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Abstract 

Background:  Circular RNAs (circRNAs) are special noncoding RNA molecules with 
closed loop structures. Compared with the traditional linear RNA, circRNA is more 
stable and not easily degraded. Many studies have shown that circRNAs are involved in 
the regulation of various diseases and cancers. Determining the functions of circRNAs 
in mammalian cells is of great significance for revealing their mechanism of action 
in physiological and pathological processes, diagnosis and treatment of diseases. 
However, determining the functions of circRNAs on a large scale is a challenging task 
because of the high experimental costs.

Results:  In this paper, we present a hierarchical deep learning model, DeepciRGO, 
which can effectively predict gene ontology functions of circRNAs. We build a hetero-
geneous network containing circRNA co-expressions, protein–protein interactions and 
protein–circRNA interactions. The topology features of proteins and circRNAs are calcu-
lated using a novel representation learning approach HIN2Vec across the heterogene-
ous network. Then, a deep multi-label hierarchical classification model is trained with 
the topology features to predict the biological process function in the gene ontology 
for each circRNA. In particular, we manually curated a benchmark dataset containing 
185 GO annotations for 62 circRNAs, namely, circRNA2GO-62. The DeepciRGO achieves 
promising performance on the circRNA2GO-62 dataset with a maximum F-measure 
of 0.412, a recall score of 0.400, and an accuracy of 0.425, which are significantly better 
than other state-of-the-art RNA function prediction methods. In addition, we demon-
strate the considerable potential of integrating multiple interactions and association 
networks.

Conclusions:  DeepciRGO will be a useful tool for accurately annotating circRNAs. The 
experimental results show that integrating multi-source data can help to improve the 
predictive performance of DeepciRGO. Moreover, The model also can combine RNA 
structure and sequence information to further optimize predictive performance.

Keywords:  Gene ontology, Representation learning, HIN2Vec, Multi-label hierarchical 
classification
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Background
circRNAs are a species of non-coding RNA molecules with closed ring structures, 
which are highly conserved and unaffected by RNA exonuclease and widely expressed 
in eukaryotic cells [1–3]. Unlike traditional linear RNAs, circRNA molecules lack 5′-3′ 
ends and covalently form closed loops, which are not affected by RNA exonuclease, 
more stable and less prone to degradation [4]. Currently, highly recognized biologi-
cal functions of circRNA mainly include miRNA sponge, regulatory protein binding, 
regulatory gene transcription and coding functions, but the main foothold of circRNA 
research is still miRNA sponge. circRNAs are rich in miRNA binding sites to act as 
miRNA sponges, preventing miRNA from interacting with mRNA in the 3′ non-trans-
lated region, and thus indirectly regulating the expression of downstream target miRNA 
genes. This mechanism is called competitive endogenous RNA (ceRNA) [5]. Through 
interacting with biological macromolecules (such as proteins and miRNAs) associated 
with diseases, circRNA plays an indispensable role in the development of nervous sys-
tem diseases, musculoskeletal diseases, and cardiovascular diseases. Additionally, cir-
cRNA plays a vital regulatory role in the occurrence of cancer, such as participating in 
the proliferation, migration and invasion of colon, gastric and oesophageal cancer cells 
[6–9]. Therefore, determining the function of circRNAs in mammalian cells is of great 
significance for revealing the mechanism of action, diagnosis, and prevention of diseases 
in physiological and pathological processes.

At present, researchers identify the function of circRNAs through multiple schemes, 
including pull-down experiments, UV-crosslinked immunoprecipatation (CLIP). Due to 
the diverse roles and various interacting sites of circRNA, it is challenging to apply bio-
logical schemes on a large scale as a result of the time-consuming and costly verification. 
With the in-depth understanding of circRNA, numerous studies have proven that most 
circRNAs can flexibly regulate the expression of corresponding genes by interacting with 
biological macromolecules (such as DNA, proteins, and miRNAs) to achieve their bio-
logical functions [10–13]. The existing circRNA function prediction methods, for exam-
ple, Mireap [14], Miranda [15], TargetScan [16], and FunNet [17], are mainly based on 
the principle of “guilt-by-association”. These methods elucidate circRNA function by 
analysing the roles of target genes or promoters. Nevertheless, the predictions of these 
auxiliary tools are not satisfactory since the majority of the predictions based on the cir-
cRNA targets are negative. Some studies [18–20], through GO analysis and KEGG path-
way annotation, determined the function of differentially expressed circRNAs between 
patients and healthy individuals. Through these methods, the functions of circRNAs 
cannot be identified on a large scale. In recent years, high-throughput sequencing tech-
nologies have developed rapidly, and circRNA-related data have grown exponentially. 
Increasing circRNA co-expression, sequences, interactions and structural information 
are accumulating. Nevertheless, analyzing and integrating these data remains a challeng-
ing task.

In this paper, we present a computational approach, DeepciRGO, for predicting cir-
cRNA functions by integrating multiple interactions and associations. DeepciRGO 
is constructed using the dependencies between GO classes as background informa-
tion. We first build a global heterogeneous network by integrating circRNA co-expres-
sion data, circRNA–protein association data, and protein–protein interaction data. 
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Subsequently, HIN2Vec is utilized to learn embedding vector representations of nodes 
in the global heterogeneous network. We then feed these features into a novel deep neu-
ral notation model, which is constructed to resemble the structure and dependencies 
between the GO terms, refine the predictions and features at each level of GO, and ulti-
mately optimize the performance of functional predictions based on the performance of 
the entire ontology hierarchy. In consequence, the maximum F-measure achieves 0.412 
on our manually annotated dataset circRNA2GO-62. DeepciRGO outperforms other 
state-of-the-art function predictive methods in terms of precision, recall and maximum 
F-measure.

Results
Benchmark

At present, there doesn’t exist publicly available circRNA functional annotation data-
base. Therefore, we manually curated functional annotations for circRNAs from the lit-
erature. We collected an independent test set of 62 circRNAs (named circRNA2GO-62) 
containing 185 GO terms (See Additional file 1: Supplementary information for details). 
Each annotation of circRNA2GO-62 is manually generated and covers most of the avail-
able information of circRNAs, including sequences, genomic context, expression, sub-
cellular localization, conservation, functional evidence and other relevant information. 
Detailed data set can be found in the Additional file 2: Supplementary Table.

Evaluation measures

In DeepciRGO, the multi-label classifier is used to predict GO terms for a particular 
circRNA, and each GO term is assigned a probability from 0 to 1. The confidence score 
indicates the likelihood that the circRNA is annotated with the GO term. The predic-
tion results ultimately depend on the set threshold k. Each GO term with the confidence 
score greater than or equal to k, and their ancestors in the GO that have ‘is a’ and ‘has a’ 
relationships are collected as the set of predictions expressed as Pc(k) for each threshold 
k. We use V to represent the set of GO items that have been experimentally verified. 
The accuracy of prediction depends on the matching degree of functions predicted and 
actual functions, which is measured by three widely used statistical indicators: recall, 
precision and F-measure. In this study, for each circRNA j and threshold k, precision and 
recall are defined as follows:

In the formula, o represents a particular GO term, and E represents the whole set of GO 
terms in the experiment. The definitions of indicator function T(x) is as follows:

(1)Prcj(k) =

∑

o∈E T (o ∈ Pcj(k) ∧ o ∈ Vj)
∑

o∈E T (o ∈ Pcj(k))
,

(2)Recj(k) =

∑

o∈E T (o ∈ Pcj(k) ∧ o ∈ Vj)
∑

o∈E T (f ∈ Vj)
.

(3)T (x) =

{

1 x = true
0 x = false

.
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After predicting all circRNAs, we calculate the average accuracy on h(k) circRNAs, each 
of which has at least one predicted GO item with the confidence score higher than the 
threshold k. Similarly, the average recall of the whole set of N circRNAs can be calcu-
lated. The definitions of the average precision and recall are as follows:

As for the multi-classification problem, due to the different emphasis of precision and 
recall, it is difficult to evaluate the model through the two indexes. To solve this problem, 
we introduce the maximum F-measure, which takes into account both the accuracy and 
recall of the classifier. The maximum F-measure can be regarded as a harmonic average 
of precision and recall. Its definition is as follows:

Parameter tuning

Different parameters have an important influence on the predicted results. In HIN2Vec, 
there are mainly four parameters, namely, the number of steps starting from one node 
(k), the length of the random walks (l), the max window length (w) and the number of 
dimensionality (d). First, we evaluate k, w, l parameters on the independent test set cir-
cRNA2GO-62 by fixing the value of d. Figure 1 illustrates the change in Fmax value when 
different k, w, l parameters are selected.

The max window length w: As shown in Fig.  1a, the performance is first improved 
and then gradually decreases as w increases. And the Fmax is optimal while w is set to 2. 
Hence, setting w to 2 is reasonable.

The length of the random walks l: As shown in Fig. 1b, the performance is gradually 
improved and tends to converge while l increases from 160 to 1280. And a longer l can 
generate more data. Thus, to obtain more data, we set l to 1280.

The number of steps starting from one node k: As shown in Fig. 1c, the performance is 
significantly improved when k is increased to 10. However, it gradually decreases when k 
is set from 15 to 20. Therefore, we set k to 15 in this work.

Based on the above results, we set the three parameters l, w, and k to 1280, 2, and 15, 
respectively.

Finally, in order to determine the optimal dimension, we pre-assign the other three 
parameters ( k = 10 , l = 1280 , w = 2 ) and then continuously change its value on the 
benchmark dataset circRNA2GO-62 to evaluate the predictive performance. Fig-
ure 2 illustrates the change of the Fmax values when the node feature dimensions range 
from 32 to 512. Experimental results demonstrate that the overall performance of 
Fmax reaches the highest when the dimensions of the feature vector is set to 64. Hence, 

(4)Prc(k) =
1

h(k)
·

h(k)
∑

j=1

(Prcj(k)),

(5)Rec(k) =
1

N
·

N
∑

j=1

(Recj(k)).

(6)Fmax = max
k

(

2 · Prc(k) · Rec(k)

Prc(k)+ Rec(k)

)

.
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64-dimensional feature vectors are selected to construct the DeepciRGO classification 
model.

The impact of integrating multi‑source data

In our method, the integration of protein interactions contributes to the functional 
annotations of circRNAs. To verify this, we compare the performance on two different 
network configurations, namely, the global network (including PPI) and the PPI-free 
network (all PPIs are removed). The results are shown in Fig.  3 when the parameters 
(k, l, w, d) are set to 10, 1,280, 2 and 64, respectively. The global heterogeneous network 

Fig. 1  Results with different parameters

Fig. 2  The Fmax values when using different dimensions
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constructed by integrating multiple data sources (including of circRNA co-expression 
data, circRNA–protein interaction data, and PPI data) is better than the PPI-free net-
work, with the Fmax of 0.412 and 0.281 respectively. The performance is improved by 
approximately 47% as PPI data is integrated. This experiment demonstrates that inte-
grating multiple interaction and association networks can significantly improve the per-
formance of predicting circRNA function.

To further evaluate the impact of multi-source data on performance, we randomly 
generate the same number of associated entries between the protein pairs as the origi-
nal PPI data (The global network and the random PPI network can be found in Addi-
tional file 1: Supplementary information). Experiments confirm that the performance of 
the stochastic integrated network we built later is significantly reduced (See Table 1 for 
details). Its Fmax is 0.297, which is lower than that of the global network but higher than 
that of the PPI-free network. These results prove the benefit for integration of multi-
source data.

Comparison of graph embedding methods

Graph embedding is the method of representing nodes in a network with low-dimen-
sional, dense, real-valued vectors. The core idea is to project heterogeneous information 

Fig. 3  The precision–recall curves of circRNA2GO-62 biological process prediction on different networks 
(global network, without PPI network and random PPI network)

Table 1  Performance comparison of  circRNA2GO-62 biological process prediction 
on different networks (global network, without PPI network and random PPI network)

Method Precision Recall Fmax

Global network 0.754 0.689 0.412

Random PPIN 0.559 0.202 0.297

Without PPIN 0.458 0.202 0.281
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into the same low-dimensional space to facilitate downstream computation, such as tag 
recommendation [21], vertex classification [22, 23] and link prediction [24, 25]. Recently, 
a number of methods have been developed to extract the latent representations of net-
works. In this work, we choose four different network representation algorithms for 
comparison: DeepWalk [26], HIN2Vec [27], Struc2vec [28] and Metapath2vec [29]. To 
be fair, we use the same global network, multi-classification model and benchmark built 
above. As shown in Table 2, HIN2Vec is significantly superior to DeepWalk, metapath-
2vec and struc2vec in BP terms of Fmax . Therefore, HIN2Vec is selected to learn the low-
dimensional potential representation of nodes in the heterogeneous network.

Performances

To better assess the performance of DeepciRGO, we compare it with three exist-
ing models: KATZLGO [30], PmiRGO [31] and BiRWLGO [32]. KATZLGO and 
BiRWLGO are two link-based prediction methods that infer the functions of RNAs 
by calculating the correlation scores between lncRNAs and proteins in a global net-
work. PmiRGO is a machine learning method that predicts the functions of miRNAs 
by training a classifier according to the topological features and GO annotations of 
proteins. We implement the three methods on the circRNA2GO-62 dataset and per-
form comparison with DeepciRGO. The performance is only evaluated in terms of 
biological process (BP) since most annotations in circRNA2GO-62 are BP terms.

The results of different methods on circRNA2GO-62 are illustrated in Fig.  4. The 
performance of DeepciRGO is significantly better than the other three methods. 
DeepciRGO achieves the best Fmax score of 0.412. For recall and precision, our 
method also reaches 0.400 and 0.425, respectively. Figure 5 shows the precision–recall 
curves for these four methods on the circRNA2GO-62 dataset. As we can see, the 
curve of DeepciRGO is almost above the curves of other methods. When recall is less 
than 0.68, the performance of DeepciRGO is significantly better than that of the other 
three methods. The DeepciRGO still achieves comparable performance with other 
methods while recall > 0.68 . We also compare these models by calculating the num-
ber of circRNAs correctly predicted on BP terms. As shown in Fig.  6, DeepciRGO 
successfully annotates 59 circRNAs from the circRNA2GO-62 dataset, again signifi-
cantly higher than 57 of PmiRGO, 55 of KATZLGO, and 43 of BiRWLGO. All the 
results demonstrate that DeepciRGO, using HIN2Vec to extract the topology of the 
global network, can greatly improve the prediction performance of circRNA function.

Table 2  Performance comparison of  different network representation algorithms 
in different dimensions

Method Dimension

64 128 256 512

DeepWalk 0.352 0.329 0.278 0.228

Struc2vec 0.275 0.291 0.297 0.271

Metapath2vec 0.195 0.251 0.111 0.214

Hin2Vec 0.412 0.350 0.286 0.283
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Fig. 4  Comparison of the performance of DeepciRGO and other existing methods in BP terms of recall, 
precision and Fmax

Fig. 5  Precision–recall curves of DeepciRGO and other methods (BiRWLGO, PmiRGO and KATZLGO) on the 
circRNA2GO-62 dataset for BP terms

Fig. 6  Performance comparison of coverage on the independent dataset circRNA2GO-62 by DeepciRGO and 
the other three methods (PmiRGO, KATZLGO and BiRWLGO)
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Case study: SHPRH

Hsa_circ_0001649 is produced at the SHPRH gene locus containing exon 26–29 [33]. 
Research indicates that hsa_circ_0001649 is significantly down regulated in hepatocel-
lular carcinoma (HCC) and may function in tumorigenesis and metastasis of HCC. Xu 
et al. [34] explored the role of circRNA hsa_circ_0001649 in the regulation of prolifera-
tion, migration and invasion of cholangiocarcinoma cells. Wound healing and transwell 
assays showed that inhibition of hsa_circ_0001649 significantly improved the migration 
and invasion ability of human bile duct cancer cells. Flow cytometry analysis and AO/
EB double fluorescence staining assays suggested that the proliferation effects of hsa_
circ_0001649 on colon cancer cell-associated antigens is partly due to changes in apop-
tosis. Hsa_circ_0001649 is also involved in the regulation of matrix metalloproteinase 
expression.

In our study, we annotated a total of 79 GO terms of biological process for hsa_
circ_0001649 through DeepciRGO. The top 15 GO terms of the SHPRH gene are shown 
in Table  3. For biological processes, most terms are involved in the regulation of cell 
proliferation, migration, and apoptosis, as well as the regulation of gene expression, 
such as GO:0008285 (negative regulation of cell population proliferation), GO:0030336 
(negative regulation of cell migration), GO:0051050 (positive regulation of transport), 
GO:2000147 (positive regulation of cell motility), GO:0040017 (positive regulation 
of locomotion), GO:0045597 (positive regulation of cell differentiation), GO:0010647 
(positive regulation of cell communication), GO:0051272 (positive regulation of cellular 
component movement) and GO:0010468 (regulation of gene expression). These results 
prove that our method can predict the function of SHPRH relatively successfully.

Discussion
Currently, although thousands of circular RNAs have been identified from different 
cell types in several model organisms using RNA-seq technology, the biological func-
tions of most circular RNAs remain unknown. In addition to biological experiments, 

Table 3  The top 15 predicted BP functions for circRNA SHPRH by DeepciRGO

Rank GO term GO name

1 GO:0010468 Regulation of gene expression

2 GO:0060255 Regulation of macromolecule metabolic process

3 GO:0019222 Regulation of metabolic process

4 GO:0023056 Positive regulation of signalling

5 GO:0023051 Regulation of signalling

6 GO:0048585 Negative regulation of response to stimulus

7 GO:0010647 Positive regulation of cell communication

8 GO:0051272 Positive regulation of cellular component movement

9 GO:0045597 Positive regulation of cell differentiation

10 GO:0048583 Regulation of response to stimulus

11 GO:0008285 Negative regulation of cell population proliferation

12 GO:0030336 Negative regulation of cell migration

13 GO:0051050 Positive regulation of transport

14 GO:2000147 Positive regulation of cell motility

15 GO:0040017 Positive regulation of locomotion
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computational methods provide another method for researching the function of circR-
NAs. However, designing accurate, reliable, and efficient circRNA function annotation 
methods are still a challenge, far from reaching the actual level of large-scale applica-
tions, and there are still many technical difficulties to be overcome. Base on this, we 
build a new circRNA function prediction model by combining network characteristics 
and deep learning. Due to the lack of a standard database of known human circRNA 
annotations, we downloaded protein annotations from Uniprot-Goa 201010 as a train-
ing set. Then, the trained DeepciRGO model was evaluated using the artificial aided 
circRNA2GO-62. At the same time, DeepciRGO still has better performance compared 
with other advanced methods.

The main novelty of this approach lies in the following three points: First, there are 
no circRNA function annotation datasets for training an ML model. Here, we build the 
training dataset by constructing a heterogeneous network and extracting the representa-
tions of nodes. This opens up a new avenue to predict the functions of circRNAs. Sec-
ond, we manually annotate the circRNA to build our test set (named circRNA2GO-62) 
by reviewing and collecting some articles on current research circRNA and providing 
corresponding functions. Third, we build a new circRNA function prediction model by 
combining network characteristics and deep learning.

Conclusions
In this study, we propose a computational approach, DeepciRGO, to predict the func-
tion of circRNA by integrating multiple circRNA-related biological information. First, 
we construct a global heterogeneous network according to circRNA co-expressions, 
circRNA–protein associations, and protein–protein interactions. Then, the latent topo-
logical features of the global network are extracted through HIN2Vec and are further 
fed into a deep neural network classifier. Finally, circRNAs are annotated with GO terms 
through the trained classifier. In terms of performance, we perform independent tests on 
the manually processed standard dataset. The results demonstrate that DeepciRGO out-
performs other advanced methods in terms of precision, recall and Fmax . In addition, the 
PPI data can help to improve the predictive performance for circular RNAs.

We believe that DeepciRGO can combine sequence, disease association and struc-
tural information to more accurately predict the functions of circRNAs, which is also an 
excellent tool for revealing the mechanism of circRNAs in both physiological and path-
ological processes. At the same time, we will continue to add miRNA-circRNA inter-
action data in the follow-up work to improve our model and apply it to the functional 
annotation of circRNA of other species to make it have a better generalization ability. 
Additionally, this model can be used to predict disease association of genes encoded 
by the disease ontology, or phenotypic association of genetic variations encoded by the 
phenotypic ontology [35].

Methods
Datasets and pre‑processing

circRNA co‑expression similarity

The establishment of circRNA similarity network is based on the basic biological 
hypothesis that genes within the group have similar expression profiles, which may 
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have similar functions. circRNA-circRNA related data is relatively scarce because there 
is no standard database available. The CircRiC and MiOncoCirc databases [36, 37] also 
only contain data on circRNA expression characteristics, biological formation, drug 
response, and integrated analysis, without the circRNA expression profile information 
we need. Therefore, we collect relevant data by reviewing the research-proven literature. 
We finally obtain circRNA expression profiling data from Peng et al.’s work [38], which 
consists of expression profiles of 2932 circRNAs. In the field of natural science, Pear-
son correlation coefficient is widely used to measure the degree of correlation between 
two variables and can well reflect the relationship between them, with its value between 
-1 and 1. So, the Pearson correlation coefficient (PCC) between each pair of circRNAs 
is calculated based on the downloaded expression profile information and used to con-
struct the circRNA similarity network.

circRNA–protein associations

The circRNA–protein data is downloaded and compiled from the StarBase v2.0 data-
base and CSCD http://gb.whu.edu.cn/CSCD/ [39, 40]. The two databases integrate 
almost all published circRNA related data, which contains the circRNA–protein inter-
actions derived from biological experiments, text mining, and computational predic-
tion methods. To ensure the reliability of data, we remove the duplicate entries from 
the circRNA–protein associations and delete entries that don’t exist in the protein–pro-
tein associations and circRNA-circRNA associations according to the protein ID and 
circRNA ID. Finally, a total of 2,932 circRNAs and 18,348 target genes with 188,479 
circRNA-target interactions among them are screened, which are used to construct the 
circRNA–protein interaction network.

Protein–protein interactions

At present, there are many databases of protein interactions. But the STRING V10.0 
[41] database is the one that covers the most species and interaction information. The 
interactions in the database are derived not only from biological experiments, but also 
from text mining and algorithm models. After removing the duplicate entries from the 
protein–protein interactions and deleting entries that don’t exist in the circRNA–pro-
tein associations according to the protein ID, we obtain a total of 5,172,245 interactions 
containing 18,348 proteins. Each pair of interaction has a confidence score which is 
computed by combining the probabilistic integrals of single-channel array and double-
channel array.

The overall flow of our method is shown in Fig.  7. It includes three steps. (a) Con-
struct the global heterogeneous network according to the circRNA co-expression simi-
larity, circRNA–protein associations, and PPIs. (b) Employ the HIN2Vec algorithm [27] 
to extract the representation of each node in the global heterogeneous network. (c) Train 
the multi-label neural network and apply it to our manually curated independent test 
dataset.

Build the global heterogeneous network

In this work, we collect circRNA expressions, circRNA–protein associations, and pro-
tein–protein interactions from different databases. In total, 2932 circRNAs and 18,348 

http://gb.whu.edu.cn/CSCD/
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protein-coding genes are screened. Based on the data, we build a global heterogeneous 
network to represent the biological entities and the relationships among nodes since 
heterogeneous networks usually contain very rich information. In addition, there is 

a

b

c

Fig. 7  Flowchart of DeepciRGO, which includes three steps: (a) build the global heterogeneous network by 
integrating three networks (circRNA co-expression network, circRNA–protein interaction network, and PPI 
network); (b) employ HIN2Vec to learn the latent representations of the nodes (circRNAs and proteins); (c) 
train each GO class with the neural network model and annotate circRNAs
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evidence that circRNAs most likely have the same or similar functions with the associ-
ated proteins [10]. Therefore, we construct a global network to annotate the functions of 
circRNAs.

Obtain vector representations of nodes

In order to capture the rich semantics of embedding in a heterogeneous networks, it 
is necessary to use appropriate network representation learning methods to extract 
embedded information in the network structure, while preserving the original relation-
ships among nodes as input features of deep neural network models. In this study, HIN-
2Vec is used to learn low-dimensional vector representations of circRNAs and proteins 
in the heterogeneous network [27]. The core of HIN2Vec is a neural network model, 
which can learn not only the representations of nodes in the network, but also the repre-
sentations of relationships (meta-paths).

The basic idea of the HIN2Vec model is to target multiple prediction tasks, each task 
corresponding to a meta-path, jointly learning a neural network model, predicting a set 
of target relationships between any given pair of nodes, thereby learning the low-dimen-
sional vector representation of each node. As shown in step B in Fig. 7, HIN2Vec model 
is specifically divided into two stages: (1) training data generation and (2) representation 
learning. In the data generation part, random walk and negative sampling are employed 
to extract the training data in the form of (a, b, B(a, b, z)) through sampling the HIN. 
Here, a and b represent two nodes, z is the relationship between the two nodes, and 
B(a, b, z) is a binary value indicating whether there is a relationship z between a and b.

In the second step, the representations of nodes are learned by building a binary classi-
fier to predict whether there is a definite relationship z between two nodes a and b. In 
HIN2Vec, a three-layer feedforward neural network (NN) model serves as the binary 
classifier (as shown in Fig. 8). The HIN2Vec model takes nodes a, b and their specific 
relationship z as input to predict whether the relationship z exists between them. The 
input layer of the model is fed by three one-hot encoded vectors, �a , �b and �z , denoting a, 
b, and z, respectively. Then, in the latent layer, they are converted to the hidden vectors 
W

′

A�a , W ′

B
�b and f01(W

′

Z�z) . Since the semantic meaning of relation and node is different in 

Fig. 8  The HIN2Vec NN model
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the learning process, we regularize the relation vector z with the regularization function 
f01(.) to enhance its generalization ability, which limits the value of relation vector z 
between 0 and 1. The three vectors are aggregated, and denoted by 
W

′

A�a⊙W
′

B
�b⊙ f01(W

′

Z�z) through the Hadamard function and identity function for acti-
vation. In the output layer, the HIN2Vec NN model takes the summation function and 
the sigmoid function, namely, sigmoid 

(

∑

W ′
A
−→
a ⊙W ′

B

−→
b ⊙ f01

(

W ′
Z
−→
z
)

)

 , as the input 

function and activation function, respectively.
HIN2Vec is iteratively trained on the training set T through the back-propagation 

algorithm based on random gradient descent. The weights in WA , WB , and WZ for each 
entry in T are adjusted constantly by maximizing the objective function F, which is the 
multiplication of Fa,b,z(a, b, z) for each training data entry in T. The objective function F 
and derivation of logF are defined as:

Specifically, for a training data entry 〈a, b, z,R(a, b, z)〉 , when R(a, b, z) is 1, Fa,b,z(a, b, z) 
aims to maximize P(z|a,  b); otherwise Fa,b,z(a, b, z) aims to minimize P(z|a, b). Thus, 
Fa,b,z(a, b, z) , P(z|a, b) and logFa,b,z(a, b, z) are written as follows:

After training, the representations of nodes in the global heterogeneous network 
are extracted. The result is an N × M matrix, where N represents the total number of 
circRNAs and proteins in the network, and each biological entity is represented by a 
M-dimensional vector.

Training multi‑classification model

Gene ontology (GO) contains three functional information of gene involved in biologi-
cal process, cell location and molecular function, which organizes different functional 
concepts into directed acyclic graph (DAG) structure. The GO graph has the nature of 
a classification tree. Different from tree, the nodes in the GO graph may not only have 
multiple child nodes, but may also have multiple parent nodes, and have different rela-
tionships with different parent nodes. Therefore, predicting the GO terms of circRNA 
can be considered as a hierarchical multi-label classification problem [42]. In Deep-
ciRGO, we establish a multi-label classification model combining neural network and 
symbol intelligence for each class in GO terms, which deeply integrates the respective 
advantages of neural system and symbol system (Fig. 9). This hierarchical classification 
model takes the topological characteristics of circRNAs and protein in heterogeneous 
networks as input and is trained step by step. We create a binary marker vector for each 
training sample. If the training sample has a GO annotation in our selected class list, we 

(7)F ∝ logF = �a,b,z∈T logFa,b,z(a, b, z).

(8)Fa,b,z(a, b, z) =

{

P(z|a, b), if R(a, b, z) = 1

1− P(z|a, b), if R(a, b, z) = 0
,

(9)
logFa,b,z(a, b, z) = R(a, b, z)logP(z|a, b)

+ [1− R(a, b, z)]log[1− P(z|a, b)],

(10)P(z|a, b) = sigmoid(
∑

(W
′

A�a⊙W
′

B
�b⊙ f01(W

′

Z�z))).
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mark the position of the corresponding item in the binary marker vector as 1; otherwise, 
it is marked as 0. Each neural network of DeepciRGO contains a fully connected layer 
and a sigmoid activation function. The output vectors of the previous fully connected 
layer are fed into the next layer. It is important to note that all neural networks share the 
low-dimensional features of the first full connection layer. To ensure the consistency of 
GO items hierarchy classification, we build a maximum merge layer for each GO item 
with child nodes in the model. The merge layer selects the value with the highest pre-
dicted score among GO items and all their sub items. In consequence, the final output 
vector of the hierarchical multi-label classification model is the series of activations of 
the leaf nodes and the maximum merge layers of the non-leaf nodes.

Due to the lack of a standard database of known human circRNA annotations, we 
download protein annotations from UniProt-GOA version 201010 as the training set. In 
training the DeepciRGO, we perform 5-fold cross-validation and use multi-class cross 
entropy to calculate the loss function [43]. Then, we employ the RMSProp optimizer to 
optimize the model. The initial weight of the model is initialized based on a uniform dis-
tribution. At the end of each training epoch, the weight of the entire network is automat-
ically adjusted by backpropagation. To accelerate the training process, we use NVIDIA 
Pascal X GPUs. The training time for the model is less than two hours and the inference 
time is less than one second. To prevent overfitting of the model, we use a dropout layer 
as the regularizer. We manually adjust the following parameters: batch size, number of 
connected neurons, and learning rate. We select the optimal parameters depending on 
the values of validation loss. Table 4 shows the validation losses and train losses for dif-
ferent embedding sizes. Through the continuous adjustment, we finally obtain the opti-
mal model with a minimum batch size of 64 and learning rate of 0.01.

In summary, we build a machine learning framework to predict the function of circR-
NAs. The first part of the framework extracts the topological information of each node 
in the global network as its feature. The second part builds a neural network for each 
GO, considering the functional dependencies between the classes in GO. The purpose is 

Fig. 9  the hierarchical architecture of classification in the neural network model



Page 16 of 18Deng et al. BMC Bioinformatics          (2020) 21:519 

that the framework can identify both explicit dependencies between classes in GO and 
implicit dependencies (such as frequently co-occurring classes).
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