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Abstract 

Background:  The formation of contacts among protein secondary structure elements 
(SSEs) is an important step in protein folding as it determines topology of protein ter‑
tiary structure; hence, inferring inter-SSE contacts is crucial to protein structure predic‑
tion. One of the existing strategies infers inter-SSE contacts directly from the predicted 
possibilities of inter-residue contacts without any preprocessing, and thus suffers from 
the excessive noises existing in the predicted inter-residue contacts. Another strategy 
defines SSEs based on protein secondary structure prediction first, and then judges 
whether each candidate SSE pair could form contact or not. However, it is difficult to 
accurately determine boundary of SSEs due to the errors in secondary structure pre‑
diction. The incorrectly-deduced SSEs definitely hinder subsequent prediction of the 
contacts among them.

Results:  We here report an accurate approach to infer the inter-SSE contacts (thus 
called as ISSEC) using the deep object detection technique. The design of ISSEC is 
based on the observation that, in the inter-residue contact map, the contacting SSEs 
usually form rectangle regions with characteristic patterns. Therefore, ISSEC infers inter-
SSE contacts through detecting such rectangle regions. Unlike the existing approach 
directly using the predicted probabilities of inter-residue contact, ISSEC applies the 
deep convolution technique to extract high-level features from the inter-residue 
contacts. More importantly, ISSEC does not rely on the pre-defined SSEs. Instead, ISSEC 
enumerates multiple candidate rectangle regions in the predicted inter-residue con‑
tact map, and for each region, ISSEC calculates a confidence score to measure whether 
it has characteristic patterns or not. ISSEC employs greedy strategy to select non-
overlapping regions with high confidence score, and finally infers inter-SSE contacts 
according to these regions.

Conclusions:  Comprehensive experimental results suggested that ISSEC outper‑
formed the state-of-the-art approaches in predicting inter-SSE contacts. We further 
demonstrated the successful applications of ISSEC to improve prediction of both inter-
residue contacts and tertiary structure as well.
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Background
Proteins play important roles in a large variety of biological processes. The biological 
roles of proteins are mainly determined by their three dimensional structures (called ter-
tiary structures), making resolving protein structures highly desirable. The experimental 
technologies to resolve protein tertiary structures, such as X-ray crystallography, NMR 
spectroscopy, and cryo-electron microscopy, have achieved great successes; however, 
these technologies are usually time-consuming. Thus, predicting protein structure from 
amino acid sequence is of great importance [1, 2].

Protein structures are stabilized by both local and global interactions among compos-
ing residues; thus, understanding of contacts among residues could effectively facilitate 
prediction of the correct protein fold [3, 4]. Some recent studies have shown significant 
improvement in the prediction of inter-residue contacts [5]; however, the application of 
the predicted residue contact to build protein structure is still far from satisfactory [3, 6, 
7]. The potential reasons lie at the errors in the predicted residue-level contacts and the 
limitations in exploitation of these contacts.

In this study, we focus on the prediction of inter-SSE contacts. The prediction of inter-
SSE contacts is of great importance as inter-SSE contacts carry coarse-grain information 
of tertiary structure and thus could effectively facilitate protein structure prediction [8–
10]. In addition, compared with inter-residue contacts, the inter-SSE contacts are much 
more robust, making it more reliable to predict.

A variety of methods have been developed for the prediction of inter-SSE contacts, 
which could be roughly divided into two categories, namely, prediction of α−α contacts 
[11–15] and prediction of β−β contacts [16–18]. For example, bbcontacts focuses on the 
prediction of β−β parallel and antiparallel contacts [7]. It employs the hidden Markov 
model (HMM) technique to integrate signals covering the predicted inter-residue con-
tacts and the predicted secondary structure. As it directly uses the predicted probability 
of inter-residue contacts, bbcontacts suffers from the excessive noises existing in these 
contacts. In contrast to bbcontacts, HHConPred aims to predict α−α contacts [19]. It 
infers the contact between two helices via checking whether these helices show ridge 
pattern in the inter-residue contact maps. However, as this approach needs pre-defined 
SSEs, it suffers from the errors of predicted secondary structure. Besides, both of these 
two approaches were designed for a single type of inter-SSE contacts only and thus could 
not apply for the proteins with mixed types of inter-SSE contacts.

We here report an accurate approach (called ISSEC) to the prediction of inter-SSE 
contacts. ISSEC is rooted in the observation that, in the inter-residue contact map, the 
contacting SSEs usually form a rectangle region with characteristic patterns (Fig. 1 and 
Additional file 1: Fig. S1). For example, two contacting parallel β-strands often form a 
diagonal line, whereas two contacting anti-parallel β-strands form an anti-diagonal line. 
In contrast, two contacting helices usually form a dashed line.

ISSEC applies the object detection technique to detect the rectangle regions with 
characteristic patterns, and infers inter-SSE contacts based on these regions. ISSEC 
has the following advantages: (1) It uses deep convolution to extract high-level fea-
tures from the predicted inter-residue contacts and thus could tolerate excessive 
noises in these contacts. (2) ISSEC examines multiple overlapping regions in the pre-
dicted contact map and thus could get rid of the dependency on the pre-defined SSEs. 
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(3) ISSEC could predict multiple types of inter-SSE contact simultaneously. Experi-
mental results on PSICOV [20], CASP11 datasets, and membrane proteins suggest 
that ISSEC significantly outperformed the existing approaches in prediction accuracy. 
Furthermore, we successfully applied the predicted inter-SSE contacts to improve the 
prediction of inter-residue contacts and tertiary structure as well.

Results
We first explain the concept of ISSEC using protein 3a4tA as a concrete example. 
Next we show the prediction accuracy of ISSEC on a variety of datasets, including 
PSICOV dataset, TEST1000 dataset, and transmembrane proteins. Finally, we show 
the application of ISSEC to improve inter-residue prediction and tertiary structure 
prediction as well.

Datasets

From the proteins in PDB25 (Released in February, 2015), we randomly selected 
1,000 proteins to construct a test set called TEST1000. The other test sets include: 
(1) PSICOV118 dataset: consisting of 118 proteins (after excluding 32 proteins with-
out inter-SSE contacts from PSICOV dataset). (2) Mem30 dataset: consisting of 30 
transmembrane proteins obtained from MemConP [15]. (3) Mem11 dataset: consist-
ing of 11 transmembrane proteins [19]. (4) BetaSheet186: consisting of 186 proteins 
that contains β−β contacts [17].

The training set was also constructed based on PDB25. To guarantee low sequence 
identity between training and testing set, we excluded the proteins with sequence 
identify over 25% with any protein in the test sets and finally obtained a training set 
with 9241 proteins.

Constraint

Inference

Patterns of inter-residue contacts Inter-SSE contacts in 3D structure

Fig. 1  Characteristic patterns formed by contacting SSEs in inter-residue contact map. Two contacting 
parallel β-strands often form a diagonal line (rectangle in red), whereas two contacting anti-parallel β-strands 
form an anti-diagonal line (rectangle in blue). In contrast, two contacting helices usually form a dashed line 
(rectangle in green). These characteristic patterns could be used to infer inter-SSE contacts
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The concept of ISSEC using protein 3a4tA as an example

The protein 3a4tA is an α−β protein that consists of 274 residues, forming 20 α and β SSEs, 
i.e., E1−H1−E2−E3−E4−H2−E5−H3−E6−H4−E7−H5−E8−H6−E9−H7−E10−E11−E12−E13 
(Fig. 2). Here E represents a β strand and H represents an α helix. This protein has a total 
of 12 inter-SSE contacts, including 2 α−α contacts ( H2−H3 and H6−H7 ), 4 β−β parallel 
contacts ( E5−E6 , E5−E8 , E6−E7 , and E8−E9 ), and 6 β−β anti-parallel contacts ( E1−E3 , 
E1−E4 , E2−E3 , E9−E13 , E10−E13 and E12−E13).

For this protein, ISSEC first predicted probabilities of inter-residue contacts (shown 
in lower-left triangle of Fig. 2a), which contain a great amount of noises when compared 
with the true residue contacts (upper-right triangle). Based on these predicted probabili-
ties of inter-residue contacts, ISSEC identified 12 inter-SSE contacts, including 9 positive 
predictions (rectangle regions in red) and 3 false positives (rectangle regions in green). 
In addition, 3 inter-SSE contacts ( E1−E3 , E2−E3 and H2−H3 ) were missed by ISSEC.

Besides the type of inter-SSE contacts, ISSEC also reports their positions along with 
confidence scores. Figure 2c shows an example: ISSEC identified an α−α contact with 
confidence score of 0.80. The position of the identified rectangle region matches per-
fectly with the true position of the contacting SSEs (shown in upper-right triangle). For 
this rectangle region, ISSEC also reports mask to show the contacting residues. How-
ever, the true contacting residues form a dashed line while ISSEC prefers to report a 
continuous line. This is the reason why ISSEC sets a relatively small weight for the mask 
loss.

Accuracy of inter‑SSE contact prediction

We first evaluated ISSEC’s performance on proteins that contain single type of inter-
SSE contacts. Next, we tested ISSEC on proteins that contain multiple types of inter-SSE 
contacts.

Prediction accuracy of α−α contacts for membrane proteins

Most membrane proteins are composed of only α-helices. Thus, the accurate prediction 
of α−α contacts should greatly facilitate the prediction of tertiary structure for mem-
brane proteins [21].

Predicted inter-residue
contacts ISSEC

Predicted inter-SSE
contacts

Native inter-SSE
contacts

GVLN T I I I N ADMR
GVLN T I I I N KDMR
N I L N T I I I N KDMR
G I AN V I MLNMN VL
G I VN T I L L NMD AL
G I KN I I MLN TN A I
G I MN T VL FHMD AR
GVMN T A I YNMD AL
GVLN T AV I HMN AV

Multiple sequence
alignment

a b c d e

Fig. 2  Paradigm of ISSEC. a Initially, an multiple sequence alignment (MSA) was built for query protein. b The 
inter-residue contacts were predicted through running CCMPred over the calculated MSA. c, d ISSEC takes 
the predicted inter-residue contact map as input and identifies the contacting SSEs (shown as red rectangle). 
e The true inter-SSE contacts (shown as red rectangle) annotated according to native structure of the query 
protein
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We tested ISSEC on Mem30 and Mem11 datasets and performed comparison with 
three popular approaches, namely, TMhhcp [14], MemConP [15] and HHConPred 
[19]. Here we followed the convention used in HHConPred to define α−α contacts, 
and comparison criterion from HHConPred [19].

As shown in Table  1, on the Mem30 dataset, TMhhcp and MemConP are able to 
achieve relatively higher values of precision (61.85% and 70.68%, respectively) but at 
the substantial sacrifice of recall (15.48% and 24.97%, respectively). This leads to rela-
tively low F-measure for these approaches, thus greatly limiting their applications in 
membrane proteins. In contrast, HHConPred and ISSEC recalled 44.78% and 57.89% 
true α−α contacts and thus achieved higher F-measure than TMhhcp and MemConP. 
Furthermore, ISSEC significantly outperformed HHConPred by a large margin (> 6% 
in F-measure). On the Mem11 dataset, ISSEC outperformed all the three approaches. 
For example, ISSEC exceeded HHConPred by 13% in precision, 10% in recall, and 
3% in F-measure. These results suggested the advantages of ISSEC over the existing 
approaches.

Prediction accuracy of β−β contacts on BetaSheet186 dataset

Next, we evaluated ISSEC’s prediction accuracy of the β−β contacts on the 
BetaSheet186 dataset. Here, we followed the convention used in bbcontacts [7] to 
define true β−β contacts of proteins.

We compared ISSEC with bbcontacts and summarized the comparison results in 
Table 2. The table suggested that bbcontacts achieved a higher precision (81.1%) than 
ISSEC (68.7%) but a lower value of recall (48.2% vs. 66.6%). As results, ISSEC outper-
formed bbcontacts by 1.6% in terms of F-measure. It is worth pointing out that ISSEC 
exhibited much higher prediction accuracy of β−β contacts than that of α−α con-
tacts (Additional file 1: Fig. S3).

Table 1  Performance of  ISSEC, TMhhep, MemConP, and  HHConPred on  Mem30 
and Mem11 datasets

In each column, the largest element is highlighted in italic. The datasets and the results for all methods except ISSEC were 
excerpted from [19]

Method Mem30 Mem11

Precision (%) Recall (%) F-measure (%) Precision (%) Recall (%) F-measure (%)

TMhhep 61.85 15.48 23.91 36.36 31.60 30.81

MemConP 70.68 24.97 34.17 18.18 15.91 16.88

HHConPred 42.92 44.78 41.06 48.67 44.09 39.44

ISSEC 46.44 57.89 47.13 61.53 54.56 43.23

Table 2  Performance of ISSEC and bbcontacts on BetaSheet186 dataset

In each column, the largest element is highlighted in italic. The prediction results of bbcontacts were excerpted from [7]

Method Precision (%) Recall (%) F-measure (%)

bbcontacts + PSIPRED 81.1 48.2 60.5

ISSEC 68.7 66.6 62.1
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It illustrated the extensiveness of our method that a general model for predicting mul-
tiple types of inter-SSE contacts could outperform the tools for single one.

Predicting multiple types of inter‑SSE contacts simultaneously

To investigate whether ISSEC could predict multiple types of inter-SSE contacts simulta-
neously, we evaluated ISSEC on TEST1000 and PSICOV118 datasets. Since there had no 
published tool for the prediction of multiple types of inter-SSE contacts, we just showed 
the curves on this two datasets. The proteins in these datasets have both α−α and β−β 
contacts. More specifically, the ratio of α−α , β−β parallel and β−β anti-parallel con-
tacts is 2:1:2 in TEST1000, and 3:2:4 in PSICOV118.

As shown in Fig.  3, ISSEC could accurately predict inter-SSE contacts on both 
PSICOV118 (Precision: 63.24%, Recall: 61.52%, F-measure: 62.36%) and TEST1000 
dataset (Precision: 57.22%, Recall: 55.86%, F-measure: 56.53%). The performance on 
PSICOV118 is marginally better than that on the TEST1000 dataset, which might be 
rooted in the fact that proteins in PSICOV118 usually have more sequence homologs. 
In addition, for all of the three types of inter-SSE contacts, the prediction accuracy are 
considerably close, suggesting that ISSEC could apply on proteins with multiple types of 
inter-SSE contacts.

Applying ISSEC to improve prediction of inter‑residue contacts

As inter-SSE contacts carry coarse-grain information of structure, it is interesting to 
examine whether this information could be used to improve prediction of inter-residue 
contacts. For this aim, we integrated the predicted inter-SSE contacts by ISSEC into the 
deep residual network model designed for inter-residue contact prediction [5]. The orig-
inal model was denoted as DeepRN model hereafter.

The original DeepRN model was designed to refine the predicted inter-residue con-
tacts generated using co-evolution technique (e.g., CCMpred [22]). The loss function in 
the original model is cross entropy summed over all residue pairs. Here we enhanced the 

Mask-RCNN

Region Proposal Network

Is an inter-SSE
contact ?

What is the
position?

Feature Extractor

Predicted Inter-residue Contacts

Step2: 
Proposing 
candidate 
regions

Step3: 
Identifying 
contacting
SSEs

Inter-residue 
contacts in 
this region

Type of inter-
SSE contacts

Position of 
inter-SSE
contacts

Step1: 
Extracting
high-level
features

Fig. 3  Deep object detection model used by ISSEC. (i) Feature extractor aims to extract high-level features 
from the predicted probabilities of inter-residue contacts. (ii) Region proposing network aims to propose 
candidate rectangle regions that might contain contacting SSEs. (iii) Mask-RCNN aims to judge whether a 
candidate rectangle region contains characteristic patterns or not
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original DeepRN model with ISSEC as follows: The residue pairs in the predicted con-
tacting SSEs were assigned with higher weight, i.e., for these residue pairs, their loss are 
multiplied by 1+ St , where St represents the score of predicted inter-SSE contact.

Following the widely-used convention, we divided the contacts into short-, medium- 
and long-range when the sequence distance of the two contacting residues falls into 
[6, 11], [12, 23], and [24,+∞) , respectively, and reported the accuracy of top L/10, L/5, 
L/2, and L predicted contacts.

As illustrated in Additional file  1: Tables S2 and S3, when enhanced with ISSEC, 
DeepRN showed considerable performance improvement in most cases. More impor-
tantly as shown in Table  3, the performance improvement are more considerable for 
long-range contacts on both PSICOV118 dataset (4.2% improvement for top L con-
tacts), CASP11 dataset (3.4% improvement for top L contacts) and CASP13 dataset 
(2.0% improvement for top L/10 contacts). It was well recognized that the prediction 
of long-range contacts is a challenging task. This result clearly suggested that the global 
structure information identified by ISSEC could greatly facilitate accurate prediction of 
inter-residue contacts.

Applying ISSEC to improve 3D structure prediction

When inter-SSE contacts are known, topology of the full tertiary structures are almost 
fixed. Here, we used the predicted inter-SSE contacts to guide structure building. Spe-
cifically, we integrated ISSEC into CONFOLD [23] as follows: CONFOLD consists of 
two stages, and at the second stage, it identifies strand-pairs from the structures gener-
ated at the first stage and uses these pairs to guide structure building. We replaced the 
second stage of CONFOLD with ISSEC and compared this hybrid version (denoted as 
CONFOLD+ISSEC) with the original CONFOLD.

Figure  4 shows the head-to-head comparison of the top model generated by CON-
FOLD and that by CONFOLD+ISSEC. On 69 out of the 118 proteins in PSICOV118 
dataset, CONFOLD+ISSEC generated much better protein structures. We listed 10 of 
these proteins in Table 4 and exhibited the predicted structures in Fig. 5 and Additional 
file 1: Figs. S5–S14. Taking protein 1o1zA as an example, CONFOLD generated a struc-
ture with TMscore of only 0.44, whereas CONFOLD+ISSEC generated a structure with 
TMscore of 0.55. For protein 1i4jA and 1ctfA, the TMscore improvement are even 

(1)Re_weighted Loss =
∑

i

∑

j

(1+ St)× CrossEntropy(i, j)

Table 3  Performance improvement of  long-range contacts on  PSICOV118, CASP11 
and CASP13

Method Long on PSICOV118 Long on CASP11 Long on CASP13

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.714 0.591 0.384 0.242 0.472 0.416 0.326 0.244 0.326 0.302 0.218 0.153

DeepRN 0.913 0.879 0.737 0.559 0.723 0.670 0.571 0.440 0.497 0.450 0.339 0.253

DeepRN+ISSEC 0.919 0.892 0.777 0.601 0.730 0.686 0.599 0.474 0.517 0.451 0.350 0.269
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higher than 0.20. These results suggested that ISSEC could be used to effectively improve 
tertiary structure prediction.

Discussion
Our ISSEC could currently predict three frequent types of inter-SSE contacts, i.e., α−α , 
β−β parallel and β−β anti-parallel contacts. How to extend ISSEC to predict α−β and β
-turn contacts remains one of the future works.

Conclusions
In this study, we present an approach to predicting inter-SSE contacts. Experimental 
results suggested that this approach could be used to predict α−α contacts for mem-
brane proteins and β−β contacts for β proteins. More importantly, it can be used to 

Fig. 4  Prediction of inter-SSE contacts for protein 3a4tA using ISSEC. a The upper-right triangle shows true 
inter-residue contacts and true contacting SSEs (rectangle regions in blue). The lower-left triangle shows the 
predicted contacting SSEs and the predicted probability of inter-residue contacts. Here, rectangle regions 
in red represent true positive prediction where green ones represent incorrect predictions. b The native 
3D-structure of the protein 3a4tA. Here, two contacting helices are shown in the box. c The prediction 
results for the contacting helices: type: HH, Confidence score: 0.80, and masks shown in red

Fig. 5  Performance of ISSEC on TEST1000 and PSICOV118 datasets. Black: the performance of all inter-SSE 
contacts; red: the performance of α−α contacts; blue: the performance of β−β parallel contacts; green: β−β 
anti-parallel contacts
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predict multiple types of inter-SSE contacts simultaneously. Furthermore, our approach 
could be used to improve prediction of both inter-residue contacts and tertiary structure 
as well.

Methods
ISSEC infers inter-SSE contacts through detecting rectangle regions with characteris-
tic patterns in the inter-residue contact map. To detect these rectangle regions, ISSEC 
employs the object detection framework, which was initially proposed for detecting 
objects in images [24]. For example, given the image shown in Additional file 1: Fig. S2, 
the goal is to identify both position and type of the objects (two cats, a dog and a duck in 
this image).

The similarity between inter-residue contact maps and images enables us to apply the 
object detection technique to infer inter-SSE contacts. Specifically, ISSEC takes the pre-
dicted inter-residue contact map as input, and outputs a group of objects representing 
contacting SSEs (Fig. 6). For each contacting SSE, ISSEC reports its type ( α−α , β−β par-
allel/anti-parallel contact, further details in Additional file 1), its position (shown as a 
rectangle), and a confidence score.

However, despite the similarities between inter-residue contact maps and images, the 
contacting SSEs differ greatly from the objects in images. To fit in the specific proper-
ties of inter-SSE contacts, we modified the generic object detection framework. Figure 7 
shows the main steps of ISSEC, which are described in more details as follows: 

1	 Extracting high-level features: To overcome the drawback of directly using the pre-
dicted probabilities of inter-residue contact, ISSEC extracts high-level features using 
a feature pyramid network (FPN, [25]). FPN uses both bottom-up and top-down 
pathways linked through lateral connections, enabling it to generate a collections of 
feature maps at multiple levels for subsequent analysis.

2	 Proposing candidate rectangle regions: As we have no knowledge of location or size 
of the rectangle regions formed by contacting SSEs in advance, we propose multi-
ple candidate rectangle regions and expect at least one of these proposed regions to 

Table 4  Quality of  the  predicted structures by  using CONFOLD and  CONFOLD+ISSEC 
for ten proteins

Target CONFOLD CONFOLD+ISSEC TM-score

RMSD TM-score RMSD TM-score Improvement

1i4jA 13.10 0.27 11.04 0.48 0.21

1ctfA 10.62 0.29 3.90 0.49 0.20

1bdoA 5.97 0.35 4.94 0.47 0.11

1o1zA 10.26 0.44 6.43 0.55 0.11

1rw1A 11.31 0.28 9.28 0.39 0.11

1ktgA 10.56 0.29 7.79 0.40 0.11

1pchA 7.51 0.38 6.05 0.49 0.10

1tqhA 4.43 0.64 3.32 0.73 0.09

1fk5A 15.33 0.26 14.64 0.35 0.09

1npsA 13.54 0.20 11.25 0.28 0.08
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Fig. 6  Head-to-head comparison of the structure quality predicted by CONFOLD and CONFOLD+ISSEC. 
Dataset: PSICOV118

Fig. 7  Predicted structure for protein 1o1zA by using CONFOLD (a) and CONFOLD+ISSEC (b). Here the 
predicted structures are shown in red whereas the native structure is shown in blue
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cover the contacting SSEs. ISSEC accomplishes this objective using a region proposal 
network (RPN, [26]), which operates in two steps: (1) Generating seed rectangle region 
on feature maps: ISSEC scans the generated feature maps and generates 9 rectangle 
regions circled at each element on feature maps. (2) Tracing back to the input inter-
residue contact map: From each rectangle region on the feature map, ISSEC traces 
back to a larger rectangle region on the input inter-residue contact map. This tracing 
back operation is accomplished using ROIAlign [27].

	 It is worthy pointing out that the rectangle regions formed by contacting SSEs are 
relatively small; more specifically, each of these regions does not exceed 1/4 of the 
input inter-residue contact map. This observation provides the possibility to cover 
all contacting SSEs using the proposed candidate rectangle regions. ISSEC achieves 
this objective through appropriately choosing various shape and size of the rectangle 
regions on the feature maps (see Additional file 1: Table S1 for details).

3	 Identifying contacting SSEs: For each of the proposed candidate rectangle regions, 
ISSEC calculates a confidence score to measure whether this region contains charac-
teristic patterns of inter-SSEs or not. Based on the characteristic pattern, ISSEC also 
determines the type of inter-SSEs contacts, i.e., α−α , β−β parallel or anti-parallel. In 
addition, since the candidate rectangle region might be larger than the true size of 
contacting SSEs, a calibrating operation is also needed to shrink the rectangle region 
and calculate the true position of the contacting SSEs as well. ISSEC employs the 
Mask-RCNN [27] technique to achieve these objectives.

	 Unlike the task of detecting objects in images, the output of Mask-RCNN cannot 
be directly used to infer contacting SSEs. The reasons are rooted in the difference 
between the objects in images and contacting SSEs: (1) as shown in Additional file 1: 
Fig. S2, two objects in images, say the cat and the dog, overlap significantly. In con-
trast, two rectangle regions formed by contacting SSEs never overlap. (2) Moreover, 
a rectangle region formed by contacting SSEs would not overlap with diagonal line.

	 To identify non-overlapping rectangle regions, ISSEC uses a greedy selection strat-
egy that works as follows: We first filter out the rectangle regions that overlap with 
diagonal and the regions whose confidence score less than a threshold ( T = 0.70 in 
this study). Next, we sort the remainder in the decreasing order of their confidence 
score. Then, we select the top rectangle region of the remainder and remove any rec-
tangle regions that overlap with the selected one. This selecting and removing step is 
repeated until all candidate rectangle regions were processed.

	 For each of the selected non-overlapping rectangle regions, ISSEC reports the cor-
responding inter-SSE contact type, position, and confidence score as final results. 
Finally, a rectangle region that had > 80% overlap with a native contact was correct 
one.

Loss function design

In the training process, ISSEC uses the multi-task loss, including classification loss, 
localization loss and mask loss (further details in Additional file  1).Briefly speaking, 
the classification loss measures the difference between the predicted and true types 
of contacting SSEs. The localization loss measures the difference between the posi-
tion of rectangle region and the true position of SSEs. The localization loss enables 
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ISSEC to acquire accurate position of SSEs, thus avoiding the needs of pre-defined SSE 
boundaries.

Unlike the β−β parallel and anti-parallel contacts, the α−α contacts appear as dashed 
lines, which is unsuitable for the mask mechanism. In this study, we set the weight of 
mask loss smaller than those of the classification and localization losses.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03793​-y.

Additional file 1: Supplementary methods, tables and figures.
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