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Background
The comparison of molecular features from diverse physiological or disease states is vital 
for determining different potential biomarkers closely associated with specific diseases 
[1, 2]. For example, identification of cancer subtype-specific biomarkers and candidate 
drivers can reveal useful insights into disease pathogenesis and facilitate personalized 
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cancer therapy [3]. Fortunately, proteomics can provide a heuristic scheme for this pur-
pose. Over the past decades, liquid chromatography coupled with mass spectrometry 
(LC–MS) has enabled the high-throughput analysis of intact proteins or peptides from 
trypsinized protein mixtures in complex samples according to their specific retention 
time and mass-to-charge value (m/z value), which provides great spectral data informa-
tion for proteome analysis [4–6]. Thus, this approach can help in analyzing large-scale 
biological samples and has progressively become the prevalent and core technique of 
choice for global and unbiased characterization of proteome alterations in various sam-
ple conditions. However, most studies have focused on identifying and quantifying pro-
teins through algorithm-directed sequential database searching by using MS spectral 
data [7–9]. Little information exists about the contribution of the original mass spec-
trometry data to sample classification before the data can be decoded into the corre-
sponding peptides and proteins. Therefore, there is an urgent need of developing highly 
efficient data-processing methods to extract and analyze the large-scale and multidi-
mensional raw spectrum data, especially generated from clinical samples.

A number of approaches and tools based on versatile algorithms have been developed, 
including typical machine learning approaches, such as logistic regression [10], kNN 
algorithm [11], support vector machine (SVM) [12], and decision-tree algorithm [13]. 
When running these algorithms, data preprocessing, such as feature extraction or 
selection, is a recommendatory step for sample classification [14]. However, the effect 
of feature extraction and prediction accuracy are not invariably satisfactory when 
using these conventional machine-learning methods for high-dimensional data. In 
contrast, deep learning, which processes the application of multilayered artificial neural 
networks (ANNs) to learning tasks [15], can discover useful features independently, 
thus eliminating biases proposed by manual engineered features [16]. Deep learning 
methods, such as convolutional neural networks (CNNs) and recurrent neural networks 
(RNNs), have been repeatedly proved to outperform the aforementioned state-of-the-art 
classical machine-learning algorithms for high-dimensional data [17].

In this study, we present an open-source and powerful platform, MSpectraAI (Mass Spec-
tra Artificial Intelligence), as an easy-to-use stand-alone software for practical extraction and 
analysis of large-scale and multidimensional raw mass-spectrometric data with deep neural 
networks (DNNs), which is a type of deep learning (and a complex neural network-based) 
model [18]. To date, this platform contains (1) feature swath extraction, in which all collected 
mass spectra are acquired consistently with sequential windows; (2) sample classification, in 
which different group samples can be tested and predicted using an ANNs model; (3) visu-
alization, in which the fingerprint of mass spectra and model prediction results are shown 
as vector graphs. Moreover, this platform provides downloadable tabular data results in the 
csv format for further user-based analysis. MSpectraAI can be processed locally and handled 
easily by users, even without any bioinformatics background, to analyze complicated data, 
especially obtained from clinical samples. Expansively, professional users can also design 
their own DNN model and run it in this tool. For demonstrating the originality and appli-
cation of this software, six tumor types, with a total of 7,997,805 mass spectra, were down-
loaded and assembled from the ProteomeXchange consortium [19]. Further analysis reveals 
the existence of the diversity of mass spectra profiling in different types of samples; MSpec-
traAI can make a prediction to classify these complex clinical samples based on their spectra 
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profiling in each tumor type. In view of this, MSpectraAI shows promising potential for the 
practical application of clinical settings in the precision medicine era.

Implementation
Dependencies

All functions in MSpectraAI were written in R (https​://www.r-proje​ct.org/) [20], and 
the graphical user interface (GUI) was developed in Shiny (https​://githu​b.com/rstud​io/
shiny​). Therefore, R and relative packages are supposed to be installed in advance if users 
decide to operate this tool locally. Particularly, the DNN model was built using Keras 
(version 2.2.4) (https​://githu​b.com/fchol​let/keras​), which must also be preconfigured 
on the system. The detailed installation manual can be found in the Additional file  1.
MSpectraAI is an open-source platform available on the GitHub repository, https​://
githu​b.com/wangs​hishe​ng/MSpec​traAI​.

Additionally, MSpectraAI can also be run locally on Windows, Linux, and Mac operat-
ing systems. It does not require any specific hardware configuration; however, perfor-
mances are dependent on the amount of available computer memory and the number of 
CPU cores or GPU settings (NVIDIA Quadro K2200). Specially, MSpectraAI supports 
professional users to compile their own DNN methods, and even more complicated 
deep learning models, to process large dimensional data.

Study design and analysis workflow

The overall pipeline of MSpectraAI is shown in Fig. 1. To validate the performance of 
MSpectraAI, we further tested the platform on datasets of six tumor types (Table  1; 

Fig. 1  Overall pipeline of MSpectraAI. a Data of the six tumor types were obtained based on the HPLC–MS/
MS method, downloaded from Pro-teomeXchange database, and then imported into MSpectraAI. b Skeleton 
diagram of data analysis in MSpectraAI

https://www.r-project.org/
https://github.com/rstudio/shiny
https://github.com/rstudio/shiny
https://github.com/fchollet/keras
https://github.com/wangshisheng/MSpectraAI
https://github.com/wangshisheng/MSpectraAI
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Additional file 1: Table S1) from ProteomeXchange consortium (Fig. 1a), which is one 
of the world-leading data repositories of MS-based proteomics data [19]. All data were 
captured using the data-dependent-acquisition (DDA) method [21] and the correspond-
ing LC–MS/MS parameters were summarized in the Additional file 1: Table S2. In total, 
there are 7,997,805 raw mass spectra, including 1,349,180 parent ions mass spectra 
(MS1 scan) and 6,648,625 daughter ions mass spectra (MS2 scan). Next, all original data 
(.raw/.wiff/.RAW files) need to be converted into mzXML or mzML format (Additional 
file 1: Fig. S1) by using the RawConverter software [22]; optionally, users can also choose 
other similar software, such as MSConvert [23]. These raw data were then orderly trans-
formed into regular intensity matrices for the subsequent DNN model (Fig. 1b) to per-
form samples classification/prediction by using a homemade approach named feature 
swath extraction (Fig. 2a), which is inspired by the data-independent-acquisition (DIA) 
method [24].

Core algorithm implementation

The fundamental data process logistic flowchart of MSpectraAI is illustrated in Fig. 2, 
which contains two main parts:

1. Feature Swath Extraction (Fig.  2a). This step is mainly to obtain the normalized 
intensity matrix and the label matrix. In most situations, the range of ion m/z scanning 
and number of peaks in each spectrum dynamically change; this is not suitable for anal-
ysis using a deep learning model. Therefore, these data should first be structured uni-
formly. Here, we firstly divide the whole m/z range into equal windows. The window size 
here can be designed freely by users according to the complexity of their data (Detailed 
in Additional file 1: Notes 9.4) and they can take our results (Fig. 3) as references. Then 
all peaks within the same window are summed together across the m/z dimension in 
each mass spectrum:

Table 1  Sample information of six tumor types

Names PXD IDs Raw file number Spectra 
number 
(MS1/MS2)

Oral cancer PXD007232 [25] 10 45,440

542,145

Breast cancer PXD008012 [26] 50 77,685

748,881

Head and neck lung cancer PXD007705 [27] 32 478,767

4,125,430

Nonsmall cell lung cancer PXD005698 [28] 24 136,575

788,739

Gastric cancer PXD002213 [29] 34 558,795

261,150

Colorectal cancer PXD009602 [30] 20 51,918

182,280

SUM 6 170 7,997,805
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Fig. 2  Detailed implementation of data process logic in MSpectraAI. a Workflow of data transformation from 
raw file to intensity matrix. Graphs show an example of one sample with original label 0. (i) Raw mass spectra. 
There are total i scans in this raw file and the original label of each scan is marked with 0 (As the sample is 
labeled 0). (ii) Feature Swath Extraction. Split windows across m/z dimension (The range between two red 
dashed lines is referred to as one “window”, j means total window number) and sum all peak intensities in 
each window (formula (1)). (iii) Intensity matrix. After summation, the intensities in each scan are normalized 
by dividing the maximum intensity of each scan (formula (2)). Finally, we obtain the intensity matrix and 
corresponding label matrix. b Leave-one-out cross prediction strategy. In each independent iteration, one 
single sample as the independent test data set (gold color), and the remaining samples as the training data 
(grey color). Then we can estimate total performance based on every iteration result. c The computational 
framework in each iteration. Graphs show an example of kth iteration (the kth sample with original label 1 
as test data). In the left dashed box, the deep neural network model is trained by training data sets, then we 
predict each row (scan) in test data using this model. The predicted labels can be compared with original 
labels, if same, marked with “√”, otherwise, “×”. In the right dashed box, if more than 50% of the scans in the 
test sample are predicted correctly, this means the pre-diction for test sample is correct (“√”), otherwise, 
wrong (“×”)
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where IM implies intensity matrix, i denotes the MS scan index, j denotes the window 

index, and 
nij
∑

kij

pkij denotes the summation of all peaks within the ith scan and jth window. 
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Fig. 3  a–g Seven window sizes were used for the colorectal malignant samples to determine the 
peak-intensity distribution. h The trend of pre-diction accuracy with the decreasing window size (the grey 
dashed line means 0.5 probability). ‘5 × 5′ means that there are total 25 windows across the m/z dimension, 
‘10 × 10′ means there are total 100 windows, and so on. The color here from deep viridis to deep yellow 
means the intensity values change from low to large
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As the scale of peak intensities in each window are inconsonant, moreover, the intensi-
ties need to be normalized by dividing the maximum intensity of each scan:

where NIM means normalized intensity matrix, i denotes the MS scan index, j denotes 
the window index. In addition, the label matrix is designed based on the sample classes, 
for instance, if the normal samples are marked with 0, its original label matrix is [0, 0, …, 
0], similarly, the tumor samples are marked with 1, its original label matrix can be [1, 1, 
…, 1]. The label matrix length are equal to scan number in the corresponding sample.

2. Leave-one-out cross prediction strategy (Fig.  2b, c). For each tumor type, by 
default, leave-one-out cross prediction strategy was implemented for data analysis 
[31], in which one single observation from the original samples as the independent 
test data set, and the remaining observations as the training data in each for loop 
(Fig.  2b). Optionally, users can also regulate the data allocation in the training and 
testing processes by editing this software to be more suitable for their own samples. 
In each iteration, there are two main procedures: 1. Predicting every scan in test data 
(the left dashed box in Fig.  2c). We firstly design a three-layers DNN model with 
total 59,779 parameters (Additional file  1: Fig. S2) and train it using training data, 
then predict each scan in the independent test data. 2. Evaluating the prediction 
performance of test sample. We can compare the predicted label with the original 
label of each scan in test data and count the correct prediction ratio. If this ratio 
is equal or greater than 0.5, we here think this test sample is predicted correctly, 
otherwise wrong.

Model performance, evaluation and comparison

To assess the agreement between actual sample and predicted labels of the mass spectra, 
we assessed the precision and recall as follows:

where true positives (TP) are the proportion for which the predicted labels match 
the prior tumor labels; false positives (FP) are the predicted labels that the normal has 
been identified incorrectly; and false negatives (FN) are labels that the tumor has been 
identified benign. Notably, if users define the benign samples as positive labels, the 
corresponding calculation should be adjusted based on the actual situation. Finally, to 
measure per-class performance, we calculated the F1 score, which is the weighted mean 
between precision and recall.

(2)NIM = IM
/

(max(I1,1...j), . . . , max(Ii,1...j))

(3)Precision =
TP

(TP + FP)
,

(4)Recall =
TP

(TP + FN )
,

(5)F1 = 2 ∗
Precision ∗ Recall

(Precision+ Recall)
.
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In addition, The ROCR package [32] was used for plotting the receiver operating char-
acteristic (ROC) curves and calculating the area under the curve (AUC) for both MS1 
and MS2 spectra data in each tumor type. Finally, we defined the accuracy for all sam-
ples of one type tumor as:

where N_predicted denotes the sum of samples in which more than half of the mass 
spectra are predicted correctly and N_total denotes total number of samples.

Finally, we compared four common criteria (Accuracy, Sensitivity, Precision, and F1 
score) from MSpectraAI with those from the published results [25] using different types 
of common machine learning algorithms (Linear SVM, RBF SVM, Logistic Regression, 
Random Forest) and the results obtained from the classic approach utilizing MaxQuant 
[7] coupled with DNN model (‘MaxQuant + DNN’ mode, which means the protein 
matrix data were generated first with MaxQuant software and then processed by using 
a similar DNN model as implemented in MSpectraAI, detailed in Additional file  1: 
Methods), to demonstrate the classification and prediction capability of MSpectraAI.

Results
Window‑size dynamic selection

To construct suitable data for the DNN model, the raw intensities were binned using 
the feature swath extraction approach (Fig.  2a). However, the peaks in different 
window sizes exhibit various distributions, which may provide varying degrees of 
information for the following deep learning model. In this study, we used seven 
window sizes on the colorectal malignant samples to extract the peak intensities 
(Fig. 3a–g). With the increasing window size, the intensity distribution became more 
exquisite across the m/z dimension. Subsequently, we predicted the same benign 
and malignant samples in each window size, and the remaining data with the same 
treatment were used in training (detailed methods in Experimental Procedures). The 
result (Fig.  3h) shows that the prediction accuracy improves with the appropriate 
decrease in window size, indicating that 28 × 28 (total 784 windows) or 32 × 32 (total 
1024 windows) can be more proper for this tumor data and demonstrates that too 
small or too large window sizes are not conducive to examine the difference between 
normal and cancer samples.

Pattern detection

Pattern detection is concerned with the automated discovery of regularities in different 
data through the use of computer algorithms and the use of these regularities to take 
actions such as data classification. We firmly believe that diverse profiling exists in nor-
mal and cancer samples. Furthermore, these patterns are highly possible to be recorded 
in thousands of mass spectra and display different distribution. Figure 4 illustrates the 
considerable distinction between the benign sample and colorectal cancer sample across 
either m/z dimension or over a retention period. Overall, heatmaps show that peak 
intensities in malignant samples are much larger than those in benign samples, imply-
ing that the proteome destabilizes more intensely in tumor. From the viewpoint of both 

(6)Accuracy =
Npredicted

Ntotal
,
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the m/z and retention time, the probability density curves are much more consistent and 
orderly in benign samples, while the intensity distribution in malignant samples is scrag-
gly and un-constant. Other tumor data have also shown similar results, which users can 
repeat through MSpectraAI software conveniently.

Fig. 4  Pattern detection for a benign sample and b colorectal cancer sample across either m/z dimension or 
retention time. The heatmaps show the distribution of the intensities calculated from formula (1), where the 
color from deep viridis to deep yellow means the intensity values change from low to large. The density plots 
show the distribution of each channel intensities (e.g. the right density plots show the intensity distribution 
of 790–810 across m/z dimension, the top density plots show the intensity distribution of 3990–4010 across 
retention time dimension)
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Overall performance of MSpectraAI

After selection of a suitable window size and determination of pattern difference, we 
started analyzing the data of all six tumor types independently. The performance of 
MSpectraAI is mainly demonstrated by the following three factors: (1) F1 score, (2) ROC 

Fig. 5  a F1-score distribution of MS1 mass spectra (marked with dots) and MS2 mass spectra (marked with 
triangles) across every sample. b ROC curves for each tumor type calculated using MS1 data and c MS2 
data. d Accuracy of the data prediction of every tu-mor type. e Heatmap of the multiclassification prediction 
probability of every sample (Class 1: Normal samples; Classes 2 and 3: two different treatment conditions of 
nonsmall cell lung cancer samples)
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curve, and (3) multiclassification. (1) F1 score is used as a measure of every sample accu-
racy. The bubble plot in Fig.  5a shows the F1-score distribution of MS1 mass spectra 
(marked with dots) and MS2 mass spectra (marked with triangles) in every tumor type. 
As shown, the colors and sizes of the dots are approximate or superior to those of the tri-
angles, indicating that the prediction of every sample is more accurate when using MS1 
data. (2) ROC curve measures the performance of the classification problem at various 
threshold settings, and was analyzed for each tumor type based on MS1 data (Fig. 5b) 
and MS2 data (Fig.  5c). It was calculated using the same constructed DNN classifica-
tion model. All AUC values deduced from MS1 data (average 0.967) were larger than 
those deduced from MS2 data (average 0.872). Figure 5d shows the prediction accuracy 
of every tumor type data, confirming that MS1 spectra may contain more information of 
the tumor. (3) MSpectraAI also supports users to analyze multiclass samples rather than 
just a two-category problem. The heat map in Fig. 5e displays the prediction probability 
of every sample calculated using MS1 data in one untreated state (Class 1) and two drug-
treatment states of nonsmall cell lung cancer (Classes 2 and 3) [28]. The overall accuracy 
is 0.89 across all samples, whereas the prediction probabilities of two mispredicted sam-
ples are relatively close to those of actual labels. For example, the actual label of sample 
R6 is Class 1 while the predicted label fell into Class 2 (0.526 versus 0.437 probabilities in 
Class 1), which implies that the MS data-acquisition method or DNN models may need 
to be optimized repeatedly for such complicated samples.

Additionally, on the one hand, from the comparison results among MSpectraAI 
and other machine-learning algorithms (Table  2), the accuracy, as well as relative 
sensitivity, precision, and F1 score from MSpectraAI based on MS1 data are generally 
higher than those obtained from published results in which the authors selected the 
identified proteins as model features to distinguish or predict the normal and cancer 
samples [25], on the other hand, when compared with the ‘MaxQuant + DNN’ mode, 
all results (Table 3) demonstrate that MSpectraAI still keeps a reasonably similar or 
even superior performance in the prediction of complex clinical samples (except the 
colorectal cancer datasets because of the low quality of protein matrix data).

Discussion
The conventional data-analysis strategy is concerned about the exact protein expres-
sion in biological samples, providing detailed information for the biological process 
and pathway analysis [33, 34]. These decoded proteins are very useful for elucidating 

Table 2  Performance comparison among MSpectraAI and other diverse types of machine-
learning algorithms on different datasets

Oral cancer dataset Head-and-neck dataset

Random Forest Logistic 
Regression

Linear SVM RBF SVM MSpectraAI Linear SVM MSpectraAI

Accuracy 0.674 0.594 0.573 0.540 0.90 0.868 1.00

Sensitivity 0.751 0.811 0.809 0.799 1.00 0.85 1.00

Precision 0.753 0.654 0.638 0.615 0.833 0.889 1.00

F1 0.751 0.724 0.713 0.695 0.909 0.895 1.00
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the biological mechanism and discovering the biomarkers for sample classification [35]. 
However, protein identification, functional analysis, and validation are time-limiting 
steps for downstream application of proteomics. MSpectraAI can make full use of ten to 
hundred thousands of multidimensional spectral features in each acquired raw file with-
out decoding them into proteins but making an accurate classification. Thus, MSpec-
traAI shows great potential in precision medicine including disease screening, diagnosis, 
prognosis, responses to treatment, and health management. Moreover, although all data 
from ProteomeXchange were acquired from different laboratories with different sam-
ple preparation procedures, MSpectraAI exhibits an excellent flexibility when used 
with a DNN model to analyze data features and makes accurate predictions compared 
to those published results (Table 2). Additionally, despite the similar DNN model used, 
the performance from the ‘MaxQuant + DNN’ mode was worse than that from MSpec-
traAI (Table 3), which may be due to over-fitting as the dimensionality of protein fea-
tures (predictors) obtained from MaxQuant was much lower than that derived from raw 
mass spectra data and suggests that users should consider the problem of over-fitting 
and assess the impact on prediction accuracy when analyzing low-dimensional data (e.g. 
proteome intensity matrix data) with a DNN model. Besides these, there are still some 
limitations of this approach, such as when analyzing large-scale samples, the experiment 
conditions should be same/consistent throughout the whole research process, e.g. LC 
conditions including column lot, peek tube, gradient time etc. and mass spectrometer 
parameters including MS1 range, AGC target, maximum ion injection time etc. (Addi-
tional file 1: Table S2), which can affect the consistency of data and the accuracy of this 
tool prediction. Therefore, it is valuable to point out that when new MS raw data are 
included into the existing DNN model for prediction analysis in the same case, it is 
suggested that the MS data should be acquired using the same/consistent LC and MS 
parameters. As a method of spectra profile recognition, a much shorter LC separation 
time may be enough to complete the task, thus greatly decreasing the expense and time 
of MS data collection.

Additionally, users analyzing their own data with MSpectraAI can improve several 
aspects by themselves. First, modifications can be made in the DDA method, i.e., in 
each DDA duty cycle of a mass spectrometer, MS2 scans are produced based on varying 
precursor ions [36, 37], resulting in greater indeterminacy and barely satisfactory results. 

Table 3  Performance comparison between MSpectraAI and the classic approach utilizing 
MaxQuant + DNN mode on diverse datasets

“Classic” in the Method means the classic approach- “MaxQuant + DNN” mode; –, means no value

Method PXD007232 
[25]

PXD008012 
[26]

PXD007705 
[27]

PXD005698 
[28]

PXD002213 
[29]

PXD009602 
[30]

Accuracy Classic 0.70 0.52 0.969 0.625 0.794 –

MSpectraAI 0.90 0.74 1.00 1.00 1.00 1.00

Sensitivity Classic 0.75 0.551 1.00 0.615 0.765 –

MSpectraAI 1.00 0.727 1.00 1.00 1.00 1.00

Precision Classic 0.60 0.593 0.938 0.667 0.813 –

MSpectraAI 0.833 0.696 1.00 1.00 1.00 1.00

F1 Classic 0.667 0.571 0.968 0.64 0.788 –

MSpectraAI 0.909 0.711 1.00 1.00 1.00 1.00
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Therefore, the acquisition of MS2 spectra may not be necessary following each full scan 
in the DDA model for MSpectraAI analysis. Second, a more eligible MS2 spectra can be 
acquired for the MSpectraAI program. That is, different data-acquisition methods, such 
as DIA [24], could deserve to be undertaken for a similar analysis workflow. However, 
the relative analysis could become more complicated and a more complex algorithm 
or DNN model may need to be sophisticatedly developed for extracting features 
or prediction of such data. Third, there is not an algorithm for users to select proper 
window size automatically in this work. From our results (Fig. 3), nevertheless, we can 
observe some hints that too small or too large window sizes are not good choice for 
exploring the difference between normal and cancer samples, which can be as a reference 
when users analyze their own data. Fourth, multi-classification can be performed for 
similar type samples. Many diseases can be divided into corresponding subtypes based 
on certain characteristics; this is highly crucial for sequential treatment and prognosis. 
MSpectraAI allows users to process multicategory data (Fig.  5e) with respect to the 
built-in DNN models. However, with the increase in the number of categories, correct 
prediction would be challenging. Data training for each data category from samples with 
definite phenotypes would shed light on multi-classification.

Conclusions
In this study, we develop an open-source and comprehensive platform, named 
MSpectraAI, for large-scale analysis of raw mass-spectrometric data with deep neural 
networks. This software can automatically extract and decipher mass spectra profiling 
using our homemade approach (feature swath extraction) and moreover distinguish 
the pattern differences with a proper window size between normal and tumor samples, 
even among multi-label samples, with deep learning method. The results show that 
MSpectraAI can achieve better prediction accuracy (average 0.967) when using the 
MS1 spectra than that (average 0.872) when using the MS2 spectra and present a better 
performance compared to the other classical machine learning approaches. Throughout 
this work, we anticipate that MSpectraAI could be applied expansively to the analysis of 
metabolomics or NMR data and could assist relative scientists or clinicians to analyze 
more complicated samples conveniently with its further development.
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