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Abstract 

Background: Reconstructing ancestral genomes is one of the central problems pre-
sented in genome rearrangement analysis since finding the most likely true ancestor is 
of significant importance in phylogenetic reconstruction. Large scale genome rear-
rangements can provide essential insights into evolutionary processes. However, when 
the genomes are large and distant, classical median solvers have failed to adequately 
address these challenges due to the exponential increase of the search space. Conse-
quently, solving ancestral genome inference problems constitutes a task of paramount 
importance that continues to challenge the current methods used in this area, whose 
difficulty is further increased by the ongoing rapid accumulation of whole-genome 
data.

Results: In response to these challenges, we provide two contributions for ances-
tral genome inference. First, an improved discrete quantum-behaved particle swarm 
optimization algorithm (IDQPSO) by averaging two of the fitness values is proposed to 
address the discrete search space. Second, we incorporate DCJ sorting into the IDQPSO 
(IDQPSO-Median). In comparison with the other methods, when the genomes are large 
and distant, IDQPSO-Median has the lowest median score, the highest adjacency accu-
racy, and the closest distance to the true ancestor. In addition, we have integrated our 
IDQPSO-Median approach with the GRAPPA framework. Our experiments show that 
this new phylogenetic method is very accurate and effective by using IDQPSO-Median.

Conclusions: Our experimental results demonstrate the advantages of IDQPSO-
Median approach over the other methods when the genomes are large and distant. 
When our experimental results are evaluated in a comprehensive manner, it is clear 
that the IDQPSO-Median approach we propose achieves better scalability compared 
to existing algorithms. Moreover, our experimental results by using simulated and real 
datasets confirm that the IDQPSO-Median, when integrated with the GRAPPA frame-
work, outperforms other heuristics in terms of accuracy, while also continuing to infer 
phylogenies that were equivalent or close to the true trees within 5 days of computa-
tion, which is far beyond the difficulty level that can be handled by GRAPPA.
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Background
Introduction

Advancements in the reconstruction of ancestral genomes constitute significant devel-
opments in Bioinformatics. Inferred ancestral genomes can be used to reconstruct deep 
evolutionary histories, which in turn, have been successfully applied to a wide range 
of problems facing contemporary society, including in controlling hereditary diseases, 
providing a better understanding of complex disease mechanisms for which effective 
detection and diagnostic pharmaceuticals drugs have then been developed, and inferring 
epidemic contact structure, among others [1–5]. With the advent of new sequencing 
techniques in conjunction with sophisticated computing technologies, the availability of 
whole genome sequences continues to increase. Critically, genome rearrangements are 
utilized in the analysis of whole genomes, and notwithstanding their rarity, genome rear-
rangements have provided invaluable information that has served to facilitate the solu-
tions to the problems of key importance in biology and that has further deepened our 
fundamental understanding of biology itself.

As the smallest unrooted phylogenetic tree is defined by three leaves, one of the 
most significant problems in genome rearrangement analysis is termed as the Median 
Problem, which is defined as follows: given three input leaf genomes, find the genome 
(median) that minimizes the sum of evolutionary distances between the median and the 
three input genomes. Despite that the Median Problem is NP-hard for most criteria [6, 
7], finding a solution for the median problem is essential since the recovered median 
is not only considered to be a good option for the ancestral genome but can further be 
used in a multitude of purposes in phylogenetic tree reconstructions.

To date, many studies which include the exact and heuristics methods have been 
developed to solve the median problem. Xu et al. proposed a branch-and-bound method 
using adequate subgraphs to decompose the median problem (ASMedian) [8, 9]. Then, 
in the GASTS package, the ASMedian approach was extended to reconstruct phylog-
enies with more than three genomes by minimizing the sum of the pairwise genomic 
distances between tree nodes [10]. Although ASMedian achieves excellent marks in the 
performance metrics of speed and accuracy, its feasible deployment is limited to small-
scale datasets. Thus, Feijao et al. developed an algorithmic approach for ancestral recon-
struction of gene orders using the concept of intermediate genomes, which obtained 
a better reconstruction of the true ancestral genome [11]. Feijão et  al. later presented 
a closed equation for the single cut join (SCJ) distance model that accounts for dupli-
cations [12] and thereafter, introduced an integer linear program to solve the Median 
Problem but in a context where gene duplication events were now considered [13].

In addition to these types of heuristic-based models, metaheuristic algorithms are 
other effective methods for tackling complex optimization problems that has also been 
successfully incorporated into phylogenetics in order to solve various NP-hard prob-
lems. In 2005, Hill [14] developed a phylogenetic reconstruction tool for heuristic 
searching using the character-based genetic algorithm. However, it was not until 2013 
that Gao et al. first proposed an approach to the Median Problem that used a genetic 
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algorithm (GA) as its foundation and was further based on genomic sorting (GAMed-
ian) in order to find the best sequence of evolutionary events to transform one genome 
into the other [15]. Gao et al. [16] next adopted a cooperative co-evolutionary genetic 
algorithm (CCGA) that divides a phylogenetic reconstruction problem into smaller sub-
problems in order to infer ancestral genomes, which results consistently reflect more 
accurate reconstructions. Likewise, in an effort to overcome these limitations, Xia et al. 
[17] proposed a metaheuristic method that implements the simulated annealing median 
algorithm (SAMedian) to solve the Median Problem, albeit slightly less accurate, but 
with greater efficiency by producing these results with lower computational costs.

Existing methods utilized in reconstructing ancestral genomes also confront difficul-
ties as a consequence of the failure of traditional optimization methods to address the 
complexities encountered in the practical applications in which they are deployed. In 
this vein, in the context of large and distant genomes, the problem of inferring ances-
tral genomes by reconstructing their ancestral sequences presents a highly-complex, 
multidimensional problem, whereby the domain constituting the inference search space 
although discrete, is also extremely large and is composed of high dimensional data. As 
a result, the process of inferring ancestral genomes continues to challenge the current 
optimization methods used in this area, which are further compounded by the con-
tinuing rapid accumulation of whole-genome data. Accordingly, achieving ancestral 
genomes with greater accuracy and increased computational feasibility in the context of 
limited memory space is vital to the ability to reconstruct ancestral genomes and more 
generally, for the continued advancement of the phylogenetic reconstruction discipline.

New algorithms of significance continue to be proposed, including algorithms using 
novel metaheuristic methods. Indeed, one of the most important metaheuristic algo-
rithms, the quantum-behaved particle swarm optimization algorithm (QPSO) [18], 
was introduced by Sun et  al. First, in order to overcome the shortcoming that QPSO 
is not applied to discrete space, an improved discrete QPSO algorithm (IDQPSO) that 
is inspired by adopting two averages of the fitness values is proposed. Second, the DCJ 
sorting is incorporated into the IDQPSO to address the median problem (IDQPSO-
Median) since QPSO can have a better search capability in large-scale optimization 
problems. Furthermore, extensive experiments on simulated datasets and real datasets 
were conducted to evaluate the performance of IDQPSO-Median.

Genome rearrangement events

Given a genome with one or more chromosomes, each chromosome can be labeled by a 
gene order to represent the direction and the relative positions of genes, represented as 
integers such as {g1, g2, . . . , gn} , each represents a homologous gene. Moreover, each gene is 
assigned an orientation that is either positive or negative, correspondingly denoted by gi or 
−gi , respectively. The head and tail of a gene, gi , are denoted by ghi  and gti  , respectively. If a 
gene is associated with a positive sign, then this means that the direction in which the gene 
should be read is from head to tail (ghi → gti ) , whereas a negative sign associated with a 
gene indicates it should be read from tail to head (gti → ghi ) . After considering the direction 
of the genes in each segment of a genome, a chromosome can be considered as an ordered 
set of oriented genes and then can also be classified as linear, meaning it is a sequence that 
has two ends, called telomeres (as defined below), or is circular, meaning it is a a sequence 
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for which its head meets its tail. In this paper, we assume that each genome has the same 
number of genes and each gene appears exactly once.

Genome rearrangement events include the inversion (reversal), transposition, fusion, 
fission, and translocation operations. Assuming a genome is a signed gene order, 
denoted by {g1, g2, . . . , gi, . . . , gj , . . . , gn} , then after a reversal operation, the genome 
is transformed to {g1, g2, . . . , gi−1,−gj ,−gj−1, . . . ,−gi, gj+1, . . . , gn} . Further, assum-
ing that j < k and given three gene orders, denoted by gi , gj , and gk , then a transpo-
sition operation can generate a new genome, which resulting genome is denoted by 
{g1, g2, . . . , gi−1, gj+1, . . . , gk−1, gi, . . . , gj , gk , . . . , gn} . Given two genomes, the transloca-
tion operation is defined as occurring when the end of one chromosome is broken and 
then attached to the end of another chromosome, whereby in essence, two chromosomes 
exchange their ends. Meanwhile, the fission operation occurs when one chromosome splits 
into two chromosomes, while the fusion operation concatenates two chromosomes into 
one chromosome.

If gi is followed by gj , or if gj is followed by gi , then gi and gj are defined as adjacent. 
In addition, the adjacency of two consecutive genes can have the following four types: 
{ghi , g

h
j }, {g

h
i , g

t
j }, {g

t
i , g

h
j }, {g

t
i , g

t
j } . Correspondingly, a breakpoint occurs when two genes are 

adjacent in one genome but not in another genome. In the same vein, a telomere is defined 
as an extremity that is not adjacent to any other genes and is represented by a singleton set. 
Accordingly, in the context of this model, a genome is a set of adjacencies and telomeres 
such that the head or tail of any gene appears in exactly one adjacency or telomere.

DCJ distance and DCJ sorting

The DCJ operation as proposed by Yancopoulos [19], not only adopts the universal DCJ 
operation but also goes further by considering all of the rearrangement events described 
above. The following four cases generally describe the sequence of DCJ operations in trans-
forming one genome to the other:

• A pair of adjacencies {g1, g2} and {g3, g4} can be rejoined by the two adjacencies: {g1, g3} 
and {g2, g4} or {g1, g4} and {g2, g3}.

• An adjacency {g1, g2} and a telomere {◦} can be rejoined as follows: by an adjacency 
{g1, ◦} and the telomere of {g2} or in the alternative, by an adjacency {g2, ◦} and the tel-
omere of {g1}.

• A pair of telomeres {◦} and {◦} can be joined by the following adjacency: {◦, ◦}.
• An adjacency {g1, g2} can be cut by a telomere, thereby resulting in {g1} and {g2}.

An adjacency graph (Fig. 1) is reconstructed with the adjacencies and telomeres in order 
to find the sequence of DCJ operations, which constitutes the DCJ distance (as defined 
below). As used in this model, the DCJ distance is defined as the number of DCJ operations 
required to transform one genome into the other. The DCJ distance between G1 and G2 , 
denoted by dDCJ (G1,G2) , is calculated by

where n is the length of the genome, C is the number of cycles, and I is the number of 
odd edge paths. In the adjacency graph, a DCJ operation is optimal when it increases 

(1)dDCJ (G1,G2) = n− (C + I/2)
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the number of cycles by one or the number of odd paths by two, such an optimal path 
reflected by the application of the DCJ operations can increase the sum of C and I/2 by 
one and still make G1 one step closer to G2.

Given two genomes Gi and Gj , many divergent series of sequences of DCJ operations exist 
that can evolve one genome into the other. Differences among DCJ operations can change 
the number of odd paths and circles and typically also influence the structure of the com-
mon gene adjacencies presented. The DCJ sorting is defined as finding the sequence of DCJ 
events that transform on genome into another by using the minimum number of events. 
The evolutionary cost may be minimized if the median genome is situated on the sorting 
path created by the DCJ operations in transforming from one leaf (known) genome into 
the other. Two approaches have now been introduced that have expanded upon the DCJ 
operations framework first proposed by Yancopoulos by allowing for sampling of the sort-
ing sequences comprising the solutions space produced by the DCJ operations: the first 
approach applies the greedy-sampling method by iteratively applying the DCJ operation in 
order to create a new adjacency graph [20], and the second approach uses a general-sam-
pling method that considers and evaluates all of the cycle-splitting operations in identifying 
the structures of the compared genomes that cause the increase in the number of solutions 
with respect to a given lower bound [21].

DCJ median problem

The DCJ Median Problem is to find a median genome that minimizes the sum of DCJ 
Distances from the median genome to the three-leaf genomes. As illustrated in Fig. 2, the 
median genome for a solution of the DCJ Median Problem is considered to constitute a 
good option for an ancestral genome if it minimizes the evolutionary cost. The median 
score used for calculating the DCJ Median is given by

where the DCJ distance between the median genome and each of three given genomes 
is denoted by d, the sum of all the DCJ distances is defined as S3 , the median genome is 
denoted by Gm , and the three given genomes are denoted by G1 , G2 and G3 , respectively.

(2)S3 = d(G1,Gm)+ d(G2,Gm)+ d(G3,Gm)

Fig. 1 Adjacency graph of two genomes. Given G1 = {g1, g2, g3, g4, g5} and G2 = {g3,−g2,−g1,−g4, g5} . 
The number of paths is 2, the number of cycles is 1, and the length of the genome is 5. By Eq (1), the DCJ 
distance between G1 and G2 is n− (C + I/2) = 3
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Methods
Quantum‑behaved particle swarm optimization (QPSO)

Quantum-behaved particle swarm optimization is a stochastic searching algorithm 
that was inspired by the movement of particles in quantum space and was first pro-
posed by Sun et  al. [18]. QPSO is a population-based evolutionary computation algo-
rithm, wherein each particle is considered as a candidate solution. The behavior of all 
particles is described by the quantum mechanics presented in the quantum time-space 
framework. According to the principles of quantum theory, the behavior of (and thus, 
the search process over) all particles is directed by the quantum-mechanical rules rather 
than the classical rules of Newtonian random motion. Because of the inherent uncer-
tainty in any particle’s motion and attendant locations at successive times, the quantum 
state of each particle can appear anywhere in the search space.

Compared with other previously introduced evolutionary algorithms, the perfor-
mance of QPSO achieves better results insofar as the performance indicator of global 
search capabilities are concerned. Because QPSO’s search covers the entire search space 
for each generation, it also increases the diversity of the population and thus, overcomes 
the problem of premature convergence currently existing in continuous optimization 
problems in this space. Furthermore, QPSO has been demonstrated to successfully solve 
a wide range of continuous optimization problems, including problems in multilevel 
thresholding image segmentation [22], network clustering [23], and optimal design [24], 
as well as in the strongly NP-hard combinatorial optimization problem of the multidi-
mensional knapsack problem [25].

Based on the quantum physics theory, the quantum state of a particle represents its 
momentum and energy. Accordingly, the dynamic behavior of each particle is described 
by the wave function ψ . The normalized wave function is given by

where y is set as y = X − Pid . X represents the current position, and Pid represents the 
local attractor, respectively. L represents the characteristic length of the Delta potential 
well and hence, is the most important variable, because it determines the scope of the 

(3)ψ(y) =
1
√
L
e−|y|/L

Fig. 2 The median problem. Find a median genome Gm that minimizes the sum of DCJ distance denoted by ∑3
i=1 d(Gi ,Gm) if given three genomes G1 , G2 , and G3
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search being conducted. It is computed by L = �
2

mγ
 , where m is the population size, � is 

the Laplace operator, and γ is Plank’s constant. Further, the probability density function 
denoted by ψ2 indicates the particles at one position relative to another and can be for-
mulated by the following:

In order to procure the positions of each particle in the inference search space, the quan-
tum state must first collapse to the classical state. The measurement of the process can 
be simulated by employing the Monte Carlo method using the probability density as its 
base. The mean best position is defined as the mean position of the personal best posi-
tions of all the particles in the population and is denoted by mbest. The mbest is then 
incorporated throughout the entire search process since it serves to balance the position 
diversity of all the particles and thus enhances the global search ability of QPSO. Then 
the value of L is computed by 2β

∣
∣mbest − X

∣
∣ by adopting the measuring method, where 

β is a positive real number. Subsequent to QPSO’s performance of this measuring proce-
dure, each particle’s position is accurately measured by

where u is a random number uniformly distributed on the [0, 1] range.
It is important to emphasize that the evolution of all the particles is determined by 

considering each particle’s current position, i.e., the local best position and the global 
best position. For a discreate optimization problem with d parameters, we can rep-
resent a possible solution as a d−dimensional vector X = (X1,X2, . . . ,Xd) . Thus, 
given the QPSO with d−dimensional space, the current position of the ith parti-
cle is denoted by Xi = (Xi1,Xi2, . . . ,Xid) . The local best position of particle i is the best 
previous position (i.e., the position with the best fitness value), which is denoted by 
Pbesti = (Pbesti1,Pbesti2, . . . ,Pbestid) , and is called the personal best position (Pbest). The 
global best position is defined as the best position among all the particles in the population, 
called gbest and is denoted by gbesti =

(
gbesti1, gbesti2, . . . , gbestid

)
 . The value of gbest can 

be derived from the following equation: gbest = min(pbesti).
During the evolution process, the position of each particle is iteratively updated genera-

tion by generation. The fundamental steps of QPSO for updating the current position of 
the evolution process of all particles are conducted as follows: first, the diversity of parti-
cles representing the mean best position is calculated; second, the local attractor of each 
particle as represented by the range of the search space is given; and finally, an update of 
the current position of each particle representing the candidate solution is completed. As 
described, mbest is defined as the mean personal best positions of the whole population 
and is given by

where M is the population size, and d is the dimension, respectively. The Pid is defined as

(4)
∣
∣ψ(y)

∣
∣2 =

1

L
e−2|y|/L

(5)X = Pid ±
L

2
ln

(
1

u

)

(6)mbest =
1

M

M∑

i=1

Pbesti =

(
1

M

M∑

i=1

Pbesti1,
1

M

M∑

i=1

Pbesti2, · · · ,
1

M

M∑

i=1

Pbestid

)
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where Pid is the local attractor, and µ is a random number uniformly distributed in [0, 1], 
respectively. As indicated above, the main moving direction of the particles is Pid , which 
means that the space near Pid is identified as a valuable searching area in QPSO. Finally, 
the position of each particle is given by

where Xid is the particle position, and u is a random number uniformly distributed on 
[0,  1], respectivley. Furthermore, β is a contraction-expansion coefficient from 0.5 to 
1.0, which can be tuned to control the convergence speed of the algorithm. As Sun sug-
gested, a linear decrease in the value of β , namely, from 1.0 to 0.5, can result in a better 
convergence speed, which result is produced by the computation resulting from the fol-
lowing formula:

where t is the current generation, and Maxiter is the maximum generation, respectively. 
In addition, only one parameter, which is denoted by β , controls the position of particles; 
therefore, the parameters of QPSO are easy to control.

An improved discrete QPSO algorithm

The QPSO is a metaheuristic algorithm that solves a problem by generating a pop-
ulation of candidate solutions (particles), which can further be optimized using 
iterative search. The QPSO algorithm with comparatively improved global search 
performance capabilities could overcome the problem of premature convergence 
that currently exists in the continuous optimization problems space. However, a 
problem that confounds the breadth of the performance potential of QPSO, is that 
it cannot be directly applied to discrete optimization problems. To overcome this 
shortcoming, Sun et  al. proposed a binary QPSO algorithm (BQPSO) [26], which 
is characterized by a space transformation technique that is predicated on a binary 
coding scheme—that maps the consecutive searching space into a discrete searching 
space.

Although a wide range of applications have the characteristic of a discrete search 
space, the current literature we surveyed reflects less studies and analysis have been 
conducted on discrete optimization problems. Hence, this gap propelled us to dis-
cover a novel strategy to deal with such optimization problems. To overcome the 
problem that the data structure is not composed of sequences during the evolution 
process, an improved discrete QPSO algorithm (IDQPSO) is proposed in this paper. 
The proposed algorithm combines a novel strategy for updating the particles’ posi-
tions, thereby addressing the issue of the absence of a discrete sequence, which to-
date, has hampered the effective deployment of QPSO.

(7)Pid = µ · Pbesti + (1− µ) · gbest

(8)Xid = Pid ± β
∣
∣mbest − Xid

∣
∣ ln

(
1
u

)

(9)β =
(1.0− 0.5)× (Maxiter − t)

Maxiter
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Update by adopting two averages of the fitness value

As described in QPSO, the mean best position, denoted by mbest, is defined as the 
center of the personal best positions among the whole population. In IDQPSO, mbest 
is obtained by averaging two of the computed fitness values and is inspired by the 
center of gravity in geometry. Here, the particle selected by applying two average 
operations of the fitness values, can be utilized to reflect the distribution of the whole 
population as well, since the first step of the IDQPSO algorithm comprehensively 
considers all of the particles, and thus, the second step can then improve upon the 
evolution process of the entire population. A concrete example of the procedure of 
updating mbest as redesigned in the IDQPSO algorithm, is illustrated in the Fig.  3. 
Figure 3a represents the distance to the first average fitness value among all the par-
ticles, and X2 is selected as cbest. Figure  3b represents the distance to the second 
average fitness value among the top 50% particles, and X1 is selected as mbest. The 
procedure is detailed in the following portion of this paper.

To estimate the distance between two particles’ positions by their fitness values, 
we define that dis(Xi,Xj) =

∣
∣f (Xi)− f (Xj)

∣
∣ , where dis(Xi,Xj) represents the distance 

between particle Xi and Xj , and the fitness value is denoted by f. First, to attain the 
initial selection of the candidate mean best position, a strategy of averaging the fitness 
values that represent the objective function value of the given personal best positions 
is proposed. Next, a particle with the closest distance to the average fitness value is 
selected as the candidate mean best position denoted by cbest. The cbest, as utilized 
by IDQPSO, is given by the following:

where f(cbest) is the first candidate mean fitness value, and f (Pbesti) is the fitness value 
of the local best position, respectively.

Upon IDQPSO capturing the first average, the cbest representing the mean best 
position is obtained. However, we note that the final mean best position, denoted by 
mbest, can be further optimized by making another selection according to the aver-
aging of fitness values. Although this objective function for producing an optimized 
selection process is similar to the first averaging strategy, it goes further and also 
computes the averages between the first selection of the candidate mean best position 
and the particles with better fitness values than f(cbest) (top 50% particles). Thereafter, 

(10)f (cbest) =

(
1

M

M∑

i=1

f (Pbesti1),
1

M

M∑

i=1

f (Pbesti2), . . . ,
1

M

M∑

i=1

f (Pbestid)

)

Fig. 3 The procedure of updating mbest by adopting two averages of the fitness value. The left figure a 
represents the distance to the first average fitness value among all the particles, and X2 is selected as cbest 
because it is the closest distance to the first average fitness value. The right figure b represents the distance 
to the second average fitness value among the top 50% particles, and X1 is selected as mbest because it is the 
closest distance to the second average fitness value
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the particle with the closest distance to the second average fitness value is selected as 
the mbest.

To update mbest by averaging two selections of the average fitness values is reason-
able from the perspective of causality, because this method also accounts for the search 
uncertainty and search probability within quantum mechanics. Furthermore, the updat-
ing strategy by applying two selections can serve to effectively balance the diversity of 
the evolution process in finding the best path and in avoiding premature convergence 
and fitness stagnation.

Evolving through generations

For discrete optimization problems, the evolution process is actually a comparison 
between positions. In general, since each element of the vector is independent, the swap 
operation is an effective strategy to employ in managing a discrete search space. For 
example, assume two positions X1 = (1, 2, 3, 4, 5) and X2 = (5, 4, 3, 2, 1) , we can generate 
two new positions X ′

1 and X ′
2 by swapping the first element of these two vectors, result-

ing in X ′
1 = (5, 2, 3, 4, 5) and X ′

2 = (1, 4, 3, 2, 1) . Let the fitness function be fi =
∑d

j=1 Xij . 
By checking all possible swaps, the new position (generated from the two parents X1 and 
X2 ) that gives the best fitness is Xbest = (5, 4, 3, 4, 5) , by picking the larger value at each 
of the five element from the two parents.

It is obvious the above swap operation will not be valid in the median problem as the 
resulted new positions (genomes) may be invalid, thus we need a new strategy to con-
duct the evolution through generations. In this paper, we go further and take advan-
tage of the whole-genome background in designing an efficient swap operation which is 
based on genomic sorting for use by the IDQPSO algorithm. Given two genomes (posi-
tions) X1 and X2 , we generate a new genome X ′

1 by sorting several DCJ events from X1 
to X2 , and X ′

2 by sorting some step from X2 to X1 . Since there may be multiple choices to 
make such DCJ sorting, we need to check every possibility and find the new genome that 
has the lowest fitness function, i.e., the median score. When the two genomes are large 
and distant, the computational cost, arising from the performance of the enumerating 
all sorting steps and computing median scores, rapidly increases due to the exhaustive 
searching strategy it employs. To overcome this problem, the IDQPSO algorithm incor-
porates an efficient search strategy which is detailed below.

An IDQPSO‑Median for ancestral genome inference

For complex problems and problems presenting high dimensional data, the global best 
position cannot be easily found. When the genomes are large and distant, the DCJ 
Median Problem is compounded by the additional obstacle presented by a challenge that 
has an ever increasing search space: assuming the length of genome is n, there are 2nn! 
possible signed permutations [15]. As a consequence of the foregoing, the challenge of 
continuing the evolution process while avoiding premature convergence and escaping 
local optima is a critical and important procedure. It is necessary to maintain a popula-
tion that allows each particle to evolve separately, while each generation keeps the whole 
population as a means to find the best fit.

Since the search space is so large that IDQPSO cannot converge to an optimum in a 
limited time without incorporating the sorting strategy proposed below. Consequently, 
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in those circumstances, we propose that DCJ sorting be employed based on the estab-
lished observation that the median genome is likely to be found on the path found 
during the evolution process in transforming one genome to another. Based on our com-
bined previous experience, DCJ sorting is an effective evolution strategy for ancestral 
genome inference by reducing the search space. The detailed evolution process applied 
by the IDQPSO algorithm in finding the IDQPSO-Median is described as follows.

Algorithm overview

The IDQPSO-median maintains and updates three set of genomes, namely the cur-
rent best median genomes Xd = (X1d , · · · ,Xid · · · ,XMd) , the intermediate best 
median genomes Pd = (P1d , · · · ,Pid · · · ,PMd) and the personal best median genomes 
Pbest = (Pbest1, · · · ,Pbesti · · · ,PbestM) , each contains M genomes (M is the population 
size). We also maintain three best medians, i.e., mbest represents the mean best median 
from Pbest , Pbest is the personal best median found so far from previous generations, and 
gbest is the generation best of Pbest.

We first initialize the M genomes in Xd by using the method describe below and start 
the following steps (Fig. 4): 

1 Update Pbest : at the initialiation stage we simply assign Pbesti = Xi ; for all later gen-
erations, we assign Pbesti to be the one with lower median score from previous Pbesti 
and Xi;

Fig. 4 The illustration of algorithm overview. Assuming each generation contains a set of M genomes 
represented as X1d ...XMd , as well as mbest and Pid . The population of the next generation is created by sorting 
each Xid toward the best genome
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2 Find the mean best mbest by averaging all median scores from Pbest and further aver-
age among top 50% particles, mbest is the genome with its closest to the mean of the 
top 50% scores;

3 Find the generation best gbest as the best (with the lowest median score) from Pbest;
4 Update Pid by sorting each genome in Pbest toward gbest if the later has better score;
5 Generate a new set X ′

id by sorting each genome in Xid toward mbest if the later is 
better;

6 Create the next generation of candidate genomes Xid by sorting each X ′
id toward its 

corresponding Pid if the later is better;
7 Repeat the first step as the new generation until stop.

Initialization

Previous experience in this area foretells that the initialized candidate solution has 
a deep influence on both the computation cost and convergence speed. However, the 
search space within which the IDQPSO-Median must be located is too large, and thus 
any randomly selected genome is likely to generate candidates that deviate too much 
from the optimum. For this reason, if the IDQPSO algorithm used random selection 
to generate the initial candidates, the search process for finding the IDQPSO-Median 
could not converge to the optimum.

In order to expedite the evolution process of the particles without decreasing the 
performance of the IDQPSO algorithm, an initialization strategy of adopting DCJ sort-
ing to reduce the search space has been integrated into the IDQPSO algorithm. First, 
DCJ sorting is applied to generate different candidate median genome sets along the 
evolutionary path from genome Gi to genome Gj which candidate median genomes are 
selected from the three given genomes {G1,G2,G3} . In order to maintain the stochas-
tic characteristic of the IDQPSO algorithm, six candidate median genome are selected 
with 1

10
dDCJ (Gi,Gj) , 2

10
dDCJ (Gi,Gj) , 3

10
dDCJ (Gi,Gj) , 4

10
dDCJ (Gi,Gj) , 5

10
dDCJ (Gi,Gj) , and 

6
10
dDCJ (Gi,Gj) corresponding steps away from Gi to Gj.
Assuming the population size is M, there are six combinations for each set of two 

of the given genomes because of the direction of each genome in these two genome 
sets. After applying DCJ sorting, the total number of candidate median genomes is 
M × 6× 6 . Consequently, there are 36M candidate median genomes in the initial pool. 
After applying DCJ sorting, one is then randomly selected as the initial median genome 
from the first pool of candidate median genomes.

Fitness function

As a performance criterion to measure efficiency, the fitness value of a particle influ-
ences whether it is saved or not for the next generation. The fitness function is designed 
with the purpose of directing the evolutionary process for the entire population to con-
tinually improve the process of evolution until its cessation. For the DCJ Median Prob-
lem, setting the function of the median score as the fitness function is an efficient way to 
achieve the purpose encapsulated by the design of the fitness function. Since the median 
score represents how many DCJ operations have been conducted on the given genomes, 
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setting it as the fitness function can result in the whole population evolving towards a 
better fit. The fitness function is given as follows:

where FG represents the total DCJ distance of the three given genomes G1 , G2 , and 
G3 , and where Gm represents the median genome obtained as a result of the shortest 
sequence of DCJ operations on the three given genomes.

The fitness function indicates that the particle with a lower median score can have a 
better fitness value. Therefore, when compared to those with lower fitness values, those 
particles with better fitness values indicate an increased chance of surviving the evolu-
tion process.

Update the mean best median genome (mbest) by adopting two average of the median score

For ancestral genome inference, the initial position of each particle represents the ini-
tialized median genome. After the current median genome of all particles are set, the 
local best median genome, also called the personal best median genome (Pbest), can 
be obtained through an iterative comparison of the values of the previous best median 
genome to the current personal best median genome. For the complete set of particles in 
the inference solution search space, the median score between the given three genomes 
and the initialized median genome is calculated based on the fitness function. Then 
according to Eq (10), the first average median score denoted by f(cbest) is acquired. Next, 
by comparing the distance using dis(Xi,Xj) =

∣
∣f (Xi)− f (Xj)

∣
∣ , the particle with the clos-

est distance to the f(cbest) is selected as the first candidate median genome denoted by 
cbest.

Since the two averages of the median scores utilized to update the mean best median 
genome can reflect the distribution of a population, a further average between the first 
candidate median genome, cbest, and the particles with better median scores than cbest 
is captured and constitutes the average of the median scores. Similar to the initial aver-
age of the median scores, the particle that has the closest distance to the second average 
median score is extracted and is denoted by mbest. Finally, the mbest is selected as the 
mean best median genome for the ancestral genome inference.

Update the intermediate best median genomes ( Pd ) by adopting DCJ sorting

As the outset, it is important to emphasize that a reference to the intermediate best 
median genome is equivalent to the local attractor. The global best median genome 
can be found by comparing the intermediate best median genome with other particles 
according to the following formula: gbest = min(pbesti) . Consequently, the median 
genome with the lowest median score is set as gbest. Furthermore, the parameter µ is set 
to 0.5, which means the local best median genome and the global best median genome 
each assign the same weight to the intermediate best median genome.

In finding the IDQPSO-Median, DCJ sorting is applied to better guide and direct 
the inference process for inferring the optimal median genome. As the DCJ sorting 
path depends on the start and target genome, a target median genome that has a bet-
ter median score than the start genome must be selected at the outset. Afterward, for 
the two selected genomes, in light of the accepted norm that the median score of the 

(11)FG = d(G1,Gm)+ d(G2,Gm)+ d(G3,Gm)
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global best median genome will not be worse than the score of the local best median 
genome, the global best median genome is set as the target genome. By applying the DCJ 
sorting strategy, we sampled six candidate median genomes that fell on the DCJ sorting 
path with the following: 1

10
dDCJ (Pbest, pbest) , 210dDCJ (Pbest, gbest) , 

3
10
dDCJ (Pbest, gbest) , 

4
10
dDCJ (Pbest, gbest) , 510dDCJ (Pbest, gbest) , 

6
10
dDCJ (Pbest, gbest) steps away from Pbest to 

gbest. Then, we randomly selected one genome from these six candidates to constitute 
the intermediate best median genome. The results obtained indicate that the interme-
diate best median genome contains evolving material derived from its propagation of 
the local best median genome and global best median genome into the next generation, 
which results served to precipitate our articulation of the need for the overall search 
process to then proceed by conducting a further search based on the values found for 
the intermediate best median genome.

Update the current best median genomes ( Xd ) by adopting DCJ sorting

In order to deal with discrete gene orders, the parameter β × ln

(
1
u

)
 is set to 1. In 

IDQPSO-Median, the process for updating the current best median genome is com-
prised of two stages: 

1 Generate X ′
id : at each generation, there are M current best median genomes repre-

sented as X1d ,X2d , · · · ,Xid , · · · ,XMd and the mean best median as mbest. We will 
first compute the median score of X1d , · · · ,XMd and mbest, respectively. For each 
Xid , if mbest has better score, we then apply random steps of DCJ sorting from Xid to 
mbest to get X ′

id.
2 Obtain the next generation of Xid : the median score of all X ′

id and Pid are computed. 
Assuming that Pid has a better median score than X ′

id , we then update the current 
best median genome Xid by applying the random steps of DCJ sorting from X ′

id to 
Pid.

The process implemented in the IDQPSO algorithm for updating the current best 
median genome using a heuristic search strategy combined with the DCJ sorting strat-
egy in order to avoid the problem of becoming trapped in a local optimum. Hence, we 
sampled a random number of steps away from the current best median genome towards 
the three given genomes, and then further randomly select one as the current median 
genome for the next generation.

As a result, each particle is required to update and further converge to an optimum 
that has the best median score. Once every particle has separately finished its respec-
tive evolution through generation, the evolution process of the whole population is com-
pleted. At this juncture, the global best median genome is finally considered to represent 
the most accurate and best option for the ancestral genome.

Pseudocode of the proposed IDQPSO‑Median

In IDQPSO-Median, the maximum generations is set as MaxIter. The global median 
genome becomes closer and closer to the true ancestor through each stage of the evo-
lution process. The process of updating terminates when the number of generations is 
satisfied. Otherwise, the updating process is repeated until the specified termination 
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condition is reached. The details of the proposed IDQPSO-Median are shown in 
Algorithm1. 

Results
Experimental environments and parameters setting

In order to evaluate the performance of IDQPSO-Median for phylogenetic reconstruc-
tion, we conducted extensive experiments in a variety of datasets using a spectrum of 
parameter settings therein. To obtain an unbiased CPU run time comparison, all of the 
experiments were run on a Dell PowerEdge R930 with Intel (R) Xeon (R) CPU E7-4820 
v4*2 @ 2.10 GHz ∗ 20, 256 GB of Memory and 2048 GB of Disk space.

The primary parameter used as a performance benchmark was the number of genome 
rearrangement events per each edge represented on the generated adjacency graphs. 
Each genome has a different evolutionary rate, which evolutionary rates are given by 
d = r/n , where r represents the average number of rearrangement events along an edge 
and where n is the number of genes. Each dataset was comprised by three leaf nodes 
containing 1000 genes; the average number of reversal events per edge ranged from 100 
to 1000. Consequently, the values that d took on ranged from 0.1 to 1. Twenty datasets 
were generated for each average number of reversal events.

SAMedian, GAMedian, and ASMedian were selected to test the effectiveness of the 
performance of the IDQPSO algorithm. The number of fitness function values (median 
scores) evaluated is considered representative of a fair time measurement in light of the 
deep insight into the convergence of the algorithms that the population size, the inner 
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loops, and the number of generations provide. Therefore, every instance was executed 
with a set maximum number of function evaluations. The maximum number of suffi-
cient generations of each median solver can provide that result in convergence was an 
important parameter at issue and was examined in the experiments we conducted. The 
parameters of all the median solvers were set to fall within the following bounds:

• IDQPSO-Median: the maximum generation and population size were set to be 2150 
and 20, respectively, while every other parameter in IDQPSO-Median was set to one.

• SAMedian: the maximum generation was set to 10, 000, and the initial temperature 
and cooling rates were set to 10 and 0.9, respectively.

• GAMedian: the maximum generation was set to 100, and 50 genomes were gener-
ated for each step of sampling process.

• ASMedian: the parameters were set to the default values provided in the software 
package.

Given three genomes G1 , G2 and G3 , the circular ordering lower bound is defined as 
medianLB = (d12 + d13 + d23)/2 . To reduce the number of iterations of some easier 
cases, the search will stop if the best median score is equal to medianLB, or the number 
of iterations has exceeded either 2150 or medianLB× 1.5.

Performance of IDQPSO‑Median

In our experiment, four different criteria (median score, distance to true ancestor, adja-
cency accuracy, and running time) were used to demonstrate the effectiveness of the 
IDQPSO-Median obtained by the approach implemented by the IDQPSO algorithm. 
The median score is defined as the sum of DCJ distances between each leaf genome 
and the inferred median. The distance to true ancestor is defined as the DCJ distance 
between the inferred median and the true ancestor genome. Given two sets of adjacen-
cies, the median score value represents all of the adjacencies contained in the inferred 
median genomes, while the distance to true ancestor value represents the adjacencies 
from the true ancestor. In contrast, the adjacency accuracy is defined as the ratio of the 
intersection (denoted by ∩ ) of these two sets to the union (denoted by ∪ ) of these same 
two sets. The higher the value obtained for the adjacency accuracy, leads to the corre-
sponding conclusion that the better the results the median solver returns will be. This 
relationship is given by the following:

where Acc(Gm,Gt) represents the accuracy of adjacency, Gm represents adjacencies in 
the inferred median genome, and Gt represents the adjacencies in the true ancestor, 
respectively. The notation of Gm ∩ Gt represents the intersection of these two sets, Gm 
and Gt , whereas, the notation of Gm ∪ Gt represents the union of these same two sets.

To highlight the performance of IDQPSO-Median, three groups of experiments were 
performed: wherein the population size was set as 20, 40, and 60, respectively. The 
results for the different population sizes examined in our experiments are set forth in 
Table 1.

(12)Acc(Gm,Gt) =
Gm ∩ Gt

Gm ∪ Gt
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From the view of the population size, it can be seen that the values obtained by 
the IDQPSO algorithm for values of the median score, true distance, and adjacency 
accuracy became increasingly improved as the population size increased from 20 to 
60. Although the improvements are relatively small, it does demonstrate that popu-
lation size has some effect on the performance of our median solver. Furthermore, 
these results show that the performance of the IDQPSO algorithm in obtaining the 
IDQPSO-Median requires additional time to converge in the context of larger popu-
lations comprising the search space, and thus, incurs the attendant additional time 
cost as the population increases in size. For this reason, the larger the population 
size, the more expensive the time cost the IDQPSO algorithm will incur in finding 
the IDQPSO-Median. Moreover, our experimental results depict that the running 
time did not increase dramatically as the number of the rearrangement events grew. 
Taking the analysis above into account, the population size was finally set as 60 for 

Table 1 Performance of IDQPSO-Median with respect to size of population

# Events Population 
size

Median score Distance to true Adj. accuracy Mean time (s)

r = 100 20 299.45 0.20 1 2

40 299.45 0.20 1 2

60 299.45 0.15 1 5

r = 200 20 599.95 1.50 0.998 11

40 599.95 1.05 0.999 15

60 598.85 0.95 0.999 25

r = 300 20 922.20 63.50 0.905 73

40 921.15 62.05 0.909 81

60 920.50 61.75 0.910 84

r = 400 20 1244.35 251.85 0.684 89

40 1242.25 250.80 0.686 91

60 1240.45 249.50 0.687 124

r = 500 20 1462.70 430.05 0.507 89

40 1459.85 428.45 0.508 100

60 1458.65 425.05 0.511 121

r = 600 20 1610.50 574.60 0.367 62

40 1608.25 572.85 0.370 87

60 1608.80 572.75 0.370 140

r = 700 20 1697.95 670.50 0.288 84

40 1693.60 669.15 0.289 99

60 1693.55 668.65 0.290 142

r = 800 20 1763.70 748.85 0.214 95

40 1759.85 748.15 0.216 125

60 1759.35 747.85 0.218 155

r = 900 20 1800.45 802.10 0.172 48

40 1797.80 802.05 0.172 100

60 1798.00 800.80 0.173 131

r = 1000 20 1827.55 848.05 0.134 62

40 1823.35 846.25 0.134 106

60 1820.45 845.70 0.136 130
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comparative purposes since the IDQPSO algorithm can achieve a relatively compet-
itive performance with less computation cost when compared to the other median 
solvers.

Comparison with SAMedian, GAMedian and ASMedian

Median score

Lower median scores are desired and sought to be returned, and thus, the lower the 
values for the median score obtained by one of the tested models, the better the per-
formance it demonstrated in our experiments. The comparison of IDQPSO-Median, 
SAMedian, GAMedian, and ASMedian are provided in Table 2, and a detailed descrip-
tion of our experimental results is also described below. As shown in Table  2, when 
the number of rearrangement events ranges from 600 to 1000, the IDQPSO-Median 
achieves the best median scores as measured against the results obtained by all of the 
parsimony-based methods, whereas ASMedian obtains better median scores when the 
number of rearrangement events is smaller than 600. However, despite that ASMe-
dian performs relatively worse if compared with the IDQPSO-Median approach when 
the number of rearrangement events is more than 600, ASMedian can still obtain bet-
ter optimums in the context of different rearrangement events when compared to the 
results obtained by GAMedian and SAMedian. Furthermore, the differences in the 
median scores themselves obtained by the models we tested are relatively apparent, and 
GAMedian has the worst performance. An analysis of these results between IDQPSO-
Median and ASMedian reveals that IDQPSO-Median has a better capability for solving 
complex high-dimensional problems versus ASMedian when the genomes are large and 
distant.

Distance from median genome to actual ancestor

One indicator of the quality of the inferred median genome is the distance between the 
inferred median genome and the true ancestor. The observed distances to true ances-
tors attained by the four median solvers in the context of differing rearrangement events 
are displayed in Table 3. Our results show that our IDQPSO-Median achieves the best 
performance and also obtains the lowest distance to the true ancestor when the num-
ber of rearrangement events are ≥ 500 , as well as when the number of events is 100. As 
shown in Table 3, ASMedian can obtain the lowest distance provided that the number 
of rearrangement events is smaller than 500, while our IDQPSO-Median is the second 
best-performing algorithm producing only relatively worse results than the best method. 
It is described in Table 3, these experimental results show that the other median solvers 
outperform other metaheuristic methods such as GAMedian and SAMedian under dif-
ferent rearrangement events. By analyzing these results, it is evident that our IDQPSO-
Median performs relatively better when the genomes are distant and achieves similar 
performance in the context of other genome arrangement events.

Adjacency accuracy

Adjacency accuracy is defined as the proportion between the inferred median genome 
and the true ancestor of the intersection of their adjacencies to the union of their adja-
cencies. The accuracy of the adjacency values obtained by the selected median solvers 
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are depicted in Table  4. From these results, it is clear that when the number of rear-
rangement events is ≥ 400 , the IDQPSO-Median approach obtains the best values for 
adjacency accuracy, while when the number of rearrangement events is less than 400, 
the adjacency accuracy values found by the approach of ASMedian is the highest and 
thereby returns the most accurate values. By analyzing these results, we reach the con-
clusion that the IDQPSO-Median approach returns the highest values of adjacency accu-
racy when the number of rearrangement events becomes larger, and we can also derive 
from our results that the accuracy of adjacency of IDQPSO-Median becomes lower 
and thereafter, continues to decrease as the number of rearrangement events increase. 
In summary, the IDQPSO-Median approach indicates its competitive performance in 
obtaining good values for the accuracy of adjacency when compared with the other 
median solvers analyzed in this experiment—SAMedian, GAMedian, and ASMedian.

Running time

Computational cost is an important performance criterion. The running time of 
IDQPSO-Median is largely determined by the time spent on generations during evo-
lution and only an effective CPU time is considered in our experiments. As shown in 
Table 5, the running time of GAMedian is relatively more expensive than all the other 
median solvers we analyzed when the number of rearrangement events was less than 
600. Besides, the running time of ASMedian increases dramatically when the number of 
rearrangement events is more than 600. Based on these experimental results, the total 
running time of ASMedian is approximately 40 h when the number of rearrangement 
events is 1000. In addition, the time cost of GAMedian is considerably expensive. In spe-
cific terms, the running time of GAMedian for each generation is 330 seconds, namely, 
the total running time is approximately 92 h. As a result, the total running time of 20 
genomes is about 75 days when the maximum generation is set with a limit of 1000.

In this experiment, IDQPSO-Median is the fastest except for the simplest datasets, 
where ASMedian needs about a second to finish. Compared to other two heuristics, 
IDQPSO-Median is not only much faster, it also has a better performance than SAMed-
ian on the median score, true distance, and adjacency accuracy when the genomes are 
large and distant.

Phylogeny reconstruction and ancestor inference

We integrated the new median solver with the GRAPPA framework which utilizes 
an iterative approach to score a tree. To find the best tree with its associated internal 
(ancestral) genomes, enumerates and scores all possible tree topologies using an itera-
tive approach. For a tree T for which both the leaf genomes and internal genomes are 
known, we can easily compute the weight of each edge and the tree score w is defined as 
summing all the edge lengths. However, since the internal genomes are unknown at first, 
the task of scoring a tree is to find the best assignment of gene orders on the internal 
nodes that gives the lowest tree score.

The GRAPPA scoring procedure has two stages: initialization and iteratively update. 
For two nodes in a tree, we define the path length as the number of edges in the short-
est path from one to another. For each internal genome, we define a median problem 
using three leaf (known) genomes that have the shortest path length to it. GRAPPA can 
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then solve this median problem and use the resulting median as the initial gene order for 
this internal node. GRAPPA then iteratively solves the median problem on each inter-
nal node using a depth-first approach and updates if a better genome is found until no 
change occurs. The tree score is finally computed by summing all edge lengths based on 
the final genomes assigned on the internal nodes.

It is obvious that such iterative procedure is expensive as it needs to solve numerous 
median problems. To overcome this problem, GRAPPA uses the circular ordering lower 
bound to eliminate most trees that are not worthy of being scored. The lower bound 
is based on the following observation. Given n genomes, let di,j be the pairwise dis-
tance between genomes i and j. Given a tree T and its score w(T), if 1, 2, · · · , n is a cir-
cular ordering of the leaves of T, then we have 2w(T ) ≥ d1,2 + d2,3 + · · · + dn,1 based 
on the triangular inequality. In other words, if the best tree so far has score wbest and 
d1,2 + d2,3 + · · · + dn,1 > 2wbest , the score of T must be larger than wbest , thus it can be 
safely discarded. To utilize this lower bound, the GRAPPA framework first computes the 
neighbor joining tree and uses its score as the best-so-far. It then enumerates all possible 
trees and updates the best-so-far when a better tree is found, pruning trees that have the 
lower bound larger than the best-so-far. The speed of GRAPPA relies on fast and accu-
rate median solvers: it not only needs to quickly compute many instances of the median 
problem, but also needs to find as lower possible tree scores to tighten the lower bound 
with smaller best-so-far scores. To balance the speed and accuracy, in our experiments, 
we set the population size to be 20, and the maximum number of generations to be 500.

We conducted experiments using both simulated and real datasets. To generate simu-
lated datasets, we randomly create tree topologies with 12 leaves and each genome has 
1000 genes. We set the expected number of events along each edge to be r = 20–180. 
For each edge with the expected length r, the actual edge length is uniformly sampled 
between 0.1r and 1.9r. We use two combinations of types of events: one with only inver-
sion, and one with 90% inversion and 10% transposition. We then assign the identity 
genome to the root, and populate each node with respect to the number of events along 
the path.

We compare our new method with both GRAPPA 2.0 (using an exact median solver) 
and SA-GRAPPA using SAMedian as the solver. In our experiments, GRAPPA 2.0 can-
not finish scoring even the neighbor joining tree for r ≥ 100 (for datasets with trans-
positions, GRAPPA failed at r ≥ 80 ), thus its result on those datasets are not recorded. 
For r ≥ 140 , as the distances between genome pairs are large, the edit distance becomes 
seriously under estimate the true distance, making lower bound loose and many trees 
have to be scored. For these datasets, we use a different approach by sorting trees with 
respect to their lower bound and compute those with smaller lower bound first, with the 
assumption that better trees have smaller lower bound. We report results based on the 
best tree found after 5 days of computation.

An edge in the inferred tree is false positive (FP) if it is missing in the true 
tree. Similarly, an edge in the true tree is false negative (FN) if it is missing in 
the inferred tree. For n leaves, the Robinson–Foulds (RF) error rate is defined as 
RF = (FP + FN )/2(n− 2)× 100% . Table  6 shows the RF error rate. For r ≤ 80 , all 
methods (including neighbor joining) are very accurate and return trees without error. 
However, for more difficult trees, the neighbor joining method becomes less accurate 
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with 20–30% errors. IDQPSO is still the most accurate with error rate < 5% for datasets 
without transposition and < 10% for datasets with transposition. SAMedian is less accu-
rate and GRAPPA cannot finish any tree.

Table  7 shows the scores of the reconstructed phylogenetic trees. For easier data-
sets ( r ≤ 80 ), both IDQPSO and GRAPPA return the same best tree scores, although 
IDQPSO is a bit slower (Table 8). For more difficult datasets, IDQPSO is much faster 
than the SAMedian (Table 8) and dominates the performance of tree scores by finding 
trees with fewer number of events.

Table 9 shows the accuracy of the inferred ancestors of the tree by using the DCJ dis-
tance between the genome at the root of the tree with the identity genome which is used 
to generate the simuated datasets. All three methods inferred the ancestor that is identi-
cal to the true ancestor for easier datasets ( r ≤ 60 ) while IDQPSO remains very accurate 

Table 6 Average Robinson–Foulds (RF) errors for  IDQPSO, Simulated Annealing 
and GRAPPA

– indicates a program cannot finish after 5 days of computation. For the IDQPSO and Simulated Annealing methods, results 
for r ≥ 140 are from the best trees obtained within 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program RF error (%) (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0 0 0 0 0 2.5 2.5 3.8

SA-Median 0 0 0 2.5 0 2.5 6.3 5.0 10.0

GRAPPA-Exact 0 0 0 0 – – – – –

Neighbor-joining 0 0 0 2.5 6.3 6.3 12.5 20 20

Program RF error (%) (90% Inversion/10% transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0 0 0 0 2.5 2.5 2.5 8.8

SA-Median 0 0 0 0 0 2.5 3.8 3.8 12.5

GRAPPA-Exact 0 0 0 – – – – – –

Neighbor-joining 0 0 0 0 3.8 13.8 16.3 23.8 30

Table 7 Average score of the best tree for IDQPSO, Simulated Annealing and GRAPPA

– indicates a program cannot finish the scoring of any tree after 5 days of computation. For the IDQPSO and Simulated 
Annealing methods, results for r ≥ 140 are from the best trees obtained within 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program Tree score (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 496.9 985.7 1458.7 1847.3 2069.8 2730.7 3601.1 4092.6 4953.0

SA-Median 496.9 986.0 1459.9 1862.3 2086.4 2792.6 3705.7 4306.1 5210.9

GRAPPA-Exact 496.9 985.7 1458.7 1847.3 – – – – –

Program Tree score (10% inversions/10% transpositions)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 526.6 1033.0 1611.3 2158.6 2448.7 3363.8 4435.0 4903.7 5078.4

SA-Median 527.4 1033.6 1614.2 2174.5 2473.3 3447.1 4643.2 5070.0 5352.4

GRAPPA-Exact 527.4 1033.6 1610.3 – – – – – –
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Table 8 Average running time for IDQPSO, Simulated Annealing and GRAPPA

For r ≥ 140 , both IDQPSO and Simulated Annealing are stopped after 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program Running time (s) (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 118.1 138.7 178.0 295.6 835.9 19,839.4 > 7 days > 7 days > 7 days

SA-Median 167.4 298.6 577.1 1361.7 7930.5 42,249.7 > 7 days > 7 days > 7 days

GRAPPA-Exact 107.3 109.1 122.4 365.3 – – – – –

Program Running time (s) (90% inversions/10% transpositions)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 114.9 135.4 238.3 1096.3 6556.1 32,388.5 > 7 days > 7 days > 7 days

SA-Median 155.6 398.7 746.7 7429.0 26,607.9 164,978.2 > 7 days > 7 days > 7 days

GRAPPA-Exact 113.0 113.9 4158.3 – – – – – –

Fig. 5  The topology of species. The left figure a shows the true topology of 10 drosophila species, the right 
figure b shows the inferred topology by the QPSO-GRAPPA method

Table 9 Average distance between  the  inferred and  true tree ancestors for  IDQPSO, 
Simulated Annealing and GRAPPA

– indicates a program cannot finish the scoring of any tree after 5 days of computation. For the IDQPSO and Simulated 
Annealing methods, results for r ≥ 140 are from the best trees obtained within 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program Distance to the true ancestor (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0 0 0 0.2 0.3 5.2 7.7 43.8

SA-Median 0 0 0 0.8 1.9 2.0 7.3 27.8 55.0

GRAPPA-Exact 0 0 0 0 – – – – –

Program Distance to the true ancestor (90% inversions/10% transpositions)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0.2 0 1.7 2.0 10.1 47.7 53.0 99.6

SA-Median 0 0.2 0 2.1 3.1 13.9 69.8 60.6 115.4

GRAPPA-Exact 0 0.2 0 – – – – – –
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up to r = 120 . For datasets without tranpositions, even for difficult datasets such as 
r = 140 and r = 160 , the ancestors inferred by IDQPSO is only a few DCJ events away 
from true ancestors. The accuracy decreases when 10% transpositions are added, but 
remains below 100 for the most difficult datasets.

We also conduct experiments on some biological datasets including the genomes of 
10 drosophila species, each with 7332 genes. Fig. 5 shows both the phylogeny published 
by Clark et al. [27] and the tree reconstructed by IDQPSO, which demonstrates that our 
new method is able to infer accurate phylogenies for large genomes in real data.

Discussion
Based on the experimental results set forth above, a conclusion can be reached that all 
of the compared median solvers can have their own different advantages and disadvan-
tages. The search space of the median problem is extremely large when the genomes are 
distant and large, which presents a crucial task that continues to challenge the available 
techniques in this area. However, GAMedian is quite limited by its lower speed and its 
low potential for scalability arising from the necessity of it maintaining a large candidate 
pool in order to obtain the optimal solution. In comparison, SAMedian achieves the sec-
ond best performance on performance indicator of running time; however, these perfor-
mance results come at significant disadvantages insofar as it returns lower performance 
scores on three of the most significant criteria–namely, the median score, true distance, 
and adjacency accuracy scores–which presents a palpable limitation on its practical 
applications. Moreover, ASMedian further requires a considerable amount of storage 
space and comprises a heavy burden for RAM since most of these partial solutions are 
saved onto the hard disk.

In comparison with the other median solvers, when the genomes are large and distant, 
IDQPSO-Median can achieve the relatively best scores for the performance indicators 
of the median score, the true distance score, and the score for measuring the adjacency 
accuracy. Because QPSO has fewer parameters to control, it requires the capacity to 
iteratively search to find the global optimal and local optimum. In contrast, IDQPSO-
Median strategically preserves a piece of useful heuristic information from the current 
generation to the next and thus, consequently shortens the number of generations to 
reach convergence. Furthermore, the number of rearrangement events has no effect on 
the computation cost, which means the IDQPSO-Median approach can overcome the 
premature convergence problem even while the number of rearrangement events con-
tinues to increase. In conclusion, the IDQPSO-Median approach we propose has a supe-
rior performance when considering each of the significant criteria used in measuring 
the performance of median solvers for ancestral genome inference, including the perfor-
mance metric of its running time.

In the experiments, it can be found that IDQPSO-Median, SAMedian, and GAMedian 
can sustain their performance levels at a consistent speed even when the rearrangement 
events become larger, which means metaheuristic algorithms can solve the complex-
ity problem presented by genome rearrangement problems notwithstanding that these 
problem arise in the context of large and distant genomes. When compared to the 
other criteria we have used to evaluate the approaches we tested, an additional conse-
quential factor, as compared to the other criteria, is whether it can converge with fewer 
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generations or can converge even if it does not incorporate the use of computational 
algorithms. GAMedian is far too expensive to face this set of challenges, for this reason, 
the generation maximum for GAMedian was set as 100.

In contrast, the performance of the IDQPSO-Median demonstrates that IDQPSO-
Median has better scalability when compared with the existing parsimony-based meth-
ods. Therefore, the approach proposed in our IDQPSO-Median is significant in light 
of the performance metrics achieved by the other state-of-the-art methods since it can 
currently provide better scalability for phylogenetic reconstruction when the genomes 
are large and distant. Based on the results of our experiments and the analysis set forth 
above, the advantages obtained by the IDQPSO-Median approach we propose not only 
rivals the advantages derived from the methods implemented by the other median solv-
ers we compared but also sets a new competitive paradigm for use in ancestral genome 
inference.

Conclusions
This paper has proposed an IDQPSO-Median for ancestral genome inference. We 
first propose the IDQPSO algorithm that adopts a process of obtaining two averages 
of the fitness values in order to find the mean best position and then utilizes the sort-
ing operation to realize the evolution of IDQPSO. Next, we introduced an IDQPSO-
Median, which incorporates DCJ sorting into the IDQPSO algorithm, for undertaking 
ancestral genome inference. We also conducted experimental studies that have served 
to demonstrate the effectiveness of the IDQPSO-Median approach over comparable 
median solver methods—ASMedian, SAMedian, and GAMedian. When the genomes 
are large and distant, the IDQPSO-Median obtains the lowest median score, the high-
est adjacency accuracy, and the closest distance to the true ancestors. In conclusion, our 
IDQPSO-Median achieves exceptional prowess in its flexibility, which results in its bet-
ter scalability, and does so, even when faced with increasing whole-genome data. Thus, 
the IDQPSO algorithm and its incorporation of the IDQPSO-Median approach can 
effectively be applied to address the critical median problem that continues to challenge 
the current state-of-the-art techniques used in ancestral genome inference.

Although IDQPSO-Median has a desirable performance, especially when the genomes 
are large and distant, a few issues exist that warrant our further attention and study. In 
this vein, we would like to extend our work within larger genome rearrangement events, 
such as deletion, insertion, and duplication. In addition, we could finish all of the experi-
ments we conduct on the quantum computer in order to increase the computation 
speed by way of using the characteristics of the quantum algorithm: because the quan-
tum computer is times faster than any classical computer. Moreover, we would like the 
opportunity to take advantage of distributed computation capacity using Spark, which is 
a distributed framework that is designed to expedite computation. Finally, this research 
shows us that we have the potential to find deep evolutionary histories using deep learn-
ing algorithms if more datasets with unequal gene length are supplied.
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