
Clover: a clustering‑oriented de novo 
assembler for Illumina sequences
Ming‑Feng Hsieh1, Chin Lung Lu1 and Chuan Yi Tang1,2*

Background
Massively parallel DNA sequencing has become a prominent tool in biological research 
[1, 2]. The high-throughput and low cost of next-generation sequencing technologies 
produce high coverage of reads. The Illumina platform is one of the most commonly 
used sequencers, producing reads with lengths ranging from 35 to 300 bp. The de Bruijn 
graph approach is prevalent in the de novo assembly using Illumina reads, and it consti-
tutes all possible substrings of length k (termed k-mers) from the reads to efficiently pro-
cess the huge sequencing data. Choosing the length of k is an important issue in the de 
Bruijn graph approach. Theoretically, for reads without sequence errors, smaller k-mers 

Abstract 

Background: Next‑generation sequencing technologies revolutionized genomics 
by producing high‑throughput reads at low cost, and this progress has prompted the 
recent development of de novo assemblers. Multiple assembly methods based on de 
Bruijn graph have been shown to be efficient for Illumina reads. However, the sequenc‑
ing errors generated by the sequencer complicate analysis of de novo assembly and 
influence the quality of downstream genomic researches.

Results: In this paper, we develop a de Bruijn assembler, called Clover (clustering‑
oriented de novo assembler), that utilizes a novel k‑mer clustering approach from the 
overlap‑layout‑consensus concept to deal with the sequencing errors generated by 
the Illumina platform. We further evaluate Clover’s performance against several de 
Bruijn graph assemblers (ABySS, SOAPdenovo, SPAdes and Velvet), overlap‑layout‑con‑
sensus assemblers (Bambus2, CABOG and MSR‑CA) and string graph assembler (SGA) 
on three datasets (Staphylococcus aureus, Rhodobacter sphaeroides and human chromo‑
some 14). The results show that Clover achieves a superior assembly quality in terms of 
corrected N50 and E‑size while remaining a significantly competitive in run time except 
SOAPdenovo. In addition, Clover was involved in the sequencing projects of bacterial 
genomes Acinetobacter baumannii TYTH‑1 and Morganella morganii KT.

Conclusions: The marvel clustering‑based approach of Clover that integrates the 
flexibility of the overlap‑layout‑consensus approach and the efficiency of the de Bruijn 
graph method has high potential on de novo assembly. Now, Clover is freely available 
as open source software from https ://oz.nthu.edu.tw/~d9562 563/src.html.

Keywords: De novo genome assembly, DNA sequencing, De bruijn graph

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi 
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Hsieh et al. BMC Bioinformatics          (2020) 21:528  
https://doi.org/10.1186/s12859‑020‑03788‑9

*Correspondence:   
cytang@pu.edu.tw 
1 Department of Computer 
Science, National Tsing Hua 
University, Hsinchu 30013, 
Taiwan
Full list of author information 
is available at the end of the 
article

https://oz.nthu.edu.tw/~d9562563/src.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03788-9&domain=pdf


Page 2 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528 

increase the connectivity of the graph and larger k-mers decrease the number of ambig-
uous repeats in the graph. There is therefore a balance between sensitivity and specificity 
determined by k [3]. However, for reads with errors, larger k-mers decrease the sensitiv-
ity and specificity further due to sequencing errors generated by the Illumina platform, 
in which the primary errors are substitution errors, at rates of 0.5–2.5% [4].

In this study, we are trying to answer what happens if we design an approach to allow 
such errors on k-mers, and could the error allowance on k-mers improve the quality of 
de novo assembly. Therefore we developed a clustering-oriented approach, called Clover, 
to deal with those substitution errors, and use a new parameter p which describes the 
level of error allowance on k-mers. For example, setting k to 40 and p to 1 means that our 
algorithm uses each 40-mers in the input reads while allowing each of them to have the 
flexibility of 1 substitution error.

With the flexibility of error allowance on k-mers, Clover tries to cluster these k-mers 
together when their Hamming distance less than or equal to p, and merges each cluster 
of k-mers to a node by finding its consensus sequence. To avoid over-merging of clus-
ters, which may occur on the boundary of repeat sequence, Clover will split each node 
into multiple nodes when the merged node has multiple major consensus sequences (see 
Implementation section for detail).

After the steps mentioned above, the number of nodes in the graph will dramatically 
reduce, which therefore simplifies analysis of assembly. For example, Table 1 compares 
three results of a Leptospira shermani assembly when using different level of error allow-
ance (p = 0, 1 and 2). Setting p to 0 is equal to run our assembler with traditional de 
Bruijn-based approach, which does not have the flexibility of error allowance on k-mers. 
The assembly result shows that only setting p to 1 could dramatically increase the N50 
both in contig and scaffold because it reduces the number of nodes to build the de 
Bruijn graph that increases the specificity. The result also shows that setting p to 2 only 
increases the N50 on contig whereas decreases on scaffold. In this case, reducing too 
many nodes could increase the specificity, but it seems losing some meaningful informa-
tion, which decreases the sensitivity at the same time.

The memory requirements, as shown in Table 1, are in clear proportion to the number 
of nodes to build the de Bruijn graph, but are not in obvious proportion to parameter p 
(Additional file  4: Table  S1, compares the memory requirements when using different 
k and p). The time cost is dropped when setting p to 1 due to the benefit of simplifying 
analysis, but setting p to 2 could not get the benefit more. Together with the phenomena 
described above, we should choose a suitable p, not as large as possible. In the case of L. 
shermani assembly, the suitable p is 1 and p/k is 2.5%, which is nearly the error rate of 
Illumina platform.

Implementation
Clover proceeds through the following phases whose flowchart is shown in Fig. 1.

Construction and clustering of k‑mers

For given k (k-mer) and p (error allowance), Clover constructs a Hamming graph by 
extracting all the input k-mers as nodes. The graph’s edges are created by the pairs of 
k-mers if the Hamming distance of the k-mers (or their reverse complements) is ≤ p. 



Page 3 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528  

Ta
bl

e 
1 

Th
e 

cl
us

te
ri

ng
 e

ff
ec

t o
f C

lo
ve

r o
n 

Le
pt

os
pi

ra
 sh

er
m

an
i a

ss
em

bl
ie

s

p 
th

e 
le

ve
l o

f e
rr

or
 a

llo
w

an
ce

 o
n 

th
e 

k‑
m

er
s, 

N
od

es
 th

e 
nu

m
be

r o
f n

od
es

 to
 b

ui
ld

 d
e 

Br
ui

jn
 g

ra
ph

, N
um

 th
e 

nu
m

be
r o

f s
eq

ue
nc

es
 p

ro
du

ce
d,

 T
ot

al
 th

e 
to

ta
l l

en
gt

h 
of

 s
eq

ue
nc

es
 p

ro
du

ce
d,

 M
ax

 th
e 

m
ax

im
um

 le
ng

th
 o

f 
se

qu
en

ce
s 

pr
od

uc
ed

, N
50

 th
e 

N
50

 s
ta

tis
tic

 c
al

cu
la

te
d 

w
ith

 re
sp

ec
t t

o 
th

e 
to

ta
l l

en
gt

h 
of

 s
eq

ue
nc

es
 p

ro
du

ce
d,

 T
im

e 
th

e 
ru

n 
tim

e 
to

 a
ss

em
bl

e 
th

e 
ge

no
m

e,
 M

em
or

y 
th

e 
m

em
or

y 
re

qu
ire

m
en

t t
o 

as
se

m
bl

e 
th

e 
ge

no
m

e

p
N

od
es

Co
nt

ig
s

Sc
aff

ol
ds

Ti
m

e 
(m

in
)

M
em

or
y 

(G
B)

N
um

To
ta

l (
kb

)
M

ax
 (k

b)
N

50
 (k

b)
N

um
To

ta
l (

kb
)

M
ax

 (k
b)

N
50

 (k
b)

0
33

,6
92

,9
86

50
70

38
18

9
1.

0
18

2
39

47
17

8
54

45
.8

17
.7

1
15

,9
69

,0
82

12
01

38
75

34
5.

5
11

7
38

97
19

6
85

30
.5

16
.2

2
11

,9
17

,8
10

11
03

38
59

27
6.

1
11

7
38

80
14

5
63

36
.0

11
.7



Page 4 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528 

Figure 2 illustrates an example of 5-mers clustering while allowing 1 error. Basically, 
the components of the Hamming graph are the clusters of k-mers (Fig.  2b). Clover 
then merges all the nodes within each component of the Hamming graph into a single 
node and computes its consensus sequence. In practice, just setting p to (k × error 
rate of sequencer) can dramatically reduce the number of k-mers for constructing the 
de Bruijn graph later and accelerates the subsequent graph processing. In the imple-
mentation, Clover uses two steps to cluster the k-mers: Step 1 extracts all k-mers from 
the input reads. Step 2 constructs a Hamming graph of the k-mers and then performs 
a breadth-first search to find each component in the Hamming graph. If there is no 
error allowance needed (p = 0), Clover will omit the process of step 2.

Fig. 1 The flowchart of the Clover pipeline

Fig. 2 An example of 5‑mers clustering while allowing 1 error



Page 5 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528  

Consensus computing and splitting of nodes

Clover computes the consensus sequence for each merged node by selecting the nucleo-
tide with the most occurrence on each base pair. For example, the fourth component 
of Fig.  2b has 4  k-mers (GGTCT, GGTAT, GCTCT and TGTCT) whose consensus 
sequence therefore is GGTCT as shown in Fig. 2c. To avoid over-merging, if the k-mers 
of the merged node, called v, have a nucleotide on a base pair, called x, whose occurrence 
is closed to that of the corresponding nucleotide, called y, in the consensus sequence, 
Clover splits the merged node into multiple nodes. More realistically, given a fractional 
threshold sp, if the occurrence of x is greater than or equal to sp times the occurrence of 
y, Clover collects all the k-mers with x into a new node, called v1, leaves the others into 
a new node, called v2, and recursively retries this splitting process on v1 and v2. Let q 
be the number of k-mers in the merged node. Then the consensus computing requires 
O(q × k) time, the condition checking requires O(k) time and collecting the k-mers into 
the new nodes requires O(q) time. Therefore, similar to the analysis of quick sort, the 
worst case of the time complexity on the whole process is O(q2 × k). Figure 2c shows the 
resulting consensus sequences of Fig. 2b by setting sp to 0.6. Finally, Clover collects all 
the resulting consensus sequences as the k-mer set for constructing de Bruijn graph in 
the next phase.

De Bruijn graph construction

For the k-mer set obtained in the previous phase, Clover constructs the de Bruijn graph 
by directly using the k-mer set as its node set. For any two nodes, it creates an edge 
between them if their corresponding k-mers have an overlapping of length k − 1. Fig-
ure 2c provides an example for de Bruijn graph construction.

Graph cleaning and extension with shorter k‑mers

Clover provides multiple operations based on spectrum, structure and their combina-
tion for removing spurious edges from the de Bruijn graph. The spectral error removal 
operation is the trimming of low-frequency edges. The structural error removal opera-
tions are the pruning of tips, bubbles, and erroneous connections. If there are multi-
ple options during pruning of tips and bubbles, Clover prunes the low-frequency edges 
first. All these operations were also used in SOAPdenovo [5] and Velvet [3]. Clover then 
iteratively extends the graph by connecting two paths if the sequences of the paths have 
an overlapping length shorter than k until the given minimum overlapping length m is 
achieved. Clover defaultly sets the parameter m to (k/2) + 1. For example, we compare 
the different settings of m on the Rhodobacter sphaeroides assemblies (see Additional 
file 4: Table S2), where k is set to 46 in this case, and find that the default value 24 of m 
has the best scaffold result.

Scaffolding

Clover utilizes read-pair information by aligning both ends of the pairs to the paths in 
the graph to find pairs of anchors. Given a scaffold support ss, which defaultly is set 
to 5, Clover links each pair of paths with the consistent bound if its support from the 



Page 6 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528 

pairs of anchors is greater than or equal to ss. Clover calculates the medium length of 
insert sizes inferred from the pairs of anchors to be the consistent bound of the linked 
pair of paths. Finally, Clover predicts contigs by searching Eulerian super-paths on 
the graph.

Results and discussion
To evaluate the assembly correctness of Clover, we have tested three typical datasets in 
the GAGE study: Staphylococcus aureus (2.9 Mb), Rhodobacter sphaeroides (4.6 Mb) and 
human chromosome 14 (88.3 Mb) [6]. Each dataset has original reads, Quake corrected 
reads and Allpaths-LG corrected reads. The result with the best scaffold N50 on these 
three datasets is selected for assembly comparison we will discuss later.

Running Clover assembler

We provide Clover source code with this submission (see Additional file 1) and at our 
website https ://oz.nthu.edu.tw/~d9562 563/src.html.

Installation of Clover is provided at Additional file 2.
Each dataset in the GAGE study (see Additional file 2) is available at https ://gage.cbcb.

umd.edu/data/.
For testing Clover, test data is available at ‘Test Case’ of our website.
In Table 2, the results of our Clover were obtained from Allpaths-LG corrected reads. 

The assembly instructions used by our Clover are:

• S. aureus: clover -k 32 -p 0 -i1 frag_1.fastq,shortjump_1.fastq -i2 frag_2.
fastq,shortjump_2.fastq -cs 5 -ss 3 -is 180,3500 -hp 0.6 -pm -ml 700.

• R. sphaeroides: clover -k 46 -p 0 -i1 frag_1.fastq,shortjump_1.fastq -i2 frag_2.
fastq,shortjump_2.fastq -cs 7 -ss 3 -is 180,3500 -hp 0.6 -pm -ml 200.

• Human chromosome 14: clover -k 80 -p 3 -i1 frag_1.fastq,shortjump_1.
fastq,longjump_1.fastq -i2 frag_2.fastq,shortjump_2.fastq,longjump_2.fastq -cs 9 -ss 
5 -is 155,2543,35306 -hp 0.8 -ml 900.

The assembly results display all statistics data in the screen (see Additional file 3: Sec-
tion S2) and create two assembly output files named out_contig.fasta and out_scaffold.
fasta.

Running Leptospira shermani assembly

We provide Leptospira shermani dataset tar file at our website https ://oz.nthu.edu.
tw/~d9562 563/src.html.

Download and unpack it: tar -zxvf leptospirashermanidata.tar.gz.
The assembly instructions are: clover -k 40 -p ? -is 485 -i1 Lepto_500_1.fq -i2 

Lepto_500_2.fq -hp 0.6, where ? runs with 0, 1 and 2, respectively.
The assembly results display all statistics data in the screen (see Additional file 3: Sec-

tion S1) and create two assembly output files named out_contig.fasta and out_scaffold.
fasta.

https://oz.nthu.edu.tw/~d9562563/src.html
https://gage.cbcb.umd.edu/data/
https://gage.cbcb.umd.edu/data/
https://oz.nthu.edu.tw/~d9562563/src.html
https://oz.nthu.edu.tw/~d9562563/src.html


Page 7 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528  

Ta
bl

e 
2 

Co
m

pa
ri

so
n 

of
 a

ss
em

bl
er

s 
on

 S
ta

ph
yl

oc
oc

cu
s a

ur
eu

s (
SA

), 
Rh

od
ob

ac
te

r s
ph

ae
ro

id
es

 (R
S)

 a
nd

 h
um

an
 c

hr
om

os
om

e 
14

 (H
G

)

D
at

a 
(M

b
A

ss
em

bl
er

Co
nt

ig
s

Sc
aff

ol
ds

N
um

N
50

 (k
b)

E‑
si

ze
 (k

b)
Er

rs
N

50
C 

(k
b)

E‑
si

ze
C 

(k
b)

N
um

N
50

 (k
b)

E‑
si

ze
 (k

b)
Er

rs
N

50
C 

(k
b)

E‑
si

ze
C 

(k
b)

SA
C

lo
ve

r
12

8
43

.9
53

.1
13

41
.3

50
.5

12
14

90
94

7
2

14
90

89
0

2.
9

A
By

SS
90

12
9.

1
18

1.
1

16
69

.8
10

2.
5

61
17

0
19

9
0

10
7

12
7

Ba
m

bu
s2

10
9

50
.2

69
.1

17
8

16
.7

19
.5

17
10

84
11

20
0

10
84

11
20

C
A

BO
G

Co
ul

d 
no

t r
un

 b
ec

au
se

 o
f i

nc
om

pa
tib

le
 re

ad
 le

ng
th

s 
in

 o
ne

 li
br

ar
y

M
SR

‑C
A

94
59

.2
60

.4
22

49
.2

51
.4

17
24

12
20

26
1

10
22

10
39

SG
A

12
52

4.
0

4.
7

3
4.

0
4.

7
54

6
20

8
16

6
2

20
8

16
4

SO
A

Pd
en

ov
o

10
7

28
8.

2
25

2.
3

58
62

.7
67

.5
99

33
2

30
2

0
28

8
22

7

SP
A

de
s

98
62

.6
87

.9
9

57
.0

75
.1

41
17

03
11

44
2

68
4

57
0

Ve
lv

et
16

2
48

.4
60

.3
19

41
.5

49
.8

45
76

2
66

4
18

28
4

28
2

RS
C

lo
ve

r
45

3
20

.1
23

.8
19

19
.5

21
.9

59
24

83
17

95
1

24
83

17
95

4.
6

A
By

SS
64

4
19

.7
25

.1
57

13
.3

18
.5

41
4

51
56

0
46

47

Ba
m

bu
s2

17
7

93
.2

94
.5

36
0

12
.8

16
.3

92
24

39
13

75
1

39
0

11
06

C
A

BO
G

32
2

20
.2

24
.1

31
17

.9
21

.5
13

0
66

52
0

3
65

38
1

M
SR

‑C
A

39
5

22
.1

24
.2

32
19

.1
21

.5
43

29
76

20
39

3
29

76
20

17
SG

A
30

67
2.

3
3.

3
4

2.
3

3.
3

20
96

51
53

0
51

53

SO
A

Pd
en

ov
o

20
4

13
1.

7
15

7.
2

40
1

14
.6

18
.7

16
6

66
0

68
8

0
66

0
55

9

SP
A

de
s

76
8

11
.8

13
.7

7
11

.7
13

.5
35

2
71

8
84

0
0

71
8

84
0

Ve
lv

et
58

3
15

.7
18

.6
24

14
.5

16
.9

17
8

35
3

38
0

16
30

1
35

2

H
G

C
lo

ve
r

24
,5

27
3.

4
5.

3
71

8
3.

2
5.

0
20

89
83

9
94

3
38

5
40

9
50

2
88

.3
A

By
SS

21
,2

22
14

.7
19

.0
18

76
10

.4
13

.4
19

,2
49

18
24

13
13

19

Ba
m

bu
s2

13
,5

92
5.

9
23

.3
81

75
4.

3
6.

3
17

92
32

4
52

8
24

0
20

0
27

4

C
A

BO
G

33
61

45
.3

58
.8

23
46

23
.7

30
.6

47
9

39
3

54
9

39
30

9
45

7

M
SR

‑C
A

30
,1

03
4.

9
6.

8
16

56
4.

3
5.

9
14

25
89

3
14

20
14

30
28

2
40

7

SG
A

56
,9

39
2.

7
3.

8
37

5
2.

7
3.

7
30

,9
75

83
11

3
24

81
11

1

SO
A

Pd
en

ov
o

21
,8

18
16

.7
21

.9
65

87
7.

8
10

.4
13

,5
02

45
4

53
3

38
4

22
7

27
6



Page 8 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528 

N
um

 th
e 

nu
m

be
r o

f s
eq

ue
nc

es
 p

ro
du

ce
d,

 N
50

 th
e 

N
50

 s
ta

tis
tic

 c
al

cu
la

te
d 

w
ith

 re
sp

ec
t t

o 
th

e 
ge

no
m

e 
si

ze
, E

-s
iz

e 
th

e 
m

os
t l

ik
el

y 
si

ze
 o

f t
he

 s
eq

ue
nc

e 
co

nt
ai

ni
ng

 s
om

e 
ra

nd
om

 b
as

e 
in

 th
e 

ge
no

m
e,

 E
rr

s t
he

 n
um

be
r o

f 
m

is
jo

in
s 

an
d 

fo
r t

he
 c

on
tig

 v
al

ue
, a

ls
o 

th
e 

nu
m

be
r o

f i
nd

el
s >

 5
 b

as
es

, N
50

C 
th

e 
N

50
 c

al
cu

la
te

d 
af

te
r s

pl
itt

in
g 

al
l s

eq
ue

nc
es

 a
t e

rr
or

 lo
ca

tio
ns

, a
nd

 E
-s

iz
eC

 th
e 

E‑
si

ze
 c

al
cu

la
te

d 
af

te
r s

pl
itt

in
g 

al
l s

eq
ue

nc
es

 a
t e

rr
or

 lo
ca

tio
ns

. 
Th

e 
be

st
 re

su
lt 

in
 e

ac
h 

co
lu

m
n,

 fo
r e

ac
h 

da
ta

se
t, 

is
 in

di
ca

te
d 

in
 b

ol
d

D
at

a 
(M

b
A

ss
em

bl
er

Co
nt

ig
s

Sc
aff

ol
ds

N
um

N
50

 (k
b)

E‑
si

ze
 (k

b)
Er

rs
N

50
C 

(k
b)

E‑
si

ze
C 

(k
b)

N
um

N
50

 (k
b)

E‑
si

ze
 (k

b)
Er

rs
N

50
C 

(k
b)

E‑
si

ze
C 

(k
b)

SP
A

de
s

16
,8

54
12

.7
16

.7
15

19
10

.4
13

.6
92

45
17

3
22

3
19

9
12

9
16

2

Ve
lv

et
45

,5
64

2.
3

3.
3

36
65

2.
1

3.
0

35
65

11
90

18
25

86
59

86
12

4

Ta
bl

e 
2 

(c
on

ti
nu

ed
)



Page 9 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528  

Assemblers

Table 2 shows the comparison of Clover’s performance against several modern assem-
blers, which include ABySS [7], Bambus2 [8], CABOG [9], MSR-CA [10], SGA [11], 
SOAPdenovo [5], SPAdes [12] and Velvet [3]. All assembly statistics were generated by 
the GAGE validation scripts. Bambus2, CABOG and MSR-CA are well known overlap-
layout-consensus assemblers, while ABySS, SOAPdenovo, SPAdes and Velvet are famous 
de Bruijn graph assemblers and SGA is typical string graph assembler.

Comparison

For the S. aureus dataset, SOAPdenovo and ABySS have produced the longest two 
contigs. SGA, SPAdes, Clover and ABySS have been detected the fewest four errors in 
contigs, but SOAPdenovo contains many errors. Therefore ABySS achieves the longest 
corrected contigs. MSR-CA has produced the longest scaffolds, but its longest scaffold 
has been broken by an error. Instead, Clover and Bambus2 achieve the longest corrected 
scaffolds in terms of N50 and E-size respectively.

For the R. sphaeroides dataset, SOAPdenovo and Bambus2 have produced the longest 
two contigs. However, considering the assembly correctness, Clover achieves the long-
est corrected contigs. SGA and SPAdes contain fewest two errors in contigs, but their 
N50 lengths are relatively shorter. Excluding SGA and SPAdes, Clover’s contigs contain 
fewest errors. On the other hand, MSR-CA and Clover have the best two scaffold results 
both in uncorrected and corrected N50.

For the human chromosome 14 dataset, Clover produces the relatively conservative 
contigs, but its contigs contain fewest errors except SGA. CABOG has the best contig 
results both in uncorrected and corrected N50. Velvet produces the longest scaffolds. 
However, when focusing on the assembly correctness, Clover achieves the longest cor-
rected scaffolds.

Note that the N50 statistics is defined as the minimum contig length (in descending 
order) needed to cover 50% of the genome. The N50 statistics generated by Clover is the 
minimum contig length needed to cover 50% of all the sequence produced. However, the 

Table 3 Comparison of assemblers on run times and memory requirements

Time the run time to assemble the genome, Memory the memory requirement to assemble the genome

*NA, could not run because of incompatible read lengths in one library

Assembler Staphylococcus aureus Rhodobacter sphaeroides Human Chromosome 
14

Time Memory Time Memory Time Memory

Clover 5.6 min 10.1 GB 13.9 min 11.0 GB 10.4 h 59.3 GB

ABySS 5.1 min 0.5 GB 11.6 min 0.5 GB 6.7 h 3.3 GB

Bambus2 55.5 min 2.3 GB 3.7 h 12.3 GB 5.1 d 190.3 GB

CABOG NA* NA* 2.9 h 12.3 GB 22.9 h 190.4 GB

MSR‑CA 25.5 min 26.2 GB 41.3 min 28.3 GB 1.3 d 34.6 GB

SGA 35.5 min 1.1 GB 1.1 h 3.5 GB 18.8 h 35.0 GB

SOAPdenovo 2.3 min 3.1 GB 1.8 min 5.0 GB 2.1 h 8.0 GB

SPAdes 56.8 min 6.1 GB 29.5 min 4.5 GB 10.9 h 22.0 GB

Velvet 5.4 min 0.4 GB 7.3 min 0.5 GB 11.7 h 72.3 GB



Page 10 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528 

N50 statistics generated by the GAGE validation scripts is the minimum contig length 
needed to cover 50% of the reference genomic sequence provided in GAGE study. There-
fore the N50 statistics of Clover in Additional file 3 and the N50 statistics of Clover in 
Table 2 have a little difference.

The result of L. shermani seems to be poorer than S. aureus and R. sphaeroides. How-
ever, these two datasets in GAGE study have two libraries and the fragment size is up 
to 3500  bp [6], whereas the L. shermani dataset only has single library with fragment 
size 485 bp. The better assembly quality is caused by using more libraries. Practically, 
researchers usually use optical mapping to arrange scaffolds and then obtain the draft 
sequence [12].

In addition, our clustering approach can apply on ever error-corrected reads. For 
example, the assembly of human chromosome 14 is generated by clustering 80-mers 
while allowing 3 errors on Allpaths-LG corrected reads. Therefore Clover would not 
conflict with current error correction tools. In practice, we will apply smaller k-mer on 
single library or lower coverage dataset such as the L. shermani assembly, and larger 
k-mer on more complex genomes such as human chromosome 14. When using large 
k-mer, increasing the level of error allowance is especially needed even on ever error-
corrected reads.

Run times and memory requirements

To assess Clover’s run times and memory requirements, we have rerun above assemblers 
that follow the same processes and parameters of GAGE with their newest version on 
a 16-core AMD Opteron 6128 2 GHz server with 256 GB of RAM. The parameters of 
optimal result seem varying with the different version of assemblers and hence we only 
take their run times and memory requirements into comparisons. Because we don’t have 
large-scale parallel environment, we only run ABySS on single-process version.

Table 3 shows the comparison of these assemblers on run times and memory require-
ments. The result shows that the run time of Clover is significantly competitive to those 
efficient de Bruijn graph assemblers except SOAPdenovo. SOAPdenovo is the fastest 
assembler due to the multi-process parallelization.

The major cost of Clover is the k-mers clustering. In the k-mers clustering, Clover con-
structs a Hamming graph in which it links each pair of k-mers as an edge if the Ham-
ming distance of the pair of k-mers is ≤ p. To accelerate the process, Clover utilizes the 

Table 4 The results of two bacterial genome sequencing projects

The NGS datasets of these two bacterial sequencing projects are available for download at https ://oz.nthu.edu.tw/~d9562 
563/src.html

Acinetobacter baumannii 
TYTH‑1

Morganella morganii KT

Length of sequence 3,957,368 bp 3,826,919 bp

Number of contigs 165 58

GC content 39% 51%

Number of protein‑coding sequences 3682 3565

Number of tRNA genes 75 72

Number of rRNA genes 6 10

GenBank accession number CP003856 ALJX00000000

https://oz.nthu.edu.tw/~d9562563/src.html
https://oz.nthu.edu.tw/~d9562563/src.html


Page 11 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528  

indexing technique that partitions a k-mer into (p + 1) substrings. If the Hamming dis-
tance of a pair of k-mers is ≤ p, there must exist a pair of substrings that are exactly the 
same. Therefore Clover uses (p + 1) hash tables which index each substring of all k-mers 
to find the candidate pairs of k-mers, and performs comparisons to check their real 
Hamming distances. Let n be the number of the reads. l be the length of the reads, k be 
the length of k-mers and p be the level of error allowance on the k-mers. Note that p can 
be 0 in this study. Then n × (l − k + 1) is the number of k-mers within the reads, (p + 1) 
is the number of hash tables needed to find the candidate pairs of k-mers and each com-
parison for them requires O(k) time. Therefore, the worst case of the time complexity on 
k-mers clustering is O(n × (l − k + 1) × k × (p + 1)) ≅ O(n × (l − k) × k × (p + 1)). Similarly, 
the memory needed to store all the sequences of the k-mers is O(n × (l − k) × k), and the 
memory needed for all the k-mers on the hash tables is O(n × (l − k) × (p + 1)). Since k 
is much larger than p, the worst case of the space complexity on k-mers clustering is 
O(n × (l − k) × k).

Sequencing projects

It is worth mentioning that Clover was involved in two sequencing projects to respec-
tively sequence bacterial genomes Acinetobacter baumannii TYTH-1 (4.0 Mb and 165 
contigs) [14] and Morganella morganii KT (3.8 Mb and 58 contigs) [15]. The contigs gen-
erated by Clover were then used to build the draft sequences, which were confirmed by 
optical mapping and PCR. From the draft sequences of A. baumannii TYTH-1 and M. 
morganii KT, 3682 and 3565 protein-coding sequences, 75 and 72 tRNA genes, and 6 
and 10 rRNA genes were further predicted, respectively. Table 4 shows the summary of 
these two sequencing results.

Limitations

The limit of our current Clover is that it cannot apply on genomes with large size up to 
250 Mb. This is caused by 256 GB of RAM in our server (see Run times and memory 
requirements section for detail). However, if the server has more RAM, the limitation 
could be eliminated. The memory requirement issue exists in many assemblers with 
which we compared in this study. As shown in Table 3, if a genome can not be assembled 
by Clover, the genome has the high probability that it can not be assembled by other 
assemblers we used in this study.

Future works

We leave the parallelization of program as a future work that will further improve the 
performance of Clover. Besides, we leave the exploration of other possible clustering 
algorithms to further improve Clover as another future work.

Conclusions
In this study, we developed a new clustering-oriented de novo assembler, called Clover, 
that integrates the flexibility of the overlap-layout-consensus approach on clustering 
k-mers and the efficiency of the de Bruijn graph method, with which we improve the 
robustness with respect to sequencing error especially using large k-mers. We discov-
ered the effect of our clustering approach that not only improves the assembly result but 



Page 12 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528 

also accelerates the assembly process by simplifying analysis on the Leptospira shermani 
assembly. The evaluation of Clover on GAGE datasets finally shows that it achieves a 
superior assembly quality in terms of corrected N50 and E-size while remaining a sig-
nificantly competitive in run time.

Availability and requirements
Project name Clover.

Project home page https ://oz.nthu.edu.tw/~d9562 563/
Operating system(s) Linux.
Programming language C, Python and Cython.
Other requirements Python-devel to develop Python extensions.
License GNU GPL2.
Any restrictions to use by non-academics None.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9‑020‑03788 ‑9.

Additional file 1 Clover source code for Linux. Please refer to ‘Installation of Clover’.

Additional file 2 Datasets and Installation of Clover. GAGE dataset list and locations, and build Clover’s executing 
and programming environments.

Additional file 3 Section S1—Leptospira shermani assembly statistics results. Section S2—Clover assembly statistics 
results. Clover output screen text.

Additional file 4  Table S1—Memory requirements (GB) of k versus p correlation on Leptospira shermani assembly. 
Table S2—Sensitivity comparison of different minimum overlapping lengths on Rhodobacter sphaeroides assembly. 
Supplemental analysis of Clover.

Abbreviations
ABySS: Assembly by short sequences; bp: Base pairs; CABOG: Celera assembler with the best overlap graph; Clover: 
Clustering‑oriented de novo assembler; DNA: Deoxyribonucleic acid; E‑size: Expected size; GAGE: Genome assembly 
gold‑standard evaluation; GC‑content: Guanine‑cytosine content; kb: Kilo base pairs; Mb: Mega base pairs; MSR‑CA: 
Maryland super‑read celera assembler; NGS: Next‑generation sequencing; PCR: Polymerase chain reaction; rRNA: Ribo‑
somal ribonucleic acid; SGA: String graphs assembler; SOAPdenovo: Short oligonucleotide analysis package de novo; 
SPAdes: St. Petersburg genome assembler; tRNA: Transfer ribonucleic acid.

Acknowledgements
The authors appreciate the Ministry of Science and Technology of Taiwan for funding this study and three anonymous 
reviewers for their constructive comments.

Authors’ contributions
CYT and MFH: research conception and design; MFH: software development and performance improvement; CLL and 
MFH: manuscript preparation; CYT and CLL: final approval. All authors read and approved the final manuscript.

Funding
The publication costs of this paper were funded by Ministry of Science and Technology of Taiwan under grant MOST 
106‑2221‑E‑126‑008.

Availability of data and materials
The evaluation datasets used during the current study are available in the https ://gage.cbcb.umd.edu/data/. The source 
code of Clover is available at https ://oz.nthu.edu.tw/~d9562 563/src.html.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan. 2 Department of Computer 
Science and Information Engineering, Providence University, Taichung 43301, Taiwan. 

https://oz.nthu.edu.tw/~d9562563/
https://doi.org/10.1186/s12859-020-03788-9
https://gage.cbcb.umd.edu/data/
https://oz.nthu.edu.tw/~d9562563/src.html


Page 13 of 13Hsieh et al. BMC Bioinformatics          (2020) 21:528  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Received: 10 May 2020   Accepted: 29 September 2020

References
 1. Shendure J, Ji H. Next‑generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45. 
 2. Hawkins RD, Hon GC, Ren B. Next‑generation genomics: an integrative approach. Nat Rev Genet. 2010;11:476–86. 
 3. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 

2008;18:821–9. 
 4. Kelley DR, Schatz MC, Salzberg SL. Quake: quality‑aware detection and correction of sequencing errors. Genome 

Biol. 2010;11:R116. 
 5. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short 

read sequencing. Genome Res. 2010;20:265–72. 
 6. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al. GAGE: a critical evaluation of genome assemblies 

and assembly algorithms. Genome Res. 2012;22:557–67. 
 7. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence 

data. Genome Res. 2009;19:1117–23. 
 8. Koren S, Treangen TJ, Pop M. Bambus 2: scaffolding metagenomes. Bioinformatics. 2011;27(21):2964–71. 
 9. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, et al. Aggressive assembly of pyrosequencing reads 

with mates. Bioinformatics. 2008;24(24):2818–24. 
 10. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 

2013;29(21):2669–77. 
 11. Simpson JT, Durbin R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 

2012;22:549–56. 
 12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algo‑

rithm and its applications to single‑cell sequencing. J Comput Biol. 2012;19(5):455–77. 
 13. Shukla SK, Kislow J, Briska A, Henkhaus J, Dykes C. Optical mapping reveals a large genetic inversion between two 

methicillin‑resistant Staphylococcus aureus strains. J Bacteriol. 2009;191(18):5717–23. 
 14. Liou ML, Liu CC, Lu CW, Hsieh MF, Chang KC, Kuo HY, et al. Genome sequence of Acinetobacter baumannii TYTH‑1. J 

Bacteriol. 2012;194(24):6974. 
 15. Chen YT, Peng HL, Shia WC, Hsu FR, Ken CF, Tsao YM, et al. Whole‑genome sequencing and identification of Morga-

nella morganii KT pathogenicity‑related genes. BMC Genomics. 2012;13(Suppl 7):S4. 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Clover: a clustering-oriented de novo assembler for Illumina sequences
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Construction and clustering of k-mers
	Consensus computing and splitting of nodes
	De Bruijn graph construction
	Graph cleaning and extension with shorter k-mers
	Scaffolding

	Results and discussion
	Running Clover assembler
	Running Leptospira shermani assembly
	Assemblers
	Comparison
	Run times and memory requirements
	Sequencing projects
	Limitations
	Future works

	Conclusions
	Availability and requirements
	Acknowledgements
	References


