of our proposed method through real data
analysis. Some challenge results related to this paper are provided in the Supplemen-
tary Materials [see Additional file 1]. The complete results can be found at the URL
(https://www.synapse.org/#!Synapse:syn5647810/wiki/402364) (note that only the reg-
istered users can log into the website). The time-series gene expression data for this
challenge were collected from healthy volunteers exposed to a respiratory virus within
a controlled experimental setting where some became ill and others did not despite the
same exposure. Data were derived from seven viral challenge experiments in which volun-
teers were exposed to one of four different respiratory viruses (Influenza H1N1, Influenza
H3N2, Respiratory Syncytial Virus, or Rhinovirus) in order to find gene expression pro-
filing signatures of susceptibility. Peripheral blood gene expression profiling was made
at 55 time points ranging between -30 h (pre-exposure) and 672 h (post-exposure). The
released data include 125 subjects from seven study centers with time-series gene expres-
sion data for 22,277 probes in peripheral blood for each subject, with a total of 2371
samples. Additionally, clinical information was also available, such as age, gender, and the
time of samples measured. To reduce noise, we removed 7 subjects who were injected
interfering viruses, and removed probes corresponding to multiple genes, and averaged
the multiple probes corresponding to the same gene. We considered a total of 12,532
genes. Therefore, we have N = 118, G = 12, 532, and T = 55 for this data set. There
are 68 subjects with positive labels and 50 subjects with negative labels. The overall data
can be visualized by the heat map as shown in Fig. 2. We can see that the genes can be
grouped into distinct clusters, while samples can not be clustered according to response.
Moreover, different study centers are clustered together, suggesting possible batch effects.
In the following analysis, we normalized the gene expression data according to each time
point to remove batch effects.

Preliminary analysis

A number of studies [16, 17] reported the differences in the host response between symp-
tomatic and asymptomatic subjects challenged with respiratory viruses. For simplicity, we
call the symptomatic response group the positive group and the asymptomatic response
group the negative group. Firstly, we analyzed the cross-sectional data and performed
differential expression analysis at a single time point. No significant difference in single
gene expression level was found between the positive and negative groups before 40 h.
We further investigated the relationship between gene trajectories and responses. Some
papers [9, 17, 18] reported that OAS1, IFI44L, IRF7 and CCR1 may be associated with
the response. From the expression trajectories of OAS1, IFI44L, IRF7 and CCR1 shown in
Fig. 3, we can see that the changes of expression variances for OAS1, IFI44L, IRF7 occur
at latter stage and expression variance of CCR1 does not change over time. That is as a
single dynamic time series for these related genes, the positive and negative groups have
significant differences after 45 h, however they do not exhibit differences at the early stage
(within 24 h). Therefore, if we only consider a single gene, there is no distinct pattern in

https://www.synapse.org/#!Synapse:syn5647810/wiki/402364
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Fig. 2 Heatmap of the baseline gene expression data across subjects. Genes are clearly classified into different
groups. The data seem to suggest two groups with subtle differences, but different viral response groups are
not clearly separated with these two groups. On the other hand, centers DEE3 H1N1 and Rhinovirus UVA are
in the same group, whereas the remaining centers are in the other group suggesting center/batch effects

both cross-sectional and dynamic data. Therefore, it is difficult to differentiate between
positive and negative groups by gene expression levels at early stage. On the other hand,
the paper [19] shows that viral shedding increases sharply between 0.5 and 1 day (within
24 h) after exposure and consistently peaks on day 2. We resort to gene sets analysis to
correlate exposure response with dynamic gene expression patterns in gene sets.
Firstly, we selected the gene sets that may be related to viral exposure responses. We

consider “SYMPTOMATIC-SC2” as the response label which is a binary variable indi-
cating post-exposure maximum symptom score greater than six and then screen out
differentially expressed genes from each cross-sectional gene expression data at 55 time
points, even if it is not significant. This led to 55 gene sets. Secondly, for each gene set, we
represent it as an undirected weighted network and the weight is given by gene expres-
sion similarity, where we used the Pearson correlation coefficient of two genes to define
their similarity. That is the function h in the “Models” section is Pearson correlation coef-
ficient. We have tried a number of definitions of similarity and Pearson correlation had
better performance overall. For each gene set, we obtained 55 time-dependent networks.
And we detected change points for these networks using the method introduced in the
“Models” section. After change point detection, all gene sets are sorted according to the
time of change point. Thirdly, we set up multiple kernel prediction model based on the
gene sets in which the relationships among genes change at early stage. Each gene set is
integrated into a kernel.

Results

We randomly selected 70% subjects as the training set and the remaining as the test set.
The training set contained 83 subjects (35 subjects with negative label and 48 subjects
with positive label), 12,532 genes, and up to 55 time points. We want to test the biological
hypothesis that the dynamic networks with early change point contribute more to the
response label. Figure 4 shows the prediction performance of the model for the test set
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Fig. 3 Time series plots of four distinct genes. “MP” and “NP” represent the means of the positive and
negative groups, respectively. “sd” means the standard deviations. a For gene CCR1, the positive and
negative groups are difficult to distinguish. On average, the negative group is below the positive group in the
middle stage. b For gene IFI44L, the positive group has an obvious upward pattern at about the 50th hour.
However it is difficult to distinguish the positive and negative groups in early stage (within 24 h). c For gene
IRF7, the pattern is similar to that of gene IFI44L. d For gene OAS1, at the 50th hour or so, the positive and
negative groups can be better distinguished. However there is little separation of the trajectories of these
genes for the positive and negative groups in the early stage

when we added the gene sets in the order of the detected change point time. It can be seen
from Fig. 4 that at the early stage, with more gene sets included, AUC increased. However,
after more than 12 gene sets were included, AUC started to decrease, which indicates that
an increasing number of gene sets does not lead to an increase of prediction accuracy.
This is consistent with our hypothesis that networks that change in the early stages are
associated with the response label. Moreover, the curve in Fig. 4 has a turning point at
the 35th gene set when AUC starts to increase again, suggesting that those unchanged
gene sets may also have information on exposure response. This may be because those
unchanged gene sets are markers of the asymptomatic group, which is consistent with
the stable performance of the negative group in Fig. 3. Next, we investigated the learning
parameter vector b. In terms of 55 gene sets, we consider those gene sets among the top
12 in which the relationships among genes change at early stage. The inferred parameters
are summarized in Table 3. The results show that the 44th, 2nd, 34th and 35th gene sets
contribute more to the response than the other gene sets. By enrichment analysis for these
four gene sets, we can identify pathways related to viruses as shown in Fig. 5. It can be
seen that the top pathways are associated with viruses. Finally, we visualize the gene sets
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Fig. 4 AUC. The value of AUC as a function of the number of genes considered. Gene sets are added to the
Bayesian multiple kernel model one by one according to the order of the time when the change point
occurs. It can be seen that the AUC increases at the beginning, and has the highest value when the 12th
gene set is included. It then oscillates downward as more gene sets are added until the 35th gene set, when
AUC starts to increase again

associated with response in Fig. 6. Take the positive group as an example. In Fig. 6 each
red line represents the change over time of the systematic feature of the gene expression
values collected from randomly selecting 80% subjects from the positive group. That is
to say, every point on the red line corresponds to the spectral norm of the corresponding
matrix of the co-expression network constructed by the genes from the 35th gene set at
a certain time t. The result shows that there is a clear difference between the positive
and negative groups. More importantly, at the early stage, it is very difficult to distinguish
the positive and negative groups from the trajectory of a single gene, as shown in Fig. 3.
However that is more obvious in Fig. 6, which substantiates our hypothesis that the label
of response is related to the dynamic nature of the changing of a system (gene set) but not
a single gene.We visualized the co-expression networks of the 35th gene set at time points
0, 12, 24, 48, 96 and 146, respectively [see Additional file 1]. It seems that the connections
of gene modules became closer after the samples were exposed to the virus.

Discussion
In this paper, we adopt a screening approach to find potential gene sets which may be
related to response. For this screening step, we do not consider multiple testing when we
detect change points of the dynamic networks.We further identify the gene sets related to

Table 3 Learning parameters for gene sets$

Gene set index¶ 44 2 34 35 25 22

|b| 0.101 0.101 0.101 0.098 0.096 0.095

Gene set index 18 43 8 30 37 20

|b| 0.094 0.088 0.086 0.085 0.084 0.080
$
In 55 gene sets, these 12 gene sets are among the top 12 in terms of the change point time.

¶
At each time point, through differential expression analysis, we obtain a gene set, and we use time point to index the gene set.
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Fig. 5 Enrichment analysis for the top five gene sets. We show the top 10 pathways enriched for genes in
these five gene sets

Fig. 6 System feature. Dynamic plots of the relationship of genes in the positive and negative groups,
respectively. In the early stage (within 24 h), there is a distinction between the positive and negative groups
compared with Fig. 3. After the 40th hours, the positive group rises suddenly
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the response through the proposed Bayesianmodel. The screening step can be considered
as a variable selection step where no response information is used. In addition, when there
is no simple relationship between the clinical response and a single gene or a gene set
(therefore it is challenging to have statistically significant results for marginal analysis), a
model that studies the changes of the relationships among genes in gene sets may offer
novel biological insights.

Conclusions
We have proposed a novel approach of modeling time-series gene expression data for
inferring an individual’s response to viral exposure. The biological hypothesis in this paper
is that the dynamic changes of the system are related to the clinical response. Compared
with previous time series analysis methods, we showed that change point detection for
dynamic networks may be informative for the relationship between the clinical response
and dynamic nature of the system (gene sets). Joint consideration of multiple kernels
based on gene sets with dynamic network structures not only can predict an individ-
ual’s clinical response, but can also help elucidate the biological pathways involved. The
effectiveness of the proposed method was demonstrated through the analyses of both
simulated and real data.
In this paper, we construct the co-expression networks for the gene sets at each time

point separately using Pearson correlation. We note that other methods may be used. For
example, we can construct networks incorporating some prior knowledge such as reg-
ulatory network at each time point to improve network robustness. Some model-based
methods such as TV-DBN [11] can be used to construct dynamic networks. Network
reconstruction [12] incorporating the temporal nature of the data may help improve the
performance of our model. On the other hand, the selection of matrix similarity may
influence the change point detection for the networks. It is worth studying the different
methods of change-point estimation for networks in the future. Additionally, we consid-
ered the case where the response variable is binary. If the response variable is continuous,
we will consider a continuous response in the Bayesian model. In real data analysis, we
used Pearson correlation coefficient to define similarity function of kernel. Some other
kernel functions can be tried, such as dynamic time warping (dtw) which has been applied
to gene expression data [20]. In practice, cross-validation method can be carried out to
select the optimal kernel function definition when the sample size is sufficiently large. In
this paper, when we compute multiple kernels for integrating different dynamic gene sets,
there is no consideration about relationship between different kernels. However, differ-
ent gene sets may have overlapping genes, which may influence the estimation of change
point. We will consider the Bayesian integration model with correlation information in
the future.

Methods
The main aim of the paper is to identify gene sets related to viral exposure response and
meanwhile predict a person’s response using the dynamic relationships among genes in a
gene set at early exposure stage. We assume that only some of the gene sets are informa-
tive about clinical responses. Firstly, the genes need to be organized into different gene
sets based on some criteria. Here are some suggested ways to group genes. If there is
prior biological knowledge, we can organize genes into different gene sets according to
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such knowledge. For example, for immune related diseases, the immune-related path-
ways in the database, MSigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp)
[21], can be viewed as gene sets. Without prior knowledge, we may construct gene
sets based on the observed data, e.g. genes with different expression levels at differ-
ent time points. Secondly, the general framework of our method is summarized in
Fig. 7. For each given gene set, time dependent networks are constructed. For exam-
ple, at each time point, we can construct a fully connected network with genes as nodes
and correlation coefficients between genes as weights. Because we hypothesize that
the gene sets in which the relationships among genes change over time may be infor-
mative about the clinical response, we investigate whether the network has changed
over time. The gene sets which change the network structures at early stage are can-
didate gene sets to predict clinical response. Then, we employ a Bayesian multiple
kernel learning model to predict an individual’s response. The key for kernel learn-
ing is the definition of similarity. We use the overall relationship between genes to
define the similarity between subjects. More details are provided in the “Models” and
“Inference” sections.

Fig. 7 The workflow. Step 1, time-varying networks are constructed for each gene set and change point is
detected for these dynamic networks. Step 2, different gene sets which change at early stage are integrated
to build a multiple kernel learning model. More details are provided in the “Models” and “Inference” sections

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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Notations

Assume that there are N subjects, G genes, and T time points. Let

• i ∈ {1, ...,N} index the subjects,
• g ∈ {1, ...,G} .= G index the genes,
• t ∈ {1, ...,T} index the time points where gene expression data are collected,
• x ∈ R

N×G×T represent the collection of expression values of all genes for all subjects
at all time points,

• yi ∈ {+1,−1} denote the response label of subject i,
• Ok ⊆ G be the kth subset of gene index set, where k is an integer satisfying 1≤ k ≤

2|G| − 1 and |Ok| .= Gk and
• s ∈ S be the index of kernel, where S ⊆ {

k : 1 ≤ k ≤ 2|G| − 1
}
.

For the elements in the array x, xigt represents the expression value of gene g at time t
for subject i. The data set

x =
N⊗

i=1

G⊗

g=1

T⊗

t=1
xigt ,

where
⊗

represents the Cartesian product. Note that xig· = (
xig1, ..., xigT

)T is the time-
series expression observation with length T of gene g for subject i. Similarly, xi·t =
(xi1t , ..., xiGt)T and x·gt = (

x1gt , ..., xNgt
)T.

Models

For the kth gene set, the genes are collected in Ok and let Gk denote the number of genes
in this set. At each time point, we can construct a network such as co-expression network,
for genes in the set. Therefore, we can get T networks across the T time points, with
these networks represented by T matrices {A1, ...,AT }, where At(i, j), the (i, j)th entry of
matrix At , is derived from h

(
x·it , x·jt

)
, i, j ∈ Ok and h is a function that defines the corre-

lation or similarity between two genes in this set. The change point detection across these
networks can be expressed as follow:

H0 : At ∼ F0 for 1 ≤ t ≤ T ,

vs

H1 : ∃τ , where 1 ≤ τ < T , s.t. At ∼
{
F0, for 1 ≤ t ≤ τ ,
F1, for τ < t ≤ T ,

where F0 and F1 are different probability measures on a nonzero measure set. Firstly,
define the similarity between two matrices as

m
(
At1 ,At2

) = ∥
∥At1 − At2

∥
∥
2 , for ∀ t1, t2,

where ‖ · ‖2 is the spectral norm of a matrix [22]. The reason for using spectral norm to
measure the similarity between twomatrices is, for a symmetricmatrix, the spectral norm
equals to the spectral radius of this symmetric matrix. From a geometric point of view,
the spectral radius of a matrix represents the degree of stretching along its correspond-
ing direction. Secondly, we can construct a graph on {At : t = 1, ...,T}, i.e. the minimum
spanning tree (MST), with the above definition of matrix similarity. Thirdly, we can detect
the change point of {At : t = 1, ...,T}. We use the graph-based change point detection
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method [23] for statistical inference. More details about change point detection are pro-
vided in the Supplementary Materials [see Additional file 1]. We retain the gene sets that
change at early stage to build predictive models.
After identifying gene sets with early change points, we use a Bayesian model to inte-

grate dynamic information from multiple gene sets. Assume that the indices of the
selected gene sets are collected in S . Each gene set indexed by s can define a kernel matrix
�s. Denote the kernel matrix set � = {�s : s ∈ S}. We integrate all the |S| gene sets by
the following multiple kernel learning model [24],

f (xi) = aT
∑

s∈S
bs�i

s + e, (1)

where a = (a1, a2, ..., aN )T is the sample weight vector, b is the kernel weight vector, e is
bias and �i

s is the kernel vector which is the ith column of kernel matrix �s. The (i, j)th
element of �s is defined by the similarity between subjects i and j. �s(i, j) = φs

(
xi, xj

)
,

where the kernel function φs is defined as

φs
(
xi, xj

) =
∥∥
∥�̃s

i − �̃s
j

∥∥
∥
2
, ∀i, j ∈ {1, 2, ...,N} and s ∈ S .

The (l, k)th entry of the matrix �̃s
i is,

�̃s
i (l, k) = cov

(
xsil·, x

s
ik·

)
, for l, k ∈ Os and s ∈ S ,

where xsil· represents the expression vector of gene l in gene setOs for subject i. In Eq. (1),
f can be considered as a latent variable [25] connecting the observed expression data x
and labels y. Through the estimation of parameter b, we can infer which gene sets have
more contribution to the response label y.

Inference

The main aim of this section is to infer the parameters {a, b, e} in model (1). We
adopt a Bayesian framework because of two advantages. Firstly, compared with gen-
eral kernel-based methods [26, 27], kernel learning under a Bayesian framework reduces
the requirement of kernel conditions, such as Mercer’s kernel condition [28, 29]. So we
can select more flexible metrics to measure the similarity between subjects based on
time series observations. Secondly, compared with general machine learning algorithms,
such as SVMs, auxiliary parameters can also be inferred under a Bayesian framework
[29]. Denote the priors {λ, γ ,ω} corresponding to {a, b, e}, respectively. For computa-
tional convenience, we assume conjugate prior distributions [24] in the model. Let � =
{
αλ,βλ,αγ ,βγ ,αω,βω

}
denote the hyper-parameter set for {λ, γ ,ω} and L be an inter-

mediate output variable for the iteration of parameters. All priors and parameters in the
model are denoted by � = {λ, γ ,ω}⋃{

a, b, e, f ,L
}
. Hence, the conjugate Bayesian priors

for the parameters are
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λi ∼ Gamma (λi;αλ,βλ) ∀i,
ai|λi ∼ N

(
ai; 0, λ−1

i

)
∀i,

Lsi|a,�i
s ∼ N

(
Lsi;aT�i

s, 1
)

∀(s, i),

γs ∼ Gamma
(
γs;αγ ,βγ

) ∀s,
bs|γs ∼ N

(
bs; 0, γ −1

s
) ∀s,

ω ∼ Gamma (ω;αω,βω) ,

e|ω ∼ N
(
e; 0,ω−1) ,

fi|b, e, L·i ∼ N
(
fi; bTL·i + e, 1

)
∀i,

yi|fi ∼ δ
(
fiyi > ν

) ∀i,
where δ(·) is the Kronecker delta function that returns 1 if the variable satisfies the restric-
tion and 0 otherwise, and ν is a given margin parameter which is used to distinguish two
categories. Next, we use variational approximation [30, chap.10] to estimate the parame-
ters. The main idea of the algorithm is to approximate the marginal likelihood log p

(
y|x)

by the lower bound L,

log p
(
y|x) ≥ L .= Eq(�)

[
log p

(
y,�|x)] − Eq(�)

[
log q(�)

]
,

where E represents the expectation of random variables and q(�) is the posterior dis-
tribution of �. The exact formulas of the lower bound L are similar to those in the
supplementary material of reference [24]. Hence, the approximate posterior distribution
q(·) of each parameter can be computed by

q(·) ∝ exp
{
Eq(�\·)

[
log p

(
y,�|x)]} , (2)

where q (�\·) is the distribution of � with the parameter (·) removed. Algorithm 1
summarizes the estimation process of model parameters

{
a, b, e, f ,L

}
. After we obtain a

trained model, the label for a new subject can be predicted by Eq. (1). More details about
Algorithm 1 can be found in the Supplementary Materials [see Additional file 1].

Algorithm 1 Approximate posterior distributions of parameters
Input:
�: kernel matrix set of training data;
y: labels of the samples in the training set;
�: hyper-parameters;
iter: number of iterations.
Output:
Posterior distribution of each parameter in

{
a, b, e, f ,L

}
.

1: initial parameters: mean μ� and covariance matrix ��;
2: repeat
3: compute μr

a and �r
a and related parameters;

4: compute μr
L and �r

L for the intermediate output L ;
5: compute μr

(e,b)
and �r

(e,b)
and related parameters;

6: compute μr
f of latent variable f and related parameters;

7: until r equals to iter.



Dong et al. BMC Bioinformatics          (2020) 21:370 Page 17 of 18

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03705-0.

Additional file 1: Supplementary Materials include six sections: Section 1, Graph-based Change-point Detection;
Section 2, Details of Algorithm 1; Section 3, More Simulations; Section 4, Analysis of the Effects of Gene Sets; Section 5,
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