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Background
Performing a statistical evaluation to determine whether an observation is seen by 
chance necessitates the construction of a null hypothesis corresponding with the 
expected default position. An observation is generally considered statistically significant 
if it reflects an unlikely outcome of the null hypothesis. In most practical applications, 
observations seen in less than 5% of outcomes from a null distribution are considered 
statistically significant.

Large-scale computational analyses of cancer genomes use background mutational 
models to evaluate driver mutations [1–6], mutational signatures [7], and topographical 
accumulation of somatic mutations [8]. In almost all cases, a null hypothesis model of the 
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background mutation rate is implicitly incorporated into a bioinformatics tool [6, 9, 10] 
and used to report statistically significant results. Here we present SigProfilerSimulator, 
a computationally efficient bioinformatics tool for generating sample specific mutational 
landscapes that match the mutational signatures operative in each sample (Fig. 1a). Sig-
ProfilerSimulator provides a framework for generating a background mutational model 
for downstream statistical analyses and hypothesis testing. The tool supports generation 
of simulated single base substitutions (SBSs), small insertions and deletions (IDs), and 
doublet base substitutions (DBSs) while maintaining their patterns at different resolu-
tions. SigProfilerSimulator is available as both a Python and an R package, provides sup-
port for commonly used data formats, and is extensively documented. To demonstrate 
the wide applicability of SigProfilerSimulator, we illustrate its basic functionality using a 
single cancer genome and then apply the tool to 2144 whole-genome sequenced cancers 
and to 1,024 whole-exome sequenced breast cancers to address three different questions 
in cancer genomics.

Implementation
The mutational pattern of a cancer genome can be described using distinct classification 
schemes reflecting the activity of mutational processes at different resolutions [11]. For 
example, single base substitutions can be described using only the mutated base-pair (6 
possible mutational channels; known as SBS-6 classification), or the mutated base-pair 
with ± 1 bp context (SBS-96), or the mutated base-pair with ± 2 bp context (SBS-1536), 
or the mutated base-pair with ± 3 bp context (SBS-24576), etc. (Fig. 1B) [12]. Each of 
these classifications can be subsequently elaborated by considering additional features 
[11, 12]. For example, SBS-24 extends the SBS-6 classification by including four sub-
types for the six possible single base substitutions: substitutions are first split into ones 
in non-transcribed/intergenic regions and ones in genic regions; substitutions in genetic 
regions are further subclassified as ones occurring on the transcribed strand, untran-
scribed strand, or in regions of bi-directional transcription [11]. Similarly, the SBS-384 
and SBS-6144 classifications extend SBS-96 and SBS-1536, respectively, by subclassify-
ing each mutational channel into four: non-transcribed, transcribed, untranscribed, and 
bi-directional [11]. Note that, conventionally, these classifications have been displayed 
using the mutations only on the transcribed and untranscribed strands (e.g., 192 channel 
depiction for SBS-384) [7, 9, 13] since, historically, mutational patterns have been pre-
dominately investigated in whole-exome sequenced samples that provide little informa-
tion about mutations outside of transcribed protein coding regions.

By preserving the pattern of mutations at a preselected resolution, SigProfilerSimu-
lator converts a set of real somatic mutations from a cancer genome into another set 
of randomly generated somatic mutations (Fig. 1a). Maintaining the mutational pattern 
provides an assurance that the same mutational processes are observed in both the real 
and the simulated cancer genome. By default, the tool projects these mutations as statis-
tically independent events onto each chromosome by proportionately assigning muta-
tions based on the observed rate of each mutational channel across the complete length 
of a preselected reference genome. The number of mutations is proportionally assigned 
to each chromosome based on the number of mutational channels (e.g., 96 channels 
reflecting trinucleotides) found on that chromosome. The tool also provides a variety 
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Fig. 1  High-level overview illustrating the functionality of SigProfilerSimulator. a Schematic depiction 
of SigProfilerSimulator’s general functionality. The tool transforms the real somatic mutational catalog 
of a cancer genome into a simulated mutational catalog, while maintaining the mutational burden and 
the mutational pattern at a preselected resolution. b Summary of SBS classifications with corresponding 
examples at each resolution. The guide summarizes how the number of mutational channels is derived for 
each classification. c Comparing the simulated catalogues of a single cancer genome at different resolutions. 
Adding additional sequence context to a simulation creates a more specific and complex mutational model 
(e.g., SBS-96 provides greater resolution than SBS-6). Similarly, one can preserve the number of mutations in 
both genic and intergenic regions as well as the transcriptional strand bias by simulating with either SBS-24, 
SBS-384, or SBS-6144 classifications. Simulating a more complex classification of the data results in matching 
catalogs for all collapsed versions of the higher matrix (i.e., simulating SBS-384 ensures that the SBS-6, SBS-24, 
and SBS-96 simulated catalogs match the original data). d Comparing the simulated catalogues of a single 
cancer genome at different resolutions for small insertions and deletions. One can preserve the number of 
small insertions and deletions in genic and intergenic regions as well as the transcriptional strand bias by 
simulating the ID-415 classification
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of custom options for simulating mutations, including: (i) gender of the sample allowing 
appropriate incorporation of sex chromosomes; (ii) transcriptional strand bias allowing 
accurate distribution of mutations to account for the activity of transcription-coupled 
nucleotide excision repair; (iii) considering mutations as dependent sequential events 
where each mutation updates the observed rate of a mutational channel for a preselected 
reference genome, e.g., a C > T mutation at ACT trinucleotide will reduce the number 
of ACT trinucleotides in the reference genome by one and increase the number of ATT 
trinucleotides in the reference genome by one, thus, each mutation will modify the over-
all observed rate of a mutational channel in the genome and affect subsequent muta-
tions; (iv) preserving mutational burden and mutational patterns for each chromosome 
instead of the complete genome, thus, the number and type of mutations assigned to 
each chromosome match exactly the ones observed in the original sample (Additional 
file 1: Fig. 1); (v) exome simulations that generate mutations only in the protein coding 
regions of the genome; (vi) adding Poisson noise to the number of mutations in each 
mutational channel of the original data; (vii) allowing the use of a probability mask that 
can decrease or increase the opportunity for mutations in certain parts of the genome 
(Additional file 1: Fig. 2); and several other options. Additionally, one can simulate the 
germline variants in a (matched-)normal sample(s), which can be used for subsequent 
comparisons against tumor samples. With this collection of features, one can easily tai-
lor an appropriate background mutational model for testing different biological hypoth-
eses or for evaluating existing bioinformatics tools. Importantly, SigProfilerSimulator is 
computationally efficient. For example, the tool can simulate ~ 37 million somatic muta-
tions found in the 2144 whole-genome sequenced cancers generated by Pan-cancer 
Analysis of Whole Genomes (PCAWG) initiative [14] within 90 s.

Results
To illustrate several of SigProfilerSimulator’s features, we provide a detailed visualiza-
tion for a single TCGA melanoma sample: TCGA-DA-A-A1I8. Simulating TCGA-DA-
A-A1I8 using the SBS-6 classification maintains the original sample’s pattern for the 
six possible types of single base mutations, however, it also results in completely dif-
ferent patterns for classifications at higher resolutions (Fig. 1c). Simulating an extended 
sequence context (SBS-96; trinucleotides) results in a perfect match with the original 
landscape when including ± 1 adjacent bases; however, it does not reflect the transcrip-
tional strand bias observed in the sample (Fig. 1c). As such, one can further elaborate 
these simulations by incorporating transcriptional strand bias (Fig. 1c), by considering 
± 2 adjacent bases (Additional file 1: Fig. 1), or by preserving the mutational burden and 
mutational patterns on each chromosome (Additional file  1: Fig.  1). Similarly, simula-
tions can be performed for the different classification types for small insertions and dele-
tions (ID-83 and ID-415; Fig. 1D). Each of these simulations can be subsequently used to 
test different hypotheses. To demonstrate this capability, we applied SigProfilerSimula-
tor to three questions in cancer genomics.

First, we used simulations to evaluate whether doublet base substitutions (e.g., 
CC:GG > TT:AA mutations) are two subsequent single base substitutions occurring 
simply by chance in adjacent genomic positions. We constructed a null hypothesis by 
applying the tool to the 2144 PCAWG cancer genomes. Simulations were performed 
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considering SBSs as both statistically independent events (non-updating—simulat-
ing with replacement; each mutation has no effect on the observed rate of mutational 
channels) and dependent events (updating—simulating without replacement; each 
mutation updates the observed rate of mutational channels). Each sample was simu-
lated 1000 times providing a distribution of doublet base substitutions. After simulat-
ing the SBS-96 context for each PCAWG sample, we examined the number of single 
base substitutions occurring next to one another on the genome simply by chance. 
For example, in the sample SP99325 (LIRI), we observed on average approximately 23 
pairs of adjacent SBSs when considering mutations as statistically independent events 
and 14 pairs of adjacent SBSs when considering mutations as dependent events 
(Fig. 2a). In contrast, the actual sample contains 303 doublet base substitutions indi-
cating a 22-fold and a 13-fold enrichment compared to the null hypothesis, respec-
tively. The results indicate that it is highly unlikely that the majority of observed 
doublet base substitutions in SP99325 are the result of two adjacent SBS events. 
Applying the same approach to all PCAWG samples reveals between 10- and 1000-
fold increase of the real number of DBSs compared to simulated data (Fig. 2b; Addi-
tional file 1: Fig. 3). These results confirm the belief that the vast majority of doublet 
base substitutions in human cancer are not due to adjacent single base substitutions. 

b

c d

a

e

Fig. 2  Applying SigProfilerSimulator to three distinct cancer genomics problems. a Distribution of the 
expected number of doublet base substitutions (DBSs) due to the adjacent single base substitutions (SBSs) 
observed by chance for the PCAWG sample SP99325. The distributions represent the results from 1000 
simulations of the mutational pattern of SP99325 treating mutations as statistically independent events (blue) 
and 1000 simulations of the mutational pattern of SP99325 treating mutations as dependent events. b The 
fold increase of DBSs observed in the original PCAWG samples and the average number of DBSs observed 
in our simulations. The mutational pattern of each sample was generated 1000 times considering somatic 
mutations as statistically independent events. c Comparing the similarities of mutational patterns at ± 2 bp 
context (SBS-1536) between real and simulated PCAWG samples. Simulations were performed at SBS-6 
and SBS-96 resolutions. d Comparing the similarities of mutational patterns at ± 3 bp context (SBS-24576) 
between real and simulated PCAWG samples. Simulations were performed at SBS-6, SBS-96, and SBS-1536 
resolutions. e Evaluating the false-positive rates of MutSigCV1.41, MutSigCV2, and dNdScv driver detection 
tools using SigProfilerSimulator. All TCGA breast cancer WES samples were simulated 100 times and examined 
for driver mutations using both MutSigCV and dNdScv. The average number of significant driver genes are 
plotted using a recommended q-value cutoff of 0.10
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Rather, doublet base substitutions are likely due either to single genomic events or 
to higher mutagenic propensities of certain regions of the human genome. Indeed, 
we recently derived mutational signatures of doublet base substitutions across the 
PCAWG dataset [12]. Nevertheless, it is important to remember that, especially for 
hyper-mutated samples, some of the observed DBSs may be due to having two single 
base substitutions occurring by chance in adjacent positions (Fig. 2a).

Second, we evaluated whether incorporating additional sequence context 5′ and 
3′ of single base substitutions increases the specificity of the mutational patterns 
observed in cancer genomes [12]. Here, we considered two mutational patterns to be 
the same if their cosine similarity is more than 0.85 (Additional file 1: Fig. 4; Meth-
ods). Specifically, we simulated the PCAWG dataset at different resolutions (viz., SBS-
6, SBS-96, and SBS-1536; Fig. 1B) and compared them to the patterns of mutations 
observed in the real samples (Fig. 2c,d). Comparing the ± 2 bp context of data simu-
lated using SBS-6 to the ± 2 bp context of the real data demonstrated that for almost 
all samples the SBS-6 simulations do not capture the ± 2 bp context as 91% of samples 
exhibited a cosine similarity below 0.85. Similarly, only half of the samples simulated 
using SBS-96 (i.e., ± 1 bp) had consistent ± 2 bp context when compared to the real 
data (44% below 0.85; Fig. 2C). This demonstrates that the mutational patterns of the 
examined cancer genomes exhibit additional specificity for ± 2 bp adjacent to single 
base substitutions; note that ± 2  bp contains within itself the ± 1  bp classification. 
In contrast, comparing the ± 3 bp context of data simulated using SBS-1536 demon-
strated that the ± − 2 bp context captures the patterns observed at ± 3 bp for almost 
all samples (only 6.5% of samples below 0.85; Fig. 2d). Overall, these results suggest 
that the SBS-1536 classification is necessary to capture additional information for a 
set of signatures beyond SBS-6 and SBS-96. Moreover, extending this classification to 
± 3 bp (SBS-24576) is likely not necessary as the SBS-1536 classification already cap-
tures the patterns of ± 3 bp for majority of the examined cancer samples.

Third, we evaluated the false-positive rates of tools commonly used for discovery of 
cancer driver genes. More specifically, we simulated the somatic mutations observed 
in the 1024 whole-exome sequenced breast cancers reported in the TCGA MC3 
release [15]. The simulations were repeated 100 times and each of these 100 repeti-
tions was analyzed for driver genes using MutSigCV1.41 and MutSigCV2 [6] as well 
as dNdScv [10]. In principle, since SigProfilerSimulator randomly shuffles somatic 
mutations, one would not expect to find any genes under selection. However, each of 
the tools found significantly mutated genes within the simulations using the recom-
mended cutoff threshold of q-value < 0.10 (Fig. 2E). On average MutSig1.41CV found 
between 1.3 and 1.6 false-positive driver genes per simulation when examining data 
generated using the SBS-384 and SBS-6144 mutational classifications, respectively. 
In contrast, MutSig2CV found between 0.3 and 0.2 false-positive driver genes per 
simulation using SBS-384 and SBS-6144, respectively. Lastly, dNdScv found between 
0.03 and 0.02 false-positive driver genes per simulation using SBS-384 and SBS-
6144, respectively. Note that by chance, when using a q-value cutoff of 0.1, one would 
expect to observe less than 0.1 false-positive driver genes per simulation. Lowering 
the threshold for statistical significance to 0.01 eliminates all false-positive results 
from dNdScv and MutSig2CV but not for MutSig1.41CV.
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Conclusions
Increasingly, there is a need to develop reliable background models of cancer muta-
tional landscapes to allow downstream statistical analysis for biological discoveries. 
Currently, to the best of our knowledge, there is no tool that allows explicitly simu-
lating accurate background mutational landscapes. This report presents SigProfiler-
Simulator, a method that allows fast generation of mutational landscapes at different 
resolutions. As demonstrated by our analyses, SigProfilerSimulator can be used to 
evaluate the accuracy of other bioinformatics tools or it can be leveraged for making 
novel discoveries. SigProfilerSimulator’s breadth of features allows one to construct 
a tailored null hypothesis of mutational landscapes and to identify significance levels 
of the subsequent results. Overall, SigProfilerSimulator will be a useful tool for any 
researcher that performs statistical analysis based on mutational data derived from 
the sequencing of cancer or normal somatic tissues.

Methods
Tool implementation

SigProfilerSimulator is developed as a computationally efficient Python package and 
it is available for installation through PyPI. Further, an R-wrapper is available through 
GitHub. The tool leverages a PCG random number generator that provides a simple, 
fast, and space-efficient algorithm for generating random numbers with high sta-
tistical quality [16]. The tool uses a Monte Carlo approach for randomly generating 
somatic mutations while considering the observed frequency of a preselected refer-
ence genome. More specifically, SigProfilerSimulator randomly shuffles mutations by 
using the precomputed observed rates of mutational channels in a reference genome. 
The tool works in unison with SigProfilerMatrixGenerator [11] to first classify a cata-
log of somatic mutations prior to simulating it. The final mutational catalog is out-
putted into commonly used mutation data formats including mutation annotation 
format (MAF) files and variant annotation format (VCF) files. SigProfilerSimulator is 
freely available and has been extensively documented.

Python code: https​://githu​b.com/Alexa​ndrov​Lab/SigPr​ofile​rSimu​lator​
R wrapper: https​://githu​b.com/Alexa​ndrov​Lab/SigPr​ofile​rSimu​lator​R
Documentation: https​://osf.io/usxjz​/wiki/home/

Computational benchmarking
The computational efficiency of SigProfilerSimulator was benchmarked by simulating 
the freely available PCAWG dataset, consisting of 2,144 samples with 36,876,213 sin-
gle base substitutions, for a single iteration using the default parameters. Simulating 
the complete dataset took approximately 90 s. Simulations were performed on a dedi-
cated computational node with a dual Intel® Xeon® Gold 6132 Processors (19.25 M 
Cache, 2.60 GHz) and 192 GB of shared DDR4-2666 RAM.

Analysis of doublet base substitutions

We simulated the PCAWG dataset using the SBS-96 classification. Each simulation 
was performed 1,000 times considering mutations as both statistically independent 

https://github.com/AlexandrovLab/SigProfilerSimulator
https://github.com/AlexandrovLab/SigProfilerSimulatorR
https://osf.io/usxjz/wiki/home/
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events (non-updating; each mutation has no effect on the observed rate of mutational 
channels) and dependent events (updating; each mutation updates the observed rate 
of mutational channels). To calculate the number of DBS mutations occurring by 
chance in each sample, we generated the mutational catalogs for DBS-78 using Sig-
ProfilerMatrixGenerator [11]. The resulting counts for DBSs were used to plot the 
distributions of the expected number of DBSs due to two adjacent SBSs happening 
purely by chance. The fold change was calculated by dividing the mean DBS count 
observed across the simulations by the total number of DBSs found in the original 
sample. Derivation of q-values was performed by applying the Benjamini and Hoch-
berg false discovery rate correction to p-values calculated using z-tests based on the 
DBS distributions found in the simulations and the numbers of DBSs observed in the 
real data.

Sequence context analysis for mutational signatures

The PCAWG dataset was simulated using the SBS-6, SBS-96, and SBS-1536 classifica-
tions while ensuring the respective mutational patterns and mutational burdens on each 
chromosome match the ones observed in the real data. SigProfilerMatrixGenerator 
was used to derive the mutational vectors for each sample including vectors incorpo-
rating three bases 5′ and three bases 3′ of each mutation, resulting in a classification 
with 24,576 mutational channels. To avoid comparisons of sparse binary vectors, only 
samples that had at least 2 mutations per mutational channel were included in the com-
parative analyses. The simulated and real mutational patterns of a cancer genome were 
considered the same if their cosine similarity was at least 0.85. Note that the average 
cosine similarity between two random nonnegative vectors is 0.75 (Additional file  1: 
Fig. 4). The chance of two nonnegative vectors with 1,536 mutational channels or 24,576 
mutational channels to have a similarity of 0.85 simply by chance is less than 10–6 (Addi-
tional file 1: Fig. 4).

Benchmarking false‑positive driver genes detected by MutSigCV and dNdScv

All whole-exome sequenced breast cancer samples part of the TCGA MC3 release were 
simulated using SBS-384 and SBS-6144 contexts while maintaining the mutational bur-
den on each chromosome. As recommended [10], 23 samples with more than 500 exonic 
mutations were excluded from the analysis. Each simulation was repeated 100 times with 
different random seeds. The variant annotation predictor [17] was used to annotate sim-
ulated mutations with the appropriate gene name for compatibility with MutSigCV1.41 
and MutSigCV2 [6]. We ran MutSigCV1.41 and MutSigCV2 using the recommended 
default parameters in conjunction with the genome reference sequence for hg19, muta-
tion dictionary file, exome coverage file, and gene covariates file as found at https​://softw​
are.broad​insti​tute.org/cance​r/cga/mutsi​g_run. We ran dNdScv [10] using the default 
library parameters and filtered out the significant genes using the recommended q-value 
cutoff of less than 0.10. All rainfall plots were generated using karyoploteR [18].

Availability and requirements
Project name: SigProfilerSimulator

Project home page: https​://githu​b.com/Alexa​ndrov​Lab/SigPr​ofile​rSimu​lator​

https://software.broadinstitute.org/cancer/cga/mutsig_run
https://software.broadinstitute.org/cancer/cga/mutsig_run
https://github.com/AlexandrovLab/SigProfilerSimulator
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Operating system(s): Unix, Linux, and Windows
Programming language: Python 3; R wrapper
Other requirements: None
License: BSD 2-Clause "Simplified" License
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03772​-3.

Additional file 1. Figure 1. Example of an additional resolution for simulating mutational patterns supported by 
SigProfilerSimulator. The example illustrates the resulting patterns when maintaining the mutational burden on 
each chromosome and when only relying on proportionate allocation based upon the nucleotide context distribu-
tion of the reference genome. Comparison is provided for a single breast cancer sample simulated at an SBS-1536 
resolution. Figure 2. Simulating cancer genomics data using a probability mask. An example rainfall plot visualiza-
tion when simulating a single TCGA melanoma sample, TCGA-DA-A-A1I8, with and without a probability mask on 
chromosome 2. A) Distribution of single base substitutions across chromosome 2 as found in the original sample. B) 
Distribution of single base substitutions across chromosome 2 when simulating the sample with default parameters. 
C) Distribution of single base substitutions across chromosome 2 when simulating the sample using a probability 
mask with 90% probability for mutations on the p arm and a 10% on the q arm. D) Distribution of single base sub-
stitutions across chromosome 2 when simulating the sample with a probability mask that varies in weights across 
the chromosome. All rainfall plots generated using karyoploteR [18]. Y-axes reflect log-scaled distances between 
adjacent mutations. X-axes reflect positions on chromosome 2 in TCGA-DA-A-A1I8. Each dot reflects a single base 
substitution colored using the default coloring scheme of karyoploteR. Figure 3. Evaluating the expected rates 
of DBSs for mutations simulated as dependent events. The fold increase of DBSs observed in the original PCAWG 
samples and the average number of DBSs observed in our simulations. The mutational pattern of each sample was 
generated 1000 times considering somatic mutations as dependent events. Figure 4. Evaluating the average similar-
ity of random nonnegative vectors. A) Comparing the cosine similarities amongst 10,000 randomly generated non-
negative vectors, where each vector has 1536 mutational channels. B) Comparing the cosine similarities amongst 
10,000 randomly generated nonnegative vectors, where each vector has 24,576 mutational channels.

Abbreviations
DBSs: Doublet base substitutions; IDs: Small insertions and deletions; LIRI: Liver cancer—hepatocellular carcinoma (virus 
associated); PCAWG​: Pan-cancer analysis of whole genomes; SBSs: Single base substitutions; TCGA​: The cancer genome 
atlas.
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