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Abstract 

Background:  Many studies prove that miRNAs have significant roles in diagnosing 
and treating complex human diseases. However, conventional biological experiments 
are too costly and time-consuming to identify unconfirmed miRNA-disease associa-
tions. Thus, computational models predicting unidentified miRNA-disease pairs in an 
efficient way are becoming promising research topics. Although existing methods 
have performed well to reveal unidentified miRNA-disease associations, more work is 
still needed to improve prediction performance.

Results:  In this work, we present a novel multiple meta-paths fusion graph embed-
ding model to predict unidentified miRNA-disease associations (M2GMDA). Our 
method takes full advantage of the complex structure and rich semantic information 
of miRNA-disease interactions in a self-learning way. First, a miRNA-disease hetero-
geneous network was derived from verified miRNA-disease pairs, miRNA similarity 
and disease similarity.All meta-path instances connecting miRNAs with diseases were 
extracted to describe intrinsic information about miRNA-disease interactions. Then, 
we developed a graph embedding model to predict miRNA-disease associations. 
The model is composed of linear transformations of miRNAs and diseases, the means 
encoder of a single meta-path instance, the attention-aware encoder of meta-path 
type and attention-aware multiple meta-path fusion. We innovatively integrated 
meta-path instances, meta-path based neighbours, intermediate nodes in meta-paths 
and more information to strengthen the prediction in our model. In particular, distinct 
contributions of different meta-path instances and meta-path types were combined 
with attention mechanisms. The data sets and source code that support the findings of 
this study are available at https​://githu​b.com/dangd​angzh​ang/M2GMD​A.

Conclusions:  M2GMDA achieved AUCs of 0.9323 and 0.9182 in global leave-one-out 
cross validation and fivefold cross validation with HDMM V2.0. The results showed 
that our method outperforms other prediction methods. Three kinds of case studies 
with lung neoplasms, breast neoplasms, prostate neoplasms, pancreatic neoplasms, 
lymphoma and colorectal neoplasms demonstrated that 47, 50, 49, 48, 50 and 50 out 
of the top 50 candidate miRNAs predicted by M2GMDA were validated by biological 
experiments. Therefore, it further confirms the prediction performance of our method.
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Background
Micro ribonucleic acids (MiRNAs), small non-coding RNAs with 18–25 nucleo-
tides, play crucial roles in controlling protein-encoding genes in humans [1].Studies 
show that miRNAs are involved in the diagnosis, prognosis and treatment of a wide 
range of pathological processes, such as malignancies, cardiovascular diseases, viral 
infection, heart conditions, diabetes and mental disorders [2]. For example, biologi-
cal experiments have shown that miR-155 acts as an oncogene in lymphoma [3]. As 
a consequence, it is essential to identify disease-related miRNAs. Some biological 
experimental approaches, such as PCR and microarrays [4], have been developed to 
detect miRNA-disease interactions. Nevertheless, the traditional biological experi-
ments are limited by high costs, as they require large equipment, and are time con-
suming. Thus, many researchers have focused on computational methods to reveal 
experimentally invalidated miRNA-disease associations to compensate for the limita-
tions of experimental methods [5, 6].

Some novel computational methods have been presented to predict miRNA-disease 
associations in recent years. These methods can be mainly divided into three catego-
ries: similarity-based methods, network model-based methods and machine learning-
based methods. With the assumption that functionally related miRNAs are closely 
connected to similar diseases, diverse similarity measurements are defined in similarity-
based methods. For example, Jiang et al. [7] used the first computational model, which 
scored with hypergeometric distributions to consider the direct neighbours in a miRNA 
network. This model proved to be inadequate as it disregarded the indirect neigh-
bours. Xuan et  al. [8] scored unlabelled miRNAs depending on functional similarity, 
miRNA family, miRNA cluster and the nearer neighbours. The local network similarity 
they employed restricted the prediction performance. Pasquier et al. [9] collected rich 
associations of miRNA-disease, miRNA-word, miRNA-family and miRNA-neighbour 
associations to build a miRNA vector. Chen et al. [10] incorporated within-scores and 
between-scores to rank the unidentified miRNA-disease pairs.

Network model-based methods first build a homogeneous or heterogeneous net-
work based on miRNAs and diseases. Then, random walk, label propagation, sophis-
ticated network algorithms or graph algorithms are exploited to explore the networks. 
For example, Shi et al. [11] conducted RWR (Random Walk with Restart) algorithm in 
the protein–protein network. However, the authors neglected miRNA-disease interac-
tions. As the discovered miRNA targets were insufficient, Chen et al. [12] implemented 
RWR in a miRNA-miRNA network. Furthermore, Chen et al. [13] extended RWR into 
a disease-disease network. To explore bipartite subnetworks, Luo et al. [14] fulfilled two 
separate and concurrent unbalanced bi-random walks. In addition, Yu et  al. [15] sup-
plemented the virtual links with a hybrid recommendation algorithm to strengthen the 
networks. From the perspective of label propagation, Chen et al. [16] applied lncRNA-
miRNA interactions to enrich data and performed label propagation. To reduce the 
sparsity of networks, Yu et al. [17] adopted matrix completion before label propagation. 
As well, Xie et al. [18] assessed similarity with KATZ in a bipartite network. Zhang et al. 
[19] developed a novel method, FLNSNLI, to predict miRNA-disease associations for 
the miRNAs without known associations. In addition, Yue et  al. [20] reviewed graph 
embedding methods on biomedical networks.
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Machine learning-based methods extract intrinsic features and devise efficient clas-
sification algorithms to identify miRNA-disease interactions. In an early method, Jiang 
et al. [21] randomly selected negative samples from unconfirmed miRNA-disease pairs 
and accomplished support vector machine (SVM) to perform the classification. Dif-
ferent from Jiang et  al.’s method, Chen et  al. [22] devised a semi-supervised classifier, 
which did not need negative instances. To address data noise and insufficiency, Liang 
et al. [23] defined an objective function based on L1-norm. Zhao et al. [24] integrated 
multiple weak classifiers with boosting to make the weak classifiers stronger. Further-
more, Chen et al. [25] chose the discriminative features according to the occurrence fre-
quency. Moreover, both matrix decomposition [26–28] and collaborative filtering [29] 
were found to be powerful tools in predicting miRNA-disease associations. Motivated 
by the promising developments in deep learning, auto-encoder [30], node embedding 
[31] and SDNE (Structural Deep Network Embedding) [32] have attracted considerable 
attention in predicting miRNA-disease associations.

Although existing methods have performed favourably in revealing unidentified 
miRNA-disease associations, more work still needs to be done to improve prediction 
performance. On the one hand, some approaches are not applicable to new diseases that 
lack verified miRNAs. On the other hand, most approaches have limitations in obtaining 
discriminative features and intrinsic information from miRNA-disease interactions. The 
requirement for manual setting of the parameters makes the prediction methods subop-
timal to obtain the best performance. Moreover, noise, incompleteness and insufficiency 
of the data provide more challenges.

Meta-paths can be applied to explore the structure information and capture the rich 
semantic information in heterogeneous networks [33]. Zhang et al. [34] used meta-paths 
to directly extract features from miRNA-disease interactions. They only considered 
the length information of meta-paths. Different from Zhang’s work, we extracted more 
information, such as meta-path instances, meta-path based neighbours, and interme-
diate nodes in the sequence except length. Moreover, to consider the meta-paths con-
necting miRNAs with diseases as global information, we developed a graph embedding 
model to learn the representations of miRNAs and diseases other than by extracting fea-
tures directly. Therefore, we propose a novel multiple meta-paths fusion graph embed-
ding model to predict unverified miRNA-disease associations (M2GMDA). Our method 
takes full advantage of the complex structure and rich semantic information in miRNA-
disease interactions. In particular, all parameters are learned and do not need to be set 
manually after our model is created. In addition, M2GMDA is applicable to new diseases 
without confirmed miRNAs. The model includes linear transformations of miRNAs and 
diseases, the mean encoder of a single meta-path instance, the attention-aware encoder 
of meta-path type and the attention-aware multiple meta-paths fusion. With the power 
of multiple meta-paths fusion, attention mechanism and graph embedding, our method 
achieves superior prediction performance compared to other state-of-the-art methods. 
Experimental results with global leave one out cross validation (LOOCV) and fivefold 
cross validation show that M2GMDA had AUCs of 0.9323 and 0.9182, respectively. In 
addition, three kinds of case studies with lung neoplasms, breast neoplasms, prostate 
neoplasms, pancreatic neoplasms, lymphoma and colorectal neoplasms demonstrated 
that our method had reliable performances.
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Results
We first introduce the experimental approaches and evaluation criteria. Then, 
M2GMDA is compared with five classical prediction methods, and the experimental 
results are analysed. Finally, we conduct three kinds of case studies to further validate 
the prediction performance of our method.

Experimental approaches and evaluation criteria

We collected 5430 experimentally supported miRNA-disease associations from 
HMDD V2.0 [33] to act as the data set in our prediction task. Then, we employed 
global LOOCV and fivefold cross validation strategies on the experimental data. Each 
one confirmed miRNA-disease pair was viewed as the test set, and the other pairs 
were regarded as the training set in global LOOCV. Meanwhile, the miRNA-disease 
associations from HMDD were randomly partitioned into five equal-sized groups in 
the fivefold cross validation. Next, four groups were taken as the training samples and 
the fifth one acted as the testing sample. To relieve randomness, we repeated five-
fold cross validation 100 times and calculated the averaged results. We extracted all 
meta-paths with the length less than 4 in the experiments because we found meta-
paths that were too long contributed little to improve the prediction. We set the node 
embedding dimension Z = 64. The other parameters in our model did not need to be 
set manually as they were all learned automatically.

To demonstrate the impact of the attention mechanism in M2GMDA, we compared 
M2GMDA with the attention mechanism and without the attention mechanism. 
Attention-aware meta-path type encoder and attention-aware fusion of multiple 
meta-path types were replaced by the mean encoder in M2GMDA without the atten-
tion mechanism to neglect attention weights. Similarly, to analyse the effect of the 
length of meta-paths, we compared the prediction performances with different length 
of meta-paths.

We considered area under the curve (AUC) as the criteria to assess experimental 
performance of different prediction methods. The receiver operating characteristics 
(ROC) curve was modelled by the true positive rate and the false positive rate with 
different thresholds.

Comparisons with state‑of‑the‑art methods

To test the predictive performance of our method, we compared M2GMDA with five 
state-of-the-art prediction methods, IMCMDA [26], ICFMDA [29], RLSMDA [22], 
WBSMDA [10] and KATZBNRA [18]. The compared prediction performances of 
the six methods in global LOOCV and fivefold cross validation are shown in Figs. 1 
and  2, respectively. Figure  1 demonstrates that M2GMDA had the highest AUC of 
0.9323 in global LOOCV, indicating that it outperforms the other five prediction 
methods. In addition, the AUCs of IMCMDA, ICFMDA, RLSMDA, WBSMDA and 
KATZBNRA were 0.9067, 0.8387, 0. 8747, 0.8895 and 0.9098, respectively. Moreo-
ver, for fivefold cross validation experiments, M2GMDA also achieved the best pre-
diction performance. The AUCs of M2GMDA, IMCMDA, ICFMDA, RLSMDA, 
WBSMDA and KATZBNRA were 0.9182, 0.9045, 0.8109, 0.8339, 0.8005, and 0.8972, 
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respectively, as shown in Fig.  2. Hence, the experimental results illustrate that our 
method, M2GMDA, has a remarkable ability to discover the unconfirmed miRNA-
disease pairs.

Comparisons of M2GMDA with attention and without attention

We compared M2GMDA with the attention mechanism and without the attention 
mechanism with Global LOOCV and fivefold cross validation. The experiment results, 
which are shown in Figs. 3 and 4, illustrated that the attention mechanism improved the 
prediction performance in Global LOOCV and fivefold cross validation.The attention 
mechanism plays a crucial role in M2GMDA. Firstly, different nodes in a meta-path type 
have distinct influence in the structure information. Secondly, multiple meta-path types 

Fig. 1  Performance comparisons of M2GMDA, IMCMDA, ICFMDA, RLSMDA, WBSMDA, and KATZBNRA 
in global LOOCV. As we can see M2GMDA achieved AUC of 0.9323, which was higher than the other five 
methods

Fig. 2  Performance comparisons of M2GMDA, IMCMDA, ICFMDA, RLSMDA, WBSMDA, and KATZBNRA in 
fivefold cross validation. As we can see M2GMDA achieved AUC of 0.9182, which was higher than the other 
five methods
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contribute differently to the target node. So, the attention mechanism in M2GMDA 
improves the prediction performance (Table 1).

Comparisons of M2GMDA with different meta‑path length

Meta-path length is an important parameter in M2GMDA. Different values of the 
parameter lead to different semantic scales. We compared the experiment results with 
different meta-path length in Global LOOCV and fivefold cross validation.

Performance comparisons are depicted in Figs. 5 and 6. We can conclude that the pre-
diction performance gets better with increase of meta-path length. More relative node 
and paths are involved to model the target node as the length of meta-path increases. 
So, the model can aggregate more long-term dependencies between nodes. From 

Fig. 3  Performance comparisons of M2GMDA with attention and without attention in global LOOCV. As we 
can see the attention mechanism improves the prediction performance

Fig. 4  Performance comparisons of M2GMDA with attention and without attention in fivefold cross 
validation. As we can see the attention mechanism improves the prediction performance
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Figs. 5 and 6, it can be seen that, with the length of meta-path increases, the number 
of meta-path and the time cost in generating all meta-paths increase exponentially, but 
the growth of prediction performance of M2GMDA slows obviously. This is due to the 

Table 1  The top 50 miRNAs associated with lung neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-429 dbDEMC, PhenomiR hsa-mir-302d dbDEMC, PhenomiR

hsa-mir-106b dbDEMC, PhenomiR hsa-mir-99b dbDEMC, PhenomiR

hsa-mir-141 dbDEMC, PhenomiR hsa-mir-23b dbDEMC, PhenomiR

hsa-mir-16 dbDEMC, PhenomiR hsa-mir-383 dbDEMC, PhenomiR

hsa-mir-20b dbDEMC, PhenomiR hsa-mir-15b dbDEMC, PhenomiR

hsa-mir-92b dbDEMC, PhenomiR hsa-mir-130b dbDEMC, PhenomiR

hsa-mir-339 dbDEMC, PhenomiR hsa-mir-196b dbDEMC, PhenomiR

hsa-mir-151 PhenomiR hsa-mir-28 dbDEMC, PhenomiR

hsa-mir-194 dbDEMC, PhenomiR hsa-mir-299 PhenomiR

hsa-mir-302b dbDEMC, PhenomiR hsa-mir-10a dbDEMC

hsa-mir-302c dbDEMC, PhenomiR hsa-mir-193b dbDEMC

hsa-mir-367 dbDEMC, PhenomiR hsa-mir-452 dbDEMC, PhenomiR

hsa-mir-215 dbDEMC, PhenomiR hsa-mir-491 dbDEMC

hsa-mir-296 PhenomiR hsa-mir-340 dbDEMC, PhenomiR

hsa-mir-302a dbDEMC, PhenomiR hsa-mir-424 dbDEMC, PhenomiR

hsa-mir-520b dbDEMC hsa-mir-129 dbDEMC, PhenomiR

hsa-mir-373 dbDEMC, PhenomiR hsa-mir-516b dbDEMC

hsa-mir-451 dbDEMC, PhenomiR hsa-mir-449b dbDEMC, PhenomiR

hsa-mir-195 dbDEMC, PhenomiR hsa-mir-516a Unconfirmed

hsa-mir-15a dbDEMC, PhenomiR hsa-mir-449a dbDEMC, PhenomiR

hsa-mir-130a dbDEMC, PhenomiR hsa-mir-139 dbDEMC, PhenomiR

hsa-mir-372 dbDEMC, PhenomiR hsa-mir-181d dbDEMC, PhenomiR

hsa-mir-204 dbDEMC, PhenomiR hsa-mir-520c Unconfirmed

hsa-mir-153 dbDEMC, PhenomiR hsa-mir-510 Unconfirmed

hsa-mir-488 dbDEMC, PhenomiR hsa-mir-663 dbDEMC

Fig. 5  Performance comparisons of M2GMDA with different meta-path length in global LOOCV. As we can 
see prediction performance gets better with increase of meta-path length
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longer a meta-path is, the more repeatable information in shorter meta-paths it con-
tains, which has little contribution to increasing the performance. For example, generat-
ing all meta-paths and model training may spend for 1–2 days with meta-path length of 
2L, while it may spend for about one week when the meta-path length is 3. When the 
max meta-path length is up to 4L, the time cost may be up to weeks while the perfor-
mance grows slightly. Hence, in our cases studies below, we used 3L as the max meta-
path length.

Cases studies

We implemented three kinds of case studies to further verify the prediction capability 
of our method to uncover miRNA-disease associations. For the first case study, we used 
M2GMDA to find the related unconfirmed miRNAs associated with breast neoplasms 
and lung neoplasms with HDMM V2.0 [35] as the data set. Then, the identified candi-
date miRNAs were compared to two public data sets, dbDEMC [36] and PhenomiR [37] 
to verify their correctness.

Lung neoplasms are devastating deadly tumours that cause a large number of deaths 
in both men and women worldwide [38]. It is important to diagnose lung neoplasms as 
early as possible because of the low 5-year survival. MiRNAs have become a promis-
ing tool in the diagnosis and treatment of lung neoplasms [39]. For example, increased 
miR-211 levels have been associated with increased mortality in patients with none the 
top 25 related miRNAs, and the third column contains the top 26–50. For the top 50 
related miRNAs, 47 were confirmed to be associated with lung neoplasms by biological 
experimental results from dbDEMC and PhenomiR. Only 3 miRNAs were unconfirmed. 
For example, hsa-mir-106b, which ranks 2nd in our prediction results, has been demon-
strated to promote proliferation in non-small cell neoplasms [40]. Thus, the predicted 
results of M2GMDA provide a novel viewport for lung neoplasms.

Breast neoplasms are common diseases with high mortality in women worldwide. It 
has been reported that the number of breast neoplasm patients will pass three million by 

Fig. 6  Performance comparisons of M2GMDA with different meta-path length in fivefold cross validation. As 
we can see prediction performance get better with increase of meta-path length
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the middle of the twenty-first century [41]. Medical experiments have proven that miR-
142-3p is associated with breast neoplasms. We apply M2GMDA to identify the associ-
ated miRNAs for breast neoplasms and selected the top 50 candidates, which are listed 
in Table 2. The results showed that all the top 50 miRNAs were validated by dbDEMC 
and PhenomiR. In the prediction results, hsa-mir-92b, which ranked 1st, has been dem-
onstrated to reduce the viability of breast neoplasm cells [40]. Therefore, these findings 
show that our prediction model provides novel evidence for studies of breast neoplasms.

Then, we performed the second kind of case study to test whether our method is appli-
cable to new diseases without experimentally supported miRNAs. Firstly, we choose 
prostate neoplasms for this case, as this is the most common cancer in men in the world. 
There are more than 100,000 men that die from prostate neoplasms in Europe alone in 
2018 [43]. In this case study, we first set all miRNA-disease associations related to pros-
tate neoplasms from HMDD 2.0 to zero. Then, M2GMDA was performed to identify 
the associated miRNAs for prostate neoplasms. The results shown in Additional file 1: 
Table S1 indicate that all the top 50 predicted miRNAs were also included in dbDEMC 
and PhenomiR. Secondly, to evaluate more new diseases further, we conducted the study 
on pancreatic neoplasms, lymphoma, lung neoplasms, colorectal neoplasms and breast 
neoplasms. The results of the case study of pancreatic neoplasms are listed in Additional 
file 1: Table S2. All of the top 50 miRNAs were confirmed by HMDD 3.2, dbDEMC and 

Table 2  The top 50 miRNAs associated with breast neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-92b dbDEMC hsa-mir-181d dbDEMC, PhenomiR

hsa-mir-30e PhenomiR hsa-mir-663 dbDEMC, PhenomiR

hsa-mir-151 dbDEMC, PhenomiR hsa-mir-382 dbDEMC

hsa-mir-106a dbDEMC, PhenomiR hsa-mir-575 dbDEMC

hsa-mir-451 dbDEMC, PhenomiR hsa-mir-181c dbDEMC

hsa-mir-192 dbDEMC, PhenomiR hsa-mir-455 PhenomiR

hsa-mir-98 dbDEMC, PhenomiR hsa-mir-484 dbDEMC, PhenomiR

hsa-mir-32 dbDEMC, PhenomiR hsa-mir-494 dbDEMC, PhenomiR

hsa-mir-130a dbDEMC, PhenomiR hsa-mir-99a dbDEMC, PhenomiR

hsa-mir-372 dbDEMC, PhenomiR hsa-mir-376a dbDEMC, PhenomiR

hsa-mir-150 dbDEMC, PhenomiR hsa-mir-154 dbDEMC, PhenomiR

hsa-mir-99b dbDEMC, PhenomiR hsa-mir-211 dbDEMC, PhenomiR

hsa-mir-95 dbDEMC, PhenomiR hsa-mir-658 dbDEMC

hsa-mir-142 PhenomiR hsa-mir-660 dbDEMC

hsa-mir-15b dbDEMC, PhenomiR hsa-mir-381 dbDEMC, PhenomiR

hsa-mir-130b dbDEMC, PhenomiR hsa-mir-432 dbDEMC, PhenomiR

hsa-mir-196b dbDEMC, PhenomiR hsa-mir-216a dbDEMC, PhenomiR

hsa-mir-28 dbDEMC, PhenomiR hsa-mir-33b dbDEMC

hsa-mir-198 dbDEMC, PhenomiR hsa-mir-216b dbDEMC

hsa-mir-186 dbDEMC, PhenomiR hsa-mir-363 dbDEMC, PhenomiR

hsa-mir-491 PhenomiR hsa-mir-33a dbDEMC, PhenomiR

hsa-mir-424 dbDEMC, PhenomiR hsa-mir-454 dbDEMC, PhenomiR

hsa-mir-212 dbDEMC, PhenomiR hsa-mir-376b dbDEMC

hsa-mir-449b dbDEMC hsa-mir-217 dbDEMC, PhenomiR

hsa-mir-449a dbDEMC, PhenomiR hsa-mir-144 dbDEMC, PhenomiR
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PhenomiR. At the same time, we summarize the case results for more new diseases 
(lymphoma, lung neoplasms, colorectal neoplasms and breast neoplasms) in Additional 
file 1: Table S3. For colorectal neoplasms, the found top 50 miRNAs were all confirmed. 
For lymphoma, lung neoplasms and breast neoplasms, only 2, 1, 1 of the top 50 miRNAs 
were not validated, respectively. Hence, the case study indicates that M2GMDA is appli-
cable to new diseases.

Finally, in the third case study, we wanted to test whether M2GMDA trained with data 
from an older version of HMMD could identify new imported miRNA-disease pairs 
in a new version of HMDD. We used HMDD 3.2, dbDEMC and PhenomiR to confirm 
the obtained results. The results of the case study of colorectal neoplasms are listed in 
Additional file  1: Table  S4. All of the top 50 miRNAs were confirmed by HMDD 3.2, 
dbDEMC and PhenomiR.

Based on the results of the three kinds of case studies, we can conclude that our pre-
diction method is valid in predicting unconfirmed miRNA-disease associations.

Discussion
Experimental results compared with the state-of-the-art miRNA-disease prediction 
methods in global LOOCV and fivefold cross validation demonstrated that M2GMDA 
performed better than the other prediction methods. We analysed the impact of the 
attention mechanism and length of meta-path. Furthermore, three kinds of case stud-
ies based on four diseases also confirmed the prediction performance of our method. 
The success of M2GMDA stems from three reasons. First, all meta-path instances in 
the miRNA-disease heterogeneous network are obtained to capture the complex rela-
tionships of miRNAs and diseases. Second, a novel meta-path instance encoder was 
devised to integrate the information on nodes and edges from each meta-path instance. 
Then, graph attention was incorporated to weight sum the different meta-path instances 
according to their distinction. Third, multiple meta-paths were fused to aggregate 
intrinsic information in multiple meta-paths. In summary, M2GMDA achieves excel-
lent prediction by taking full advantage of the complex structure and semantic infor-
mation in miRNA-disease heterogeneous network. To promote miRNA-disease 
prediction, we share our prediction results and provide search service on our website 
(https​://132.232.17.50:8080/M2GMD​A.jsp).

Conclusion
To take full advantage of the complex structure and rich semantic information in 
miRNA-disease heterogeneous network, we present a novel multiple meta-paths 
fusion graph embedding model to predict unconfirmed miRNA-disease associations 
(M2GMDA). To enrich the information in every meta-path instance, we take into 
account intermediate nodes in the sequence. Attention mechanism is integrated into the 
meta-path encoder to distinguish different meta-path instances. Multiple meta-paths 
are fused according to their different contributions. Finally, the loss function is defined 
to train the model and obtain the learned miRNA-disease associations. Experimental 
results with global LOOCV and fivefold cross validation showed that M2GMDA per-
formed better than the other state-of-the-art prediction methods. In addition, case stud-
ies show that our method achieves reliable prediction performance. In the future, we 

https://132.232.17.50:8080/M2GMDA.jsp
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plan to explore more information in heterogeneous network to predict miRNA-disease 
associations more accurately. In conclusion, M2GMDA is a powerful method to iden-
tify miRNA-disease associations. To promote the research on predicting miRNA-disease 
associations, we published our source code and developed a web service to share our 
prediction results.

Methods
The framework for predicting miRNA-disease associations by M2GMDA is displayed in 
Fig. 7. First, multiple similarity measurements were adopted to calculate miRNA inte-
grated similarity and disease integrated similarity. Second, we built a miRNA-disease 
heterogeneous network from experimentally confirmed miRNA-disease associations, 
miRNA integrated similarity and disease integrated similarity. Third, we developed 
a novel graph embedding model to fuse all meta-path instances to predict the uncon-
firmed miRNA-disease associations. The model consists of linear transformations of 
miRNAs and diseases, the means encoder of a single meta-path instance, the attention-
aware encoder of meta-path type and the attention-aware multiple meta-paths fusion. 
In our model, the original features of miRNAs and diseases with various dimensions 
were transformed into unified latent spaces with the same dimension. Then, the means 
encoder of a single meta-path instance was employed to explore the sequence informa-
tion of a single meta-path instance. We obtained the final representations of miRNAs 
and diseases by attention-aware meta-path type encoder and attention-aware fusion of 
multiple meta-path types. Finally, we defined the loss function to learn the parameters 
and predict the miRNA-disease associations.

Construction of a MiRNA‑disease heterogeneous network

MiRNA‑disease interaction network construction

HMDD V2.0 is a popular database that consists of experimentally supported miRNA-dis-
ease interactions. We downloaded HMDD V2.0 and used it as the standard data set. For 
convenience, we utilized the adjacency matrix A ∈ Rm×n to formalize the experimentally 
supported interactions between miRNAs and diseases. Here, m and n are the numbers of 
miRNAs and diseases, respectively. In the matrix A , the element Aij equaling to 1 means 

Fig. 7  Flow chart of M2GMDA. First, miRNA integrated similarity and disease integrated similarity were 
calculated according to multiple measurements. Then, miRNA-disease heterogeneous network was 
constructed. Finally, a novel graph embedding model was used to predict the unconfirmed miRNA-disease 
associations
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that miRNA ri is related to disease dj , otherwise, Aij equals to 0. In this paper, we adopted 
HMDD V2.0 to build A . There are 5430 associations between 495 miRNAs and 383 diseases 
in HMDD V2.0. Thus, m = 495 and n = 383 . Therefore, we utilized A to build a miRNA-
disease interaction network.

MiRNA similarity network construction

We determined miRNA integrated similarity by combining miRNA functional similarity 
with Gaussian interaction profile kernel similarity as follows:

here FSij stands for functional similarity of miRNAs ri and rj , GM
(

ri, rj
)

 stands for Gauss-
ian interaction profile kernel similarity of miRNAs ri and rj.

Wang et  al. defined miRNA functional similarity based on the notion that miRNAs 
with higher functional similarity are more likely to correlate with similar diseases [42]. 
Based on their work, we downloaded the functional similarity data.

In addition, Chen et al. measured the Gaussian interaction profile kernel similarity of 
miRNAs as follows [24]:

here IV (ri) and IV (ri) indicate the i-th and j-th row of adjacency matrix A , respec-
tively.αr is the kernel bandwidth parameter which can be formed as follows:

here αr0 is the initial kernel bandwidth, which is set to 1. Thus, we can model a miRNA 
similarity network from miRNA integrated similarity.

Disease similarity network construction

We calculated the integrated similarity between two diseases based on combined disease 
semantic similarity and Gaussian interaction profile kernel similarity as follows:

here SS
(

di, dj
)

 represents the disease combined semantic similarity of diseases di and dj . 
GD

(

di, dj
)

 represents the disease Gaussian interaction profile kernel similarity.
Disease combined semantic similarity is derived from two semantic similarity meas-

urements of two diseases. On the one hand, Wang et al. define disease semantic simi-
larity based on MeSH [44]. First, they define the contribution of disease d in Directed 
Acyclic Graph ( DAG(D) ) as follows:

here � is the semantic contribution delay factor.

(1)SM
(

ri, rj
)

=

{

FSij ri, rj has functional similarity
GM

(

ri, rj
)

otherwise

(2)GM
(

ri, rj
)

= exp
(

−αr�IV(ri)− IV
(

rj
)

�
2
)

(3)αr =
αr0

1
m

∑m
i=1 �IV (ri)�

2

(4)SD
(

di, dj
)

=

{

SS
(

di, dj
)

has combined sematic similarity

GD
(

di, dj
)

otherwise

(5)D1D(d) =

{

1 if d = D
max{� ∗ D1D(d

′)|d′ ∈ children of d} if d �= D
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Then, the semantic value of D is obtained as follows:

here T (D) is the set containing D and all its ancestor nodes.
Finally, they provide the similarity score of disease di and disease dj as follows:

On the other hand, we performed another similarity analysis of two diseases as defined 
by Xuan et al. [8] to calculate the other semantic similarity. Xuan et al. measure seman-
tic similarity of two diseases based on the notion that some specific diseases may have 
higher contributions to disease D . They define the contribution of d in DAG as follows:

Then, they measure semantic similarity SS2
(

di, dj
)

 between di and dj as the percentage 
of their own contributions and those of their common ancestor nodes as follows:

Here, DV 2(di) and DV 2
(

dj
)

 are defined similar to Formula (6).
Finally, we considered the average value of two semantic similarities from Wang et al. 

and Xuan et al. as the combined semantic similarity as follows:

Therefore, we modelled disease similarity network based on disease integrated 
similarity.

Finally, we integrated the miRNA-disease interaction network, miRNA similarity net-
work, and disease similarity network to form a miRNA-disease heterogeneous network. 
The miRNA-disease heterogeneous network is defined as an undirected graph G = (V, 
E) over miRNAs ( M ) and diseases ( D ). V stands for node set, which consists of miRNAs 
and diseases. E stands for an edge set including three edge types, i.e., M → D or D → M 
indicates that a miRNA is related to a disease, M → M shows that two miRNAs are sim-
ilar, D → D demonstrates that there is an edge between two diseases.

Meta‑path instances extraction from the MiRNA‑disease heterogeneous network

A miRNA may be connected with a disease by one or multiple paths in the miRNA-
disease heterogeneous network. The indirect and composite connections of miRNA-
disease, named meta-paths, signal rich semantic information and help to understand 
the complex structure and semantic information of miRNA-disease interactions. 
Meta-paths have various types because of the differences in nodes and edges in their 

(6)DV 1(D) =
∑

d∈T (D)
D1D(d)

(7)SS1
(

di, dj
)

=

∑

d∈T (di)∩T(dj)

(

D1di(d)+ D1dj (d)
)

DV 1(di)+ DV 1
(

dj
)

(8)D2D(d) = −log
the number of DAGs inluding d

the numbuer of diseases

(9)SS2
(

di, dj
)

=

∑

d∈T (di)∩T(dj)

(

D2di(d)+ D2dj (d)
)

DV 2(di)+ DV 2
(

dj
)

(10)SS
(

di, dj
)

=
SS1

(

di, dj
)

+ SS2
(

di, dj
)

2
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sequences. For convenience, we explain meta-path type, meta-path instance and meta-
path based neighbour below.

First, we define meta-path type P with L-Length as a sequence in 
the form of T1

R1
→ T2

R2
→ · · ·Ti

Ri
→ · · ·

RL
→ TL+1 . Here,Ti ∈ {M,D} , 

Ri ∈ {M → D,D → D,M → M,D → M} . There are many meta-path types as shown in 
Fig. 8. For example, one meta-path type P4 = M → D → M → D is a 3-Length (3-L for 
short) meta-path type.

Second, given a meta-path type P, there may be multiple paths following it, which are 
called meta-path instances. For example, as shown in Fig. 8, one meta-path instance of 
P = M → M → D → D is p = r2 → r5 → d3 → d2 . Here, ri and dj are the i-th miRNA 
and the j-th disease.

Third, meta-path based neighbour is a node linked to the target node with one meta-
path instance, which helps to understand the target node. In a meta-path instance, we 
regard the first node as the target node and the last node as its meta-path based neigh-
bour. For the meta-path instance p in Fig. 8, the target node of p is r2 . The meta-path 
based neighbour of r2 in p is d2 . It can be seen that, for the target node r2 , there are many 
neighbours based on the meta-path type P , which may have many instances.

Finally, we extract all meta-path instances from the miRNA-disease heterogeneous 
network.

Linear transformations of MiRNAs and diseases

We modelled original features of miRNAs and diseases from miRNA similarity matrix 
SM and disease similarity matrix SD , respectively. We obtained the i-th row in SM as the 
feature of the i-th miRNA. Similarly, the j-th row in SD was regarded as the feature of 
the j-th disease. We had to project the original features of miRNAs and diseases into the 
same latent vector space with linear transformations, as their dimensions are different.

Fig. 8  Example of meta-paths with different Lengths. Many meta-path instances were extracted from 
miRNA-disease heterogeneous network
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For a miRNA r, we mapped the original features into the unified latent space as follows:

here hr ∈ Rz is the transformed latent vector of miRNA r, and xr ∈ Rdr is the original 
feature of miRNA r . W R ∈ Rz×dr is the linear transformation matrix for miRNAs, which 
is a learnable parameter.

In the same way, the original feature of disease d is mapped into the unified latent space 
as follows:

here hd ∈ Rz is the transformed latent vector of disease d, and xd ∈ Rdd is the original 
feature of disease d, WD ∈ Rz×dd is the linear transformation matrix for diseases. WD is 
a learnable parameter.

In Fig. 7, the nodes with shadow are the transformed representations of original miRNAs 
and diseases.

The mean encoder of MiRNAs and diseases based on a single meta‑path instance

Given a meta-path instance p , for a fixed target u (the circle node with a shadow in Fig. 7) 
after the transformation, its measurable features are implied in the sequences of p . There-
fore, structural and semantic information of u can be gained from p . We let v be the 
neighbour of u ( u is a miRNA or disease) in a single meta-path instance p . The relative 
information between u and v is implied in p . To obtain this information, we used a mean 
encoder, which takes the mean of all the node vectors in p , to transform node sequence in p 
to a single vector as follows:

here hpu∈ Rz is the transformed vector of the node sequence of p . Mp indicates nodes set 
in the sequence of p , which includes u and v . hpu is the latent vector of node u embedded 
by a single meta path instance p.

Attention‑aware meta‑path type encoder of MiRNAs and diseases

For a fixed target u , in the sight of a meta-path type P , there were many meta-
path instances with different neighbours. For instance, there are two meta-path 
instances,r2 → r5 → d3 → d2 and r2 → r1 → d2 → d1 , for miRNA r2 as shown in Fig. 8. 
The relative information implied in the two meta-path instances is not equal. To integrate 
all information of various meta-path instances with the same meta-path type and distin-
guish their importance to represent the target node u , we aggregated them into a single 
vector with graph attention.

(11)hr = W
R · xr

(12)hd = W
D · xd

(13)h
p
u = MEAN

(

∑

t∈Mp

h
p
t

)

(14)epu = ReLU
(

attp · [hu||h
p
u]
)
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here attp∈ R2z is the attention parameter for meta-path instance p , || is the vector con-
catenation, epu indicates the contribution of meta-path instance p to target u , and e′pu is 
the normalization of epu by using the softmax function among all possible neighbours of 
u based on meta-path type P . For all p ∈ P with a target u , the comprehensive represen-
tation of u can be gained by the weighted sum of all meta-path instances as shown in 
Formula (16).

Attention‑aware fusion of multiple meta‑path types

Suppose there are N  meta-paths types in miRNA-disease heterogeneous networks, we 
defined a set of meta-path types P = {P1,P2, . . . ,PN } . The representation of a target u by 
different meta-path types can be defined as hPiu ∈ Rz , i ∈ [1,N ] . Considering the distinct 
contribution of different meta-path types because of different lengths and patterns, we 
also employed attention mechanisms to get the final representation of u.

here attPi∈ Rz is the attention parameter for meta-path type Pi . Moreover, wPi
u  indicates 

the contribution of meta-path type Pi to target u . w′Pi
u  is the normalization of wPi

u  by using 
the softmax function among all meta-path types. Therefore, hPu∈ Rz stands for the node 
representation fused by all meta-path types with meta-path type attention.

Up to now, the representation of a miRNA or disease with underlying information in 
meta-paths was modelled by the above three encoders.

Predicting MiRNA‑disease associations with model training

After fulfilling the steps introduced above, we obtained hPu as the final representation of 
a miRNA or disease, which includes the global information in miRNA-disease interac-
tions. To achieve representations that are as correct as possible, we need to train the 
parameters of graph embedding, such as W R,WD,attp and attPi , with mini-batch 
learning. According to our data, the main aim of training our model is to make the dis-
tance between two nodes which have a connection in the miRNA-disease heterogeneous 

(15)e′
p
u =

exp
(

e
p
u

)

∑

q∈P exp
(

e
q
u

)

(16)h
P
u = sigmoid





�

p∈P

e′
p
u · h

p
u





(17)w′Pi
u = ReLU

(

attPi · h
Pi
u

)

(18)wPi
u =

exp
(

w′Pi
u

)

∑

Pi∈P
exp

(

w′Pi
u

)

(19)h
P

u =
∑

Pi∈P

w′Pi
u · hPiu
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network as small as possible. This means that the parameters of our model can be 
learned by minimizing the following loss function:

where P is the set of positive node pairs with approved relationships or high similarity 
and N  is the negative node pairs with unknown relationships or low similarity. dist(·) is 
the similarity measurement by the Manhattan distance of two nodes.
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