
Achieving large and distant ancestral
genome inference by using an improved
discrete quantum‑behaved particle swarm
optimization algorithm
Zhaojuan Zhang1, Wanliang Wang1* , Ruofan Xia2, Gaofeng Pan2†, Jiandong Wang2† and Jijun Tang2,3

Abstract

Background: Reconstructing ancestral genomes is one of the central problems pre-
sented in genome rearrangement analysis since finding the most likely true ancestor is
of significant importance in phylogenetic reconstruction. Large scale genome rear-
rangements can provide essential insights into evolutionary processes. However, when
the genomes are large and distant, classical median solvers have failed to adequately
address these challenges due to the exponential increase of the search space. Conse-
quently, solving ancestral genome inference problems constitutes a task of paramount
importance that continues to challenge the current methods used in this area, whose
difficulty is further increased by the ongoing rapid accumulation of whole-genome
data.

Results: In response to these challenges, we provide two contributions for ances-
tral genome inference. First, an improved discrete quantum-behaved particle swarm
optimization algorithm (IDQPSO) by averaging two of the fitness values is proposed to
address the discrete search space. Second, we incorporate DCJ sorting into the IDQPSO
(IDQPSO-Median). In comparison with the other methods, when the genomes are large
and distant, IDQPSO-Median has the lowest median score, the highest adjacency accu-
racy, and the closest distance to the true ancestor. In addition, we have integrated our
IDQPSO-Median approach with the GRAPPA framework. Our experiments show that
this new phylogenetic method is very accurate and effective by using IDQPSO-Median.

Conclusions: Our experimental results demonstrate the advantages of IDQPSO-
Median approach over the other methods when the genomes are large and distant.
When our experimental results are evaluated in a comprehensive manner, it is clear
that the IDQPSO-Median approach we propose achieves better scalability compared
to existing algorithms. Moreover, our experimental results by using simulated and real
datasets confirm that the IDQPSO-Median, when integrated with the GRAPPA frame-
work, outperforms other heuristics in terms of accuracy, while also continuing to infer
phylogenies that were equivalent or close to the true trees within 5 days of computa-
tion, which is far beyond the difficulty level that can be handled by GRAPPA.

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Zhang et al. BMC Bioinformatics (2020) 21:516
https://doi.org/10.1186/s12859‑020‑03833‑7

*Correspondence:
wwl@zjut.edu.cn
†Gaofeng Pan and Jiandong
Wang contributed equally to
this work
1 College of Computer
Science and Technology,
Zhejiang University
of Technology, Liuhe Road,
Hangzhou, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1552-5075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03833-7&domain=pdf

Page 2 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Keywords: Ancestral genome inference, Genome arrangement, DCJ sorting, Discrete
optimization, Quantum-behaved particle swarm optimization

Background
Introduction

Advancements in the reconstruction of ancestral genomes constitute significant devel-
opments in Bioinformatics. Inferred ancestral genomes can be used to reconstruct deep
evolutionary histories, which in turn, have been successfully applied to a wide range
of problems facing contemporary society, including in controlling hereditary diseases,
providing a better understanding of complex disease mechanisms for which effective
detection and diagnostic pharmaceuticals drugs have then been developed, and inferring
epidemic contact structure, among others [1–5]. With the advent of new sequencing
techniques in conjunction with sophisticated computing technologies, the availability of
whole genome sequences continues to increase. Critically, genome rearrangements are
utilized in the analysis of whole genomes, and notwithstanding their rarity, genome rear-
rangements have provided invaluable information that has served to facilitate the solu-
tions to the problems of key importance in biology and that has further deepened our
fundamental understanding of biology itself.

As the smallest unrooted phylogenetic tree is defined by three leaves, one of the
most significant problems in genome rearrangement analysis is termed as the Median
Problem, which is defined as follows: given three input leaf genomes, find the genome
(median) that minimizes the sum of evolutionary distances between the median and the
three input genomes. Despite that the Median Problem is NP-hard for most criteria [6,
7], finding a solution for the median problem is essential since the recovered median
is not only considered to be a good option for the ancestral genome but can further be
used in a multitude of purposes in phylogenetic tree reconstructions.

To date, many studies which include the exact and heuristics methods have been
developed to solve the median problem. Xu et al. proposed a branch-and-bound method
using adequate subgraphs to decompose the median problem (ASMedian) [8, 9]. Then,
in the GASTS package, the ASMedian approach was extended to reconstruct phylog-
enies with more than three genomes by minimizing the sum of the pairwise genomic
distances between tree nodes [10]. Although ASMedian achieves excellent marks in the
performance metrics of speed and accuracy, its feasible deployment is limited to small-
scale datasets. Thus, Feijao et al. developed an algorithmic approach for ancestral recon-
struction of gene orders using the concept of intermediate genomes, which obtained
a better reconstruction of the true ancestral genome [11]. Feijão et al. later presented
a closed equation for the single cut join (SCJ) distance model that accounts for dupli-
cations [12] and thereafter, introduced an integer linear program to solve the Median
Problem but in a context where gene duplication events were now considered [13].

In addition to these types of heuristic-based models, metaheuristic algorithms are
other effective methods for tackling complex optimization problems that has also been
successfully incorporated into phylogenetics in order to solve various NP-hard prob-
lems. In 2005, Hill [14] developed a phylogenetic reconstruction tool for heuristic
searching using the character-based genetic algorithm. However, it was not until 2013
that Gao et al. first proposed an approach to the Median Problem that used a genetic

Page 3 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

algorithm (GA) as its foundation and was further based on genomic sorting (GAMed-
ian) in order to find the best sequence of evolutionary events to transform one genome
into the other [15]. Gao et al. [16] next adopted a cooperative co-evolutionary genetic
algorithm (CCGA) that divides a phylogenetic reconstruction problem into smaller sub-
problems in order to infer ancestral genomes, which results consistently reflect more
accurate reconstructions. Likewise, in an effort to overcome these limitations, Xia et al.
[17] proposed a metaheuristic method that implements the simulated annealing median
algorithm (SAMedian) to solve the Median Problem, albeit slightly less accurate, but
with greater efficiency by producing these results with lower computational costs.

Existing methods utilized in reconstructing ancestral genomes also confront difficul-
ties as a consequence of the failure of traditional optimization methods to address the
complexities encountered in the practical applications in which they are deployed. In
this vein, in the context of large and distant genomes, the problem of inferring ances-
tral genomes by reconstructing their ancestral sequences presents a highly-complex,
multidimensional problem, whereby the domain constituting the inference search space
although discrete, is also extremely large and is composed of high dimensional data. As
a result, the process of inferring ancestral genomes continues to challenge the current
optimization methods used in this area, which are further compounded by the con-
tinuing rapid accumulation of whole-genome data. Accordingly, achieving ancestral
genomes with greater accuracy and increased computational feasibility in the context of
limited memory space is vital to the ability to reconstruct ancestral genomes and more
generally, for the continued advancement of the phylogenetic reconstruction discipline.

New algorithms of significance continue to be proposed, including algorithms using
novel metaheuristic methods. Indeed, one of the most important metaheuristic algo-
rithms, the quantum-behaved particle swarm optimization algorithm (QPSO) [18],
was introduced by Sun et al. First, in order to overcome the shortcoming that QPSO
is not applied to discrete space, an improved discrete QPSO algorithm (IDQPSO) that
is inspired by adopting two averages of the fitness values is proposed. Second, the DCJ
sorting is incorporated into the IDQPSO to address the median problem (IDQPSO-
Median) since QPSO can have a better search capability in large-scale optimization
problems. Furthermore, extensive experiments on simulated datasets and real datasets
were conducted to evaluate the performance of IDQPSO-Median.

Genome rearrangement events

Given a genome with one or more chromosomes, each chromosome can be labeled by a
gene order to represent the direction and the relative positions of genes, represented as
integers such as {g1, g2, . . . , gn} , each represents a homologous gene. Moreover, each gene is
assigned an orientation that is either positive or negative, correspondingly denoted by gi or
−gi , respectively. The head and tail of a gene, gi , are denoted by ghi and gti , respectively. If a
gene is associated with a positive sign, then this means that the direction in which the gene
should be read is from head to tail (ghi → gti) , whereas a negative sign associated with a
gene indicates it should be read from tail to head (gti → ghi) . After considering the direction
of the genes in each segment of a genome, a chromosome can be considered as an ordered
set of oriented genes and then can also be classified as linear, meaning it is a sequence that
has two ends, called telomeres (as defined below), or is circular, meaning it is a a sequence

Page 4 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

for which its head meets its tail. In this paper, we assume that each genome has the same
number of genes and each gene appears exactly once.

Genome rearrangement events include the inversion (reversal), transposition, fusion,
fission, and translocation operations. Assuming a genome is a signed gene order,
denoted by {g1, g2, . . . , gi, . . . , gj , . . . , gn} , then after a reversal operation, the genome
is transformed to {g1, g2, . . . , gi−1,−gj ,−gj−1, . . . ,−gi, gj+1, . . . , gn} . Further, assum-
ing that j < k and given three gene orders, denoted by gi , gj , and gk , then a transpo-
sition operation can generate a new genome, which resulting genome is denoted by
{g1, g2, . . . , gi−1, gj+1, . . . , gk−1, gi, . . . , gj , gk , . . . , gn} . Given two genomes, the transloca-
tion operation is defined as occurring when the end of one chromosome is broken and
then attached to the end of another chromosome, whereby in essence, two chromosomes
exchange their ends. Meanwhile, the fission operation occurs when one chromosome splits
into two chromosomes, while the fusion operation concatenates two chromosomes into
one chromosome.

If gi is followed by gj , or if gj is followed by gi , then gi and gj are defined as adjacent.
In addition, the adjacency of two consecutive genes can have the following four types:
{ghi , g

h
j }, {g

h
i , g

t
j }, {g

t
i , g

h
j }, {g

t
i , g

t
j } . Correspondingly, a breakpoint occurs when two genes are

adjacent in one genome but not in another genome. In the same vein, a telomere is defined
as an extremity that is not adjacent to any other genes and is represented by a singleton set.
Accordingly, in the context of this model, a genome is a set of adjacencies and telomeres
such that the head or tail of any gene appears in exactly one adjacency or telomere.

DCJ distance and DCJ sorting

The DCJ operation as proposed by Yancopoulos [19], not only adopts the universal DCJ
operation but also goes further by considering all of the rearrangement events described
above. The following four cases generally describe the sequence of DCJ operations in trans-
forming one genome to the other:

• A pair of adjacencies {g1, g2} and {g3, g4} can be rejoined by the two adjacencies: {g1, g3}
and {g2, g4} or {g1, g4} and {g2, g3}.

• An adjacency {g1, g2} and a telomere {◦} can be rejoined as follows: by an adjacency
{g1, ◦} and the telomere of {g2} or in the alternative, by an adjacency {g2, ◦} and the tel-
omere of {g1}.

• A pair of telomeres {◦} and {◦} can be joined by the following adjacency: {◦, ◦}.
• An adjacency {g1, g2} can be cut by a telomere, thereby resulting in {g1} and {g2}.

An adjacency graph (Fig. 1) is reconstructed with the adjacencies and telomeres in order
to find the sequence of DCJ operations, which constitutes the DCJ distance (as defined
below). As used in this model, the DCJ distance is defined as the number of DCJ operations
required to transform one genome into the other. The DCJ distance between G1 and G2 ,
denoted by dDCJ (G1,G2) , is calculated by

where n is the length of the genome, C is the number of cycles, and I is the number of
odd edge paths. In the adjacency graph, a DCJ operation is optimal when it increases

(1)dDCJ (G1,G2) = n− (C + I/2)

Page 5 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

the number of cycles by one or the number of odd paths by two, such an optimal path
reflected by the application of the DCJ operations can increase the sum of C and I/2 by
one and still make G1 one step closer to G2.

Given two genomes Gi and Gj , many divergent series of sequences of DCJ operations exist
that can evolve one genome into the other. Differences among DCJ operations can change
the number of odd paths and circles and typically also influence the structure of the com-
mon gene adjacencies presented. The DCJ sorting is defined as finding the sequence of DCJ
events that transform on genome into another by using the minimum number of events.
The evolutionary cost may be minimized if the median genome is situated on the sorting
path created by the DCJ operations in transforming from one leaf (known) genome into
the other. Two approaches have now been introduced that have expanded upon the DCJ
operations framework first proposed by Yancopoulos by allowing for sampling of the sort-
ing sequences comprising the solutions space produced by the DCJ operations: the first
approach applies the greedy-sampling method by iteratively applying the DCJ operation in
order to create a new adjacency graph [20], and the second approach uses a general-sam-
pling method that considers and evaluates all of the cycle-splitting operations in identifying
the structures of the compared genomes that cause the increase in the number of solutions
with respect to a given lower bound [21].

DCJ median problem

The DCJ Median Problem is to find a median genome that minimizes the sum of DCJ
Distances from the median genome to the three-leaf genomes. As illustrated in Fig. 2, the
median genome for a solution of the DCJ Median Problem is considered to constitute a
good option for an ancestral genome if it minimizes the evolutionary cost. The median
score used for calculating the DCJ Median is given by

where the DCJ distance between the median genome and each of three given genomes
is denoted by d, the sum of all the DCJ distances is defined as S3 , the median genome is
denoted by Gm , and the three given genomes are denoted by G1 , G2 and G3 , respectively.

(2)S3 = d(G1,Gm)+ d(G2,Gm)+ d(G3,Gm)

Fig. 1 Adjacency graph of two genomes. Given G1 = {g1, g2, g3, g4, g5} and G2 = {g3,−g2,−g1,−g4, g5} .
The number of paths is 2, the number of cycles is 1, and the length of the genome is 5. By Eq (1), the DCJ
distance between G1 and G2 is n− (C + I/2) = 3

Page 6 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Methods
Quantum‑behaved particle swarm optimization (QPSO)

Quantum-behaved particle swarm optimization is a stochastic searching algorithm
that was inspired by the movement of particles in quantum space and was first pro-
posed by Sun et al. [18]. QPSO is a population-based evolutionary computation algo-
rithm, wherein each particle is considered as a candidate solution. The behavior of all
particles is described by the quantum mechanics presented in the quantum time-space
framework. According to the principles of quantum theory, the behavior of (and thus,
the search process over) all particles is directed by the quantum-mechanical rules rather
than the classical rules of Newtonian random motion. Because of the inherent uncer-
tainty in any particle’s motion and attendant locations at successive times, the quantum
state of each particle can appear anywhere in the search space.

Compared with other previously introduced evolutionary algorithms, the perfor-
mance of QPSO achieves better results insofar as the performance indicator of global
search capabilities are concerned. Because QPSO’s search covers the entire search space
for each generation, it also increases the diversity of the population and thus, overcomes
the problem of premature convergence currently existing in continuous optimization
problems in this space. Furthermore, QPSO has been demonstrated to successfully solve
a wide range of continuous optimization problems, including problems in multilevel
thresholding image segmentation [22], network clustering [23], and optimal design [24],
as well as in the strongly NP-hard combinatorial optimization problem of the multidi-
mensional knapsack problem [25].

Based on the quantum physics theory, the quantum state of a particle represents its
momentum and energy. Accordingly, the dynamic behavior of each particle is described
by the wave function ψ . The normalized wave function is given by

where y is set as y = X − Pid . X represents the current position, and Pid represents the
local attractor, respectively. L represents the characteristic length of the Delta potential
well and hence, is the most important variable, because it determines the scope of the

(3)ψ(y) =
1
√
L
e−|y|/L

Fig. 2 The median problem. Find a median genome Gm that minimizes the sum of DCJ distance denoted by ∑3
i=1 d(Gi ,Gm) if given three genomes G1 , G2 , and G3

Page 7 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

search being conducted. It is computed by L = �
2

mγ
 , where m is the population size, � is

the Laplace operator, and γ is Plank’s constant. Further, the probability density function
denoted by ψ2 indicates the particles at one position relative to another and can be for-
mulated by the following:

In order to procure the positions of each particle in the inference search space, the quan-
tum state must first collapse to the classical state. The measurement of the process can
be simulated by employing the Monte Carlo method using the probability density as its
base. The mean best position is defined as the mean position of the personal best posi-
tions of all the particles in the population and is denoted by mbest. The mbest is then
incorporated throughout the entire search process since it serves to balance the position
diversity of all the particles and thus enhances the global search ability of QPSO. Then
the value of L is computed by 2β

∣
∣mbest − X

∣
∣ by adopting the measuring method, where

β is a positive real number. Subsequent to QPSO’s performance of this measuring proce-
dure, each particle’s position is accurately measured by

where u is a random number uniformly distributed on the [0, 1] range.
It is important to emphasize that the evolution of all the particles is determined by

considering each particle’s current position, i.e., the local best position and the global
best position. For a discreate optimization problem with d parameters, we can rep-
resent a possible solution as a d−dimensional vector X = (X1,X2, . . . ,Xd) . Thus,
given the QPSO with d−dimensional space, the current position of the ith parti-
cle is denoted by Xi = (Xi1,Xi2, . . . ,Xid) . The local best position of particle i is the best
previous position (i.e., the position with the best fitness value), which is denoted by
Pbesti = (Pbesti1,Pbesti2, . . . ,Pbestid) , and is called the personal best position (Pbest). The
global best position is defined as the best position among all the particles in the population,
called gbest and is denoted by gbesti =

(
gbesti1, gbesti2, . . . , gbestid

)
 . The value of gbest can

be derived from the following equation: gbest = min(pbesti).
During the evolution process, the position of each particle is iteratively updated genera-

tion by generation. The fundamental steps of QPSO for updating the current position of
the evolution process of all particles are conducted as follows: first, the diversity of parti-
cles representing the mean best position is calculated; second, the local attractor of each
particle as represented by the range of the search space is given; and finally, an update of
the current position of each particle representing the candidate solution is completed. As
described, mbest is defined as the mean personal best positions of the whole population
and is given by

where M is the population size, and d is the dimension, respectively. The Pid is defined as

(4)
∣
∣ψ(y)

∣
∣2 =

1

L
e−2|y|/L

(5)X = Pid ±
L

2
ln

(
1

u

)

(6)mbest =
1

M

M∑

i=1

Pbesti =

(
1

M

M∑

i=1

Pbesti1,
1

M

M∑

i=1

Pbesti2, · · · ,
1

M

M∑

i=1

Pbestid

)

Page 8 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

where Pid is the local attractor, and µ is a random number uniformly distributed in [0, 1],
respectively. As indicated above, the main moving direction of the particles is Pid , which
means that the space near Pid is identified as a valuable searching area in QPSO. Finally,
the position of each particle is given by

where Xid is the particle position, and u is a random number uniformly distributed on
[0, 1], respectivley. Furthermore, β is a contraction-expansion coefficient from 0.5 to
1.0, which can be tuned to control the convergence speed of the algorithm. As Sun sug-
gested, a linear decrease in the value of β , namely, from 1.0 to 0.5, can result in a better
convergence speed, which result is produced by the computation resulting from the fol-
lowing formula:

where t is the current generation, and Maxiter is the maximum generation, respectively.
In addition, only one parameter, which is denoted by β , controls the position of particles;
therefore, the parameters of QPSO are easy to control.

An improved discrete QPSO algorithm

The QPSO is a metaheuristic algorithm that solves a problem by generating a pop-
ulation of candidate solutions (particles), which can further be optimized using
iterative search. The QPSO algorithm with comparatively improved global search
performance capabilities could overcome the problem of premature convergence
that currently exists in the continuous optimization problems space. However, a
problem that confounds the breadth of the performance potential of QPSO, is that
it cannot be directly applied to discrete optimization problems. To overcome this
shortcoming, Sun et al. proposed a binary QPSO algorithm (BQPSO) [26], which
is characterized by a space transformation technique that is predicated on a binary
coding scheme—that maps the consecutive searching space into a discrete searching
space.

Although a wide range of applications have the characteristic of a discrete search
space, the current literature we surveyed reflects less studies and analysis have been
conducted on discrete optimization problems. Hence, this gap propelled us to dis-
cover a novel strategy to deal with such optimization problems. To overcome the
problem that the data structure is not composed of sequences during the evolution
process, an improved discrete QPSO algorithm (IDQPSO) is proposed in this paper.
The proposed algorithm combines a novel strategy for updating the particles’ posi-
tions, thereby addressing the issue of the absence of a discrete sequence, which to-
date, has hampered the effective deployment of QPSO.

(7)Pid = µ · Pbesti + (1− µ) · gbest

(8)Xid = Pid ± β
∣
∣mbest − Xid

∣
∣ ln

(
1
u

)

(9)β =
(1.0− 0.5)× (Maxiter − t)

Maxiter

Page 9 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Update by adopting two averages of the fitness value

As described in QPSO, the mean best position, denoted by mbest, is defined as the
center of the personal best positions among the whole population. In IDQPSO, mbest
is obtained by averaging two of the computed fitness values and is inspired by the
center of gravity in geometry. Here, the particle selected by applying two average
operations of the fitness values, can be utilized to reflect the distribution of the whole
population as well, since the first step of the IDQPSO algorithm comprehensively
considers all of the particles, and thus, the second step can then improve upon the
evolution process of the entire population. A concrete example of the procedure of
updating mbest as redesigned in the IDQPSO algorithm, is illustrated in the Fig. 3.
Figure 3a represents the distance to the first average fitness value among all the par-
ticles, and X2 is selected as cbest. Figure 3b represents the distance to the second
average fitness value among the top 50% particles, and X1 is selected as mbest. The
procedure is detailed in the following portion of this paper.

To estimate the distance between two particles’ positions by their fitness values,
we define that dis(Xi,Xj) =

∣
∣f (Xi)− f (Xj)

∣
∣ , where dis(Xi,Xj) represents the distance

between particle Xi and Xj , and the fitness value is denoted by f. First, to attain the
initial selection of the candidate mean best position, a strategy of averaging the fitness
values that represent the objective function value of the given personal best positions
is proposed. Next, a particle with the closest distance to the average fitness value is
selected as the candidate mean best position denoted by cbest. The cbest, as utilized
by IDQPSO, is given by the following:

where f(cbest) is the first candidate mean fitness value, and f (Pbesti) is the fitness value
of the local best position, respectively.

Upon IDQPSO capturing the first average, the cbest representing the mean best
position is obtained. However, we note that the final mean best position, denoted by
mbest, can be further optimized by making another selection according to the aver-
aging of fitness values. Although this objective function for producing an optimized
selection process is similar to the first averaging strategy, it goes further and also
computes the averages between the first selection of the candidate mean best position
and the particles with better fitness values than f(cbest) (top 50% particles). Thereafter,

(10)f (cbest) =

(
1

M

M∑

i=1

f (Pbesti1),
1

M

M∑

i=1

f (Pbesti2), . . . ,
1

M

M∑

i=1

f (Pbestid)

)

Fig. 3 The procedure of updating mbest by adopting two averages of the fitness value. The left figure a
represents the distance to the first average fitness value among all the particles, and X2 is selected as cbest
because it is the closest distance to the first average fitness value. The right figure b represents the distance
to the second average fitness value among the top 50% particles, and X1 is selected as mbest because it is the
closest distance to the second average fitness value

Page 10 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

the particle with the closest distance to the second average fitness value is selected as
the mbest.

To update mbest by averaging two selections of the average fitness values is reason-
able from the perspective of causality, because this method also accounts for the search
uncertainty and search probability within quantum mechanics. Furthermore, the updat-
ing strategy by applying two selections can serve to effectively balance the diversity of
the evolution process in finding the best path and in avoiding premature convergence
and fitness stagnation.

Evolving through generations

For discrete optimization problems, the evolution process is actually a comparison
between positions. In general, since each element of the vector is independent, the swap
operation is an effective strategy to employ in managing a discrete search space. For
example, assume two positions X1 = (1, 2, 3, 4, 5) and X2 = (5, 4, 3, 2, 1) , we can generate
two new positions X ′

1 and X ′
2 by swapping the first element of these two vectors, result-

ing in X ′
1 = (5, 2, 3, 4, 5) and X ′

2 = (1, 4, 3, 2, 1) . Let the fitness function be fi =
∑d

j=1 Xij .
By checking all possible swaps, the new position (generated from the two parents X1 and
X2) that gives the best fitness is Xbest = (5, 4, 3, 4, 5) , by picking the larger value at each
of the five element from the two parents.

It is obvious the above swap operation will not be valid in the median problem as the
resulted new positions (genomes) may be invalid, thus we need a new strategy to con-
duct the evolution through generations. In this paper, we go further and take advan-
tage of the whole-genome background in designing an efficient swap operation which is
based on genomic sorting for use by the IDQPSO algorithm. Given two genomes (posi-
tions) X1 and X2 , we generate a new genome X ′

1 by sorting several DCJ events from X1
to X2 , and X ′

2 by sorting some step from X2 to X1 . Since there may be multiple choices to
make such DCJ sorting, we need to check every possibility and find the new genome that
has the lowest fitness function, i.e., the median score. When the two genomes are large
and distant, the computational cost, arising from the performance of the enumerating
all sorting steps and computing median scores, rapidly increases due to the exhaustive
searching strategy it employs. To overcome this problem, the IDQPSO algorithm incor-
porates an efficient search strategy which is detailed below.

An IDQPSO‑Median for ancestral genome inference

For complex problems and problems presenting high dimensional data, the global best
position cannot be easily found. When the genomes are large and distant, the DCJ
Median Problem is compounded by the additional obstacle presented by a challenge that
has an ever increasing search space: assuming the length of genome is n, there are 2nn!
possible signed permutations [15]. As a consequence of the foregoing, the challenge of
continuing the evolution process while avoiding premature convergence and escaping
local optima is a critical and important procedure. It is necessary to maintain a popula-
tion that allows each particle to evolve separately, while each generation keeps the whole
population as a means to find the best fit.

Since the search space is so large that IDQPSO cannot converge to an optimum in a
limited time without incorporating the sorting strategy proposed below. Consequently,

Page 11 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

in those circumstances, we propose that DCJ sorting be employed based on the estab-
lished observation that the median genome is likely to be found on the path found
during the evolution process in transforming one genome to another. Based on our com-
bined previous experience, DCJ sorting is an effective evolution strategy for ancestral
genome inference by reducing the search space. The detailed evolution process applied
by the IDQPSO algorithm in finding the IDQPSO-Median is described as follows.

Algorithm overview

The IDQPSO-median maintains and updates three set of genomes, namely the cur-
rent best median genomes Xd = (X1d , · · · ,Xid · · · ,XMd) , the intermediate best
median genomes Pd = (P1d , · · · ,Pid · · · ,PMd) and the personal best median genomes
Pbest = (Pbest1, · · · ,Pbesti · · · ,PbestM) , each contains M genomes (M is the population
size). We also maintain three best medians, i.e., mbest represents the mean best median
from Pbest , Pbest is the personal best median found so far from previous generations, and
gbest is the generation best of Pbest.

We first initialize the M genomes in Xd by using the method describe below and start
the following steps (Fig. 4):

1 Update Pbest : at the initialiation stage we simply assign Pbesti = Xi ; for all later gen-
erations, we assign Pbesti to be the one with lower median score from previous Pbesti
and Xi;

Fig. 4 The illustration of algorithm overview. Assuming each generation contains a set of M genomes
represented as X1d ...XMd , as well as mbest and Pid . The population of the next generation is created by sorting
each Xid toward the best genome

Page 12 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

2 Find the mean best mbest by averaging all median scores from Pbest and further aver-
age among top 50% particles, mbest is the genome with its closest to the mean of the
top 50% scores;

3 Find the generation best gbest as the best (with the lowest median score) from Pbest;
4 Update Pid by sorting each genome in Pbest toward gbest if the later has better score;
5 Generate a new set X ′

id by sorting each genome in Xid toward mbest if the later is
better;

6 Create the next generation of candidate genomes Xid by sorting each X ′
id toward its

corresponding Pid if the later is better;
7 Repeat the first step as the new generation until stop.

Initialization

Previous experience in this area foretells that the initialized candidate solution has
a deep influence on both the computation cost and convergence speed. However, the
search space within which the IDQPSO-Median must be located is too large, and thus
any randomly selected genome is likely to generate candidates that deviate too much
from the optimum. For this reason, if the IDQPSO algorithm used random selection
to generate the initial candidates, the search process for finding the IDQPSO-Median
could not converge to the optimum.

In order to expedite the evolution process of the particles without decreasing the
performance of the IDQPSO algorithm, an initialization strategy of adopting DCJ sort-
ing to reduce the search space has been integrated into the IDQPSO algorithm. First,
DCJ sorting is applied to generate different candidate median genome sets along the
evolutionary path from genome Gi to genome Gj which candidate median genomes are
selected from the three given genomes {G1,G2,G3} . In order to maintain the stochas-
tic characteristic of the IDQPSO algorithm, six candidate median genome are selected
with 1

10
dDCJ (Gi,Gj) , 2

10
dDCJ (Gi,Gj) , 3

10
dDCJ (Gi,Gj) , 4

10
dDCJ (Gi,Gj) , 5

10
dDCJ (Gi,Gj) , and

6
10
dDCJ (Gi,Gj) corresponding steps away from Gi to Gj.
Assuming the population size is M, there are six combinations for each set of two

of the given genomes because of the direction of each genome in these two genome
sets. After applying DCJ sorting, the total number of candidate median genomes is
M × 6× 6 . Consequently, there are 36M candidate median genomes in the initial pool.
After applying DCJ sorting, one is then randomly selected as the initial median genome
from the first pool of candidate median genomes.

Fitness function

As a performance criterion to measure efficiency, the fitness value of a particle influ-
ences whether it is saved or not for the next generation. The fitness function is designed
with the purpose of directing the evolutionary process for the entire population to con-
tinually improve the process of evolution until its cessation. For the DCJ Median Prob-
lem, setting the function of the median score as the fitness function is an efficient way to
achieve the purpose encapsulated by the design of the fitness function. Since the median
score represents how many DCJ operations have been conducted on the given genomes,

Page 13 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

setting it as the fitness function can result in the whole population evolving towards a
better fit. The fitness function is given as follows:

where FG represents the total DCJ distance of the three given genomes G1 , G2 , and
G3 , and where Gm represents the median genome obtained as a result of the shortest
sequence of DCJ operations on the three given genomes.

The fitness function indicates that the particle with a lower median score can have a
better fitness value. Therefore, when compared to those with lower fitness values, those
particles with better fitness values indicate an increased chance of surviving the evolu-
tion process.

Update the mean best median genome (mbest) by adopting two average of the median score

For ancestral genome inference, the initial position of each particle represents the ini-
tialized median genome. After the current median genome of all particles are set, the
local best median genome, also called the personal best median genome (Pbest), can
be obtained through an iterative comparison of the values of the previous best median
genome to the current personal best median genome. For the complete set of particles in
the inference solution search space, the median score between the given three genomes
and the initialized median genome is calculated based on the fitness function. Then
according to Eq (10), the first average median score denoted by f(cbest) is acquired. Next,
by comparing the distance using dis(Xi,Xj) =

∣
∣f (Xi)− f (Xj)

∣
∣ , the particle with the clos-

est distance to the f(cbest) is selected as the first candidate median genome denoted by
cbest.

Since the two averages of the median scores utilized to update the mean best median
genome can reflect the distribution of a population, a further average between the first
candidate median genome, cbest, and the particles with better median scores than cbest
is captured and constitutes the average of the median scores. Similar to the initial aver-
age of the median scores, the particle that has the closest distance to the second average
median score is extracted and is denoted by mbest. Finally, the mbest is selected as the
mean best median genome for the ancestral genome inference.

Update the intermediate best median genomes (Pd) by adopting DCJ sorting

As the outset, it is important to emphasize that a reference to the intermediate best
median genome is equivalent to the local attractor. The global best median genome
can be found by comparing the intermediate best median genome with other particles
according to the following formula: gbest = min(pbesti) . Consequently, the median
genome with the lowest median score is set as gbest. Furthermore, the parameter µ is set
to 0.5, which means the local best median genome and the global best median genome
each assign the same weight to the intermediate best median genome.

In finding the IDQPSO-Median, DCJ sorting is applied to better guide and direct
the inference process for inferring the optimal median genome. As the DCJ sorting
path depends on the start and target genome, a target median genome that has a bet-
ter median score than the start genome must be selected at the outset. Afterward, for
the two selected genomes, in light of the accepted norm that the median score of the

(11)FG = d(G1,Gm)+ d(G2,Gm)+ d(G3,Gm)

Page 14 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

global best median genome will not be worse than the score of the local best median
genome, the global best median genome is set as the target genome. By applying the DCJ
sorting strategy, we sampled six candidate median genomes that fell on the DCJ sorting
path with the following: 1

10
dDCJ (Pbest, pbest) , 210dDCJ (Pbest, gbest) ,

3
10
dDCJ (Pbest, gbest) ,

4
10
dDCJ (Pbest, gbest) , 510dDCJ (Pbest, gbest) ,

6
10
dDCJ (Pbest, gbest) steps away from Pbest to

gbest. Then, we randomly selected one genome from these six candidates to constitute
the intermediate best median genome. The results obtained indicate that the interme-
diate best median genome contains evolving material derived from its propagation of
the local best median genome and global best median genome into the next generation,
which results served to precipitate our articulation of the need for the overall search
process to then proceed by conducting a further search based on the values found for
the intermediate best median genome.

Update the current best median genomes (Xd) by adopting DCJ sorting

In order to deal with discrete gene orders, the parameter β × ln

(
1
u

)
 is set to 1. In

IDQPSO-Median, the process for updating the current best median genome is com-
prised of two stages:

1 Generate X ′
id : at each generation, there are M current best median genomes repre-

sented as X1d ,X2d , · · · ,Xid , · · · ,XMd and the mean best median as mbest. We will
first compute the median score of X1d , · · · ,XMd and mbest, respectively. For each
Xid , if mbest has better score, we then apply random steps of DCJ sorting from Xid to
mbest to get X ′

id.
2 Obtain the next generation of Xid : the median score of all X ′

id and Pid are computed.
Assuming that Pid has a better median score than X ′

id , we then update the current
best median genome Xid by applying the random steps of DCJ sorting from X ′

id to
Pid.

The process implemented in the IDQPSO algorithm for updating the current best
median genome using a heuristic search strategy combined with the DCJ sorting strat-
egy in order to avoid the problem of becoming trapped in a local optimum. Hence, we
sampled a random number of steps away from the current best median genome towards
the three given genomes, and then further randomly select one as the current median
genome for the next generation.

As a result, each particle is required to update and further converge to an optimum
that has the best median score. Once every particle has separately finished its respec-
tive evolution through generation, the evolution process of the whole population is com-
pleted. At this juncture, the global best median genome is finally considered to represent
the most accurate and best option for the ancestral genome.

Pseudocode of the proposed IDQPSO‑Median

In IDQPSO-Median, the maximum generations is set as MaxIter. The global median
genome becomes closer and closer to the true ancestor through each stage of the evo-
lution process. The process of updating terminates when the number of generations is
satisfied. Otherwise, the updating process is repeated until the specified termination

Page 15 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

condition is reached. The details of the proposed IDQPSO-Median are shown in
Algorithm1.

Results
Experimental environments and parameters setting

In order to evaluate the performance of IDQPSO-Median for phylogenetic reconstruc-
tion, we conducted extensive experiments in a variety of datasets using a spectrum of
parameter settings therein. To obtain an unbiased CPU run time comparison, all of the
experiments were run on a Dell PowerEdge R930 with Intel (R) Xeon (R) CPU E7-4820
v4*2 @ 2.10 GHz ∗ 20, 256 GB of Memory and 2048 GB of Disk space.

The primary parameter used as a performance benchmark was the number of genome
rearrangement events per each edge represented on the generated adjacency graphs.
Each genome has a different evolutionary rate, which evolutionary rates are given by
d = r/n , where r represents the average number of rearrangement events along an edge
and where n is the number of genes. Each dataset was comprised by three leaf nodes
containing 1000 genes; the average number of reversal events per edge ranged from 100
to 1000. Consequently, the values that d took on ranged from 0.1 to 1. Twenty datasets
were generated for each average number of reversal events.

SAMedian, GAMedian, and ASMedian were selected to test the effectiveness of the
performance of the IDQPSO algorithm. The number of fitness function values (median
scores) evaluated is considered representative of a fair time measurement in light of the
deep insight into the convergence of the algorithms that the population size, the inner

Page 16 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

loops, and the number of generations provide. Therefore, every instance was executed
with a set maximum number of function evaluations. The maximum number of suffi-
cient generations of each median solver can provide that result in convergence was an
important parameter at issue and was examined in the experiments we conducted. The
parameters of all the median solvers were set to fall within the following bounds:

• IDQPSO-Median: the maximum generation and population size were set to be 2150
and 20, respectively, while every other parameter in IDQPSO-Median was set to one.

• SAMedian: the maximum generation was set to 10, 000, and the initial temperature
and cooling rates were set to 10 and 0.9, respectively.

• GAMedian: the maximum generation was set to 100, and 50 genomes were gener-
ated for each step of sampling process.

• ASMedian: the parameters were set to the default values provided in the software
package.

Given three genomes G1 , G2 and G3 , the circular ordering lower bound is defined as
medianLB = (d12 + d13 + d23)/2 . To reduce the number of iterations of some easier
cases, the search will stop if the best median score is equal to medianLB, or the number
of iterations has exceeded either 2150 or medianLB× 1.5.

Performance of IDQPSO‑Median

In our experiment, four different criteria (median score, distance to true ancestor, adja-
cency accuracy, and running time) were used to demonstrate the effectiveness of the
IDQPSO-Median obtained by the approach implemented by the IDQPSO algorithm.
The median score is defined as the sum of DCJ distances between each leaf genome
and the inferred median. The distance to true ancestor is defined as the DCJ distance
between the inferred median and the true ancestor genome. Given two sets of adjacen-
cies, the median score value represents all of the adjacencies contained in the inferred
median genomes, while the distance to true ancestor value represents the adjacencies
from the true ancestor. In contrast, the adjacency accuracy is defined as the ratio of the
intersection (denoted by ∩) of these two sets to the union (denoted by ∪) of these same
two sets. The higher the value obtained for the adjacency accuracy, leads to the corre-
sponding conclusion that the better the results the median solver returns will be. This
relationship is given by the following:

where Acc(Gm,Gt) represents the accuracy of adjacency, Gm represents adjacencies in
the inferred median genome, and Gt represents the adjacencies in the true ancestor,
respectively. The notation of Gm ∩ Gt represents the intersection of these two sets, Gm
and Gt , whereas, the notation of Gm ∪ Gt represents the union of these same two sets.

To highlight the performance of IDQPSO-Median, three groups of experiments were
performed: wherein the population size was set as 20, 40, and 60, respectively. The
results for the different population sizes examined in our experiments are set forth in
Table 1.

(12)Acc(Gm,Gt) =
Gm ∩ Gt

Gm ∪ Gt

Page 17 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

From the view of the population size, it can be seen that the values obtained by
the IDQPSO algorithm for values of the median score, true distance, and adjacency
accuracy became increasingly improved as the population size increased from 20 to
60. Although the improvements are relatively small, it does demonstrate that popu-
lation size has some effect on the performance of our median solver. Furthermore,
these results show that the performance of the IDQPSO algorithm in obtaining the
IDQPSO-Median requires additional time to converge in the context of larger popu-
lations comprising the search space, and thus, incurs the attendant additional time
cost as the population increases in size. For this reason, the larger the population
size, the more expensive the time cost the IDQPSO algorithm will incur in finding
the IDQPSO-Median. Moreover, our experimental results depict that the running
time did not increase dramatically as the number of the rearrangement events grew.
Taking the analysis above into account, the population size was finally set as 60 for

Table 1 Performance of IDQPSO-Median with respect to size of population

Events Population
size

Median score Distance to true Adj. accuracy Mean time (s)

r = 100 20 299.45 0.20 1 2

40 299.45 0.20 1 2

60 299.45 0.15 1 5

r = 200 20 599.95 1.50 0.998 11

40 599.95 1.05 0.999 15

60 598.85 0.95 0.999 25

r = 300 20 922.20 63.50 0.905 73

40 921.15 62.05 0.909 81

60 920.50 61.75 0.910 84

r = 400 20 1244.35 251.85 0.684 89

40 1242.25 250.80 0.686 91

60 1240.45 249.50 0.687 124

r = 500 20 1462.70 430.05 0.507 89

40 1459.85 428.45 0.508 100

60 1458.65 425.05 0.511 121

r = 600 20 1610.50 574.60 0.367 62

40 1608.25 572.85 0.370 87

60 1608.80 572.75 0.370 140

r = 700 20 1697.95 670.50 0.288 84

40 1693.60 669.15 0.289 99

60 1693.55 668.65 0.290 142

r = 800 20 1763.70 748.85 0.214 95

40 1759.85 748.15 0.216 125

60 1759.35 747.85 0.218 155

r = 900 20 1800.45 802.10 0.172 48

40 1797.80 802.05 0.172 100

60 1798.00 800.80 0.173 131

r = 1000 20 1827.55 848.05 0.134 62

40 1823.35 846.25 0.134 106

60 1820.45 845.70 0.136 130

Page 18 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

comparative purposes since the IDQPSO algorithm can achieve a relatively compet-
itive performance with less computation cost when compared to the other median
solvers.

Comparison with SAMedian, GAMedian and ASMedian

Median score

Lower median scores are desired and sought to be returned, and thus, the lower the
values for the median score obtained by one of the tested models, the better the per-
formance it demonstrated in our experiments. The comparison of IDQPSO-Median,
SAMedian, GAMedian, and ASMedian are provided in Table 2, and a detailed descrip-
tion of our experimental results is also described below. As shown in Table 2, when
the number of rearrangement events ranges from 600 to 1000, the IDQPSO-Median
achieves the best median scores as measured against the results obtained by all of the
parsimony-based methods, whereas ASMedian obtains better median scores when the
number of rearrangement events is smaller than 600. However, despite that ASMe-
dian performs relatively worse if compared with the IDQPSO-Median approach when
the number of rearrangement events is more than 600, ASMedian can still obtain bet-
ter optimums in the context of different rearrangement events when compared to the
results obtained by GAMedian and SAMedian. Furthermore, the differences in the
median scores themselves obtained by the models we tested are relatively apparent, and
GAMedian has the worst performance. An analysis of these results between IDQPSO-
Median and ASMedian reveals that IDQPSO-Median has a better capability for solving
complex high-dimensional problems versus ASMedian when the genomes are large and
distant.

Distance from median genome to actual ancestor

One indicator of the quality of the inferred median genome is the distance between the
inferred median genome and the true ancestor. The observed distances to true ances-
tors attained by the four median solvers in the context of differing rearrangement events
are displayed in Table 3. Our results show that our IDQPSO-Median achieves the best
performance and also obtains the lowest distance to the true ancestor when the num-
ber of rearrangement events are ≥ 500 , as well as when the number of events is 100. As
shown in Table 3, ASMedian can obtain the lowest distance provided that the number
of rearrangement events is smaller than 500, while our IDQPSO-Median is the second
best-performing algorithm producing only relatively worse results than the best method.
It is described in Table 3, these experimental results show that the other median solvers
outperform other metaheuristic methods such as GAMedian and SAMedian under dif-
ferent rearrangement events. By analyzing these results, it is evident that our IDQPSO-
Median performs relatively better when the genomes are distant and achieves similar
performance in the context of other genome arrangement events.

Adjacency accuracy

Adjacency accuracy is defined as the proportion between the inferred median genome
and the true ancestor of the intersection of their adjacencies to the union of their adja-
cencies. The accuracy of the adjacency values obtained by the selected median solvers

Page 19 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Ta
bl

e
2

M
ed

ia
n

sc
or

e
of

 ID
Q

PS
O

-M
ed

ia
n,

 S
A

M
ed

ia
n,

 G
A

M
ed

ia
n,

 a
nd

 A
SM

ed
ia

n

Th
e

be
st

 v
al

ue
s

of
 a

ll
th

e
co

m
pa

re
d

al
go

rit
hm

s
ar

e
in

di
ca

te
d

in
 it

al
ic

s

M
ed

ia
n

so
lv

er
M

ed
ia

n
sc

or
e

r =
 1

00
r =

 2
00

r =
 3

00
r =

 4
00

r =
 5

00
r =

 6
00

r =
 7

00
r =

 8
00

r =
 9

00
r =

 1
00

0

ID
Q

PS
O

-M
ed

ia
n

29
9.
5

59
8.

9
92

0.
5

12
40

.5
14
58
.7

16
08

.8
16
93

.6
17
59

.4
17
98

.0
18
20

.5

SA
M

ed
ia

n
29

9.
5

59
9.

4
93

3.
4

12
84

.4
15

16
.1

16
64

.0
17

50
.3

18
11

.4
18

50
.0

18
76

.2

G
A

M
ed

ia
n

33
3.

0
74

7.
8

11
66

.6
14

64
.1

16
48

.5
17

64
.8

18
35

.3
18

90
.4

19
18

.3
19

40
.0

A
SM

ed
ia

n
29

9.
5

59
8.
8

89
8.
4

12
27

.3
14
60

.7
16

21
.8

17
19

.3
17

90
.9

18
30

.2
18

56
.2

Page 20 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Ta
bl

e
3

D
is

ta
nc

e
to

 tr
ue

 a
nc

es
to

rs
 o

f I
D

Q
PS

O
-M

ed
ia

n,
 S

A
M

ed
ia

n,
 G

A
M

ed
ia

n,
 a

nd
 A

SM
ed

ia
n

Th
e

be
st

 v
al

ue
s

of
 a

ll
th

e
co

m
pa

re
d

al
go

rit
hm

s
ar

e
in

di
ca

te
d

in
 it

al
ic

s

M
ed

ia
n

so
lv

er
D

is
ta

nc
e

to
 tr

ue
 a

nc
es

to
rs

r =
 1

00
r =

 2
00

r =
 3

00
r =

 4
00

r =
 5

00
r =

 6
00

r =
 7

00
r =

 8
00

r =
 9

00
r =

 1
00

0

ID
Q

PS
O

-M
ed

ia
n

0.
15

0.
95

61
.7

5
24

9.
50

42
5.
05

57
2.
75

66
8.
65

74
7.
85

80
0.
80

84
5.
70

SA
M

ed
ia

n
0.

25
1.

75
75

.6
5

29
0.

25
46

7.
20

60
2.

70
69

9.
40

76
7.

00
81

7.
60

85
7.

90

G
A

M
ed

ia
n

30
.3

5
14

7.
40

28
4.

65
38

9.
40

50
0.

95
59

5.
50

67
7.

45
75

4.
20

80
3.

60
84

8.
40

A
SM

ed
ia

n
0.

35
0.
85

12
.2
0

24
1.
05

45
1.

35
61

5.
90

72
6.

40
80

2.
55

85
4.

40
88

8.
00

Page 21 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Ta
bl

e
4

A
dj

ac
en

cy
 a

cc
ur

ac
y

of
 ID

Q
PS

O
-M

ed
ia

n,
 S

A
M

ed
ia

n,
 G

A
M

ed
ia

n,
 a

nd
 A

SM
ed

ia
n

Th
e

be
st

 v
al

ue
s

of
 a

ll
th

e
co

m
pa

re
d

al
go

rit
hm

s
ar

e
in

di
ca

te
d

in
 it

al
ic

s

M
ed

ia
n

so
lv

er
A

dj
ac

en
cy

 a
cc

ur
ac

y

r =
 1

00
r =

 2
00

r =
 3

00
r =

 4
00

r =
 5

00
r =

 6
00

r =
 7

00
r =

 8
00

r =
 9

00
r =

 1
00

0

ID
Q

PS
O

-M
ed

ia
n

1.
00

0.
99

9
0.

91
0

0.
68
7

0.
51
1

0.
37
0

0.
29
0

0.
21
8

0.
17
3

0.
13
6

SA
M

ed
ia

n
1.

00
0.

99
0.

80
0.

48
0.

31
0.

20
8

0.
14

9
0.

11
2

0.
08

6
0.

06
6

G
A

M
ed

ia
n

0.
89

0.
60

0.
40

0.
31

0.
24

0.
18

4
0.

14
7

0.
11

2
0.

08
9

0.
07

1

A
SM

ed
ia

n
1.

00
1.
00

0.
96

0.
57

0.
35

0.
21

9
0.

14
6

0.
10

1
0.

07
3

0.
05

5

Page 22 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

are depicted in Table 4. From these results, it is clear that when the number of rear-
rangement events is ≥ 400 , the IDQPSO-Median approach obtains the best values for
adjacency accuracy, while when the number of rearrangement events is less than 400,
the adjacency accuracy values found by the approach of ASMedian is the highest and
thereby returns the most accurate values. By analyzing these results, we reach the con-
clusion that the IDQPSO-Median approach returns the highest values of adjacency accu-
racy when the number of rearrangement events becomes larger, and we can also derive
from our results that the accuracy of adjacency of IDQPSO-Median becomes lower
and thereafter, continues to decrease as the number of rearrangement events increase.
In summary, the IDQPSO-Median approach indicates its competitive performance in
obtaining good values for the accuracy of adjacency when compared with the other
median solvers analyzed in this experiment—SAMedian, GAMedian, and ASMedian.

Running time

Computational cost is an important performance criterion. The running time of
IDQPSO-Median is largely determined by the time spent on generations during evo-
lution and only an effective CPU time is considered in our experiments. As shown in
Table 5, the running time of GAMedian is relatively more expensive than all the other
median solvers we analyzed when the number of rearrangement events was less than
600. Besides, the running time of ASMedian increases dramatically when the number of
rearrangement events is more than 600. Based on these experimental results, the total
running time of ASMedian is approximately 40 h when the number of rearrangement
events is 1000. In addition, the time cost of GAMedian is considerably expensive. In spe-
cific terms, the running time of GAMedian for each generation is 330 seconds, namely,
the total running time is approximately 92 h. As a result, the total running time of 20
genomes is about 75 days when the maximum generation is set with a limit of 1000.

In this experiment, IDQPSO-Median is the fastest except for the simplest datasets,
where ASMedian needs about a second to finish. Compared to other two heuristics,
IDQPSO-Median is not only much faster, it also has a better performance than SAMed-
ian on the median score, true distance, and adjacency accuracy when the genomes are
large and distant.

Phylogeny reconstruction and ancestor inference

We integrated the new median solver with the GRAPPA framework which utilizes
an iterative approach to score a tree. To find the best tree with its associated internal
(ancestral) genomes, enumerates and scores all possible tree topologies using an itera-
tive approach. For a tree T for which both the leaf genomes and internal genomes are
known, we can easily compute the weight of each edge and the tree score w is defined as
summing all the edge lengths. However, since the internal genomes are unknown at first,
the task of scoring a tree is to find the best assignment of gene orders on the internal
nodes that gives the lowest tree score.

The GRAPPA scoring procedure has two stages: initialization and iteratively update.
For two nodes in a tree, we define the path length as the number of edges in the short-
est path from one to another. For each internal genome, we define a median problem
using three leaf (known) genomes that have the shortest path length to it. GRAPPA can

Page 23 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Ta
bl

e
5

M
ea

n
ru

nn
in

g
ti

m
e

of
 ID

Q
PS

O
-M

ed
ia

n,
 S

A
M

ed
ia

n,
 G

A
M

ed
ia

n,
 a

nd
 A

SM
ed

ia
n

Th
e

be
st

 v
al

ue
s

of
 a

ll
th

e
co

m
pa

re
d

al
go

rit
hm

s
ar

e
in

di
ca

te
d

in
 it

al
ic

s

M
ed

ia
n

so
lv

er
M

ea
n

ru
nn

in
g

tim
e

(s
)

r =
 1

00
r =

 2
00

r =
 3

00
r =

 4
00

r =
 5

00
r =

 6
00

r =
 7

00
r =

 8
00

r =
 9

00
r =

 1
00

0

ID
Q

PS
O

-M
ed

ia
n

5
25

84
12
4

12
1

14
0

14
2

15
5

13
1

13
0

SA
M

ed
ia

n
27

7
32

7
43

0
47

0
50

3
45

4
44

0
42

7
42

2
41

7

G
A

M
ed

ia
n

36
,1

12
34

,7
79

34
,0

91
33

,4
36

32
,9

94
32

,9
08

32
7,

35
32

,5
28

32
,4

45
32

,4
20

A
SM

ed
ia

n
1

1
27

25
12

,8
75

17
,7

87
48

,6
25

96
,0

20
12

3,
07

7
13

1,
51

0
14

2,
35

6

Page 24 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

then solve this median problem and use the resulting median as the initial gene order for
this internal node. GRAPPA then iteratively solves the median problem on each inter-
nal node using a depth-first approach and updates if a better genome is found until no
change occurs. The tree score is finally computed by summing all edge lengths based on
the final genomes assigned on the internal nodes.

It is obvious that such iterative procedure is expensive as it needs to solve numerous
median problems. To overcome this problem, GRAPPA uses the circular ordering lower
bound to eliminate most trees that are not worthy of being scored. The lower bound
is based on the following observation. Given n genomes, let di,j be the pairwise dis-
tance between genomes i and j. Given a tree T and its score w(T), if 1, 2, · · · , n is a cir-
cular ordering of the leaves of T, then we have 2w(T) ≥ d1,2 + d2,3 + · · · + dn,1 based
on the triangular inequality. In other words, if the best tree so far has score wbest and
d1,2 + d2,3 + · · · + dn,1 > 2wbest , the score of T must be larger than wbest , thus it can be
safely discarded. To utilize this lower bound, the GRAPPA framework first computes the
neighbor joining tree and uses its score as the best-so-far. It then enumerates all possible
trees and updates the best-so-far when a better tree is found, pruning trees that have the
lower bound larger than the best-so-far. The speed of GRAPPA relies on fast and accu-
rate median solvers: it not only needs to quickly compute many instances of the median
problem, but also needs to find as lower possible tree scores to tighten the lower bound
with smaller best-so-far scores. To balance the speed and accuracy, in our experiments,
we set the population size to be 20, and the maximum number of generations to be 500.

We conducted experiments using both simulated and real datasets. To generate simu-
lated datasets, we randomly create tree topologies with 12 leaves and each genome has
1000 genes. We set the expected number of events along each edge to be r = 20–180.
For each edge with the expected length r, the actual edge length is uniformly sampled
between 0.1r and 1.9r. We use two combinations of types of events: one with only inver-
sion, and one with 90% inversion and 10% transposition. We then assign the identity
genome to the root, and populate each node with respect to the number of events along
the path.

We compare our new method with both GRAPPA 2.0 (using an exact median solver)
and SA-GRAPPA using SAMedian as the solver. In our experiments, GRAPPA 2.0 can-
not finish scoring even the neighbor joining tree for r ≥ 100 (for datasets with trans-
positions, GRAPPA failed at r ≥ 80), thus its result on those datasets are not recorded.
For r ≥ 140 , as the distances between genome pairs are large, the edit distance becomes
seriously under estimate the true distance, making lower bound loose and many trees
have to be scored. For these datasets, we use a different approach by sorting trees with
respect to their lower bound and compute those with smaller lower bound first, with the
assumption that better trees have smaller lower bound. We report results based on the
best tree found after 5 days of computation.

An edge in the inferred tree is false positive (FP) if it is missing in the true
tree. Similarly, an edge in the true tree is false negative (FN) if it is missing in
the inferred tree. For n leaves, the Robinson–Foulds (RF) error rate is defined as
RF = (FP + FN)/2(n− 2)× 100% . Table 6 shows the RF error rate. For r ≤ 80 , all
methods (including neighbor joining) are very accurate and return trees without error.
However, for more difficult trees, the neighbor joining method becomes less accurate

Page 25 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

with 20–30% errors. IDQPSO is still the most accurate with error rate < 5% for datasets
without transposition and < 10% for datasets with transposition. SAMedian is less accu-
rate and GRAPPA cannot finish any tree.

Table 7 shows the scores of the reconstructed phylogenetic trees. For easier data-
sets (r ≤ 80), both IDQPSO and GRAPPA return the same best tree scores, although
IDQPSO is a bit slower (Table 8). For more difficult datasets, IDQPSO is much faster
than the SAMedian (Table 8) and dominates the performance of tree scores by finding
trees with fewer number of events.

Table 9 shows the accuracy of the inferred ancestors of the tree by using the DCJ dis-
tance between the genome at the root of the tree with the identity genome which is used
to generate the simuated datasets. All three methods inferred the ancestor that is identi-
cal to the true ancestor for easier datasets (r ≤ 60) while IDQPSO remains very accurate

Table 6 Average Robinson–Foulds (RF) errors for IDQPSO, Simulated Annealing
and GRAPPA

– indicates a program cannot finish after 5 days of computation. For the IDQPSO and Simulated Annealing methods, results
for r ≥ 140 are from the best trees obtained within 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program RF error (%) (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0 0 0 0 0 2.5 2.5 3.8

SA-Median 0 0 0 2.5 0 2.5 6.3 5.0 10.0

GRAPPA-Exact 0 0 0 0 – – – – –

Neighbor-joining 0 0 0 2.5 6.3 6.3 12.5 20 20

Program RF error (%) (90% Inversion/10% transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0 0 0 0 2.5 2.5 2.5 8.8

SA-Median 0 0 0 0 0 2.5 3.8 3.8 12.5

GRAPPA-Exact 0 0 0 – – – – – –

Neighbor-joining 0 0 0 0 3.8 13.8 16.3 23.8 30

Table 7 Average score of the best tree for IDQPSO, Simulated Annealing and GRAPPA

– indicates a program cannot finish the scoring of any tree after 5 days of computation. For the IDQPSO and Simulated
Annealing methods, results for r ≥ 140 are from the best trees obtained within 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program Tree score (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 496.9 985.7 1458.7 1847.3 2069.8 2730.7 3601.1 4092.6 4953.0

SA-Median 496.9 986.0 1459.9 1862.3 2086.4 2792.6 3705.7 4306.1 5210.9

GRAPPA-Exact 496.9 985.7 1458.7 1847.3 – – – – –

Program Tree score (10% inversions/10% transpositions)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 526.6 1033.0 1611.3 2158.6 2448.7 3363.8 4435.0 4903.7 5078.4

SA-Median 527.4 1033.6 1614.2 2174.5 2473.3 3447.1 4643.2 5070.0 5352.4

GRAPPA-Exact 527.4 1033.6 1610.3 – – – – – –

Page 26 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

Table 8 Average running time for IDQPSO, Simulated Annealing and GRAPPA

For r ≥ 140 , both IDQPSO and Simulated Annealing are stopped after 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program Running time (s) (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 118.1 138.7 178.0 295.6 835.9 19,839.4 > 7 days > 7 days > 7 days

SA-Median 167.4 298.6 577.1 1361.7 7930.5 42,249.7 > 7 days > 7 days > 7 days

GRAPPA-Exact 107.3 109.1 122.4 365.3 – – – – –

Program Running time (s) (90% inversions/10% transpositions)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 114.9 135.4 238.3 1096.3 6556.1 32,388.5 > 7 days > 7 days > 7 days

SA-Median 155.6 398.7 746.7 7429.0 26,607.9 164,978.2 > 7 days > 7 days > 7 days

GRAPPA-Exact 113.0 113.9 4158.3 – – – – – –

Fig. 5 The topology of species. The left figure a shows the true topology of 10 drosophila species, the right
figure b shows the inferred topology by the QPSO-GRAPPA method

Table 9 Average distance between the inferred and true tree ancestors for IDQPSO,
Simulated Annealing and GRAPPA

– indicates a program cannot finish the scoring of any tree after 5 days of computation. For the IDQPSO and Simulated
Annealing methods, results for r ≥ 140 are from the best trees obtained within 5 days of computation

The best values of all the compared algorithms are indicated in italics

Program Distance to the true ancestor (No transposition)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0 0 0 0.2 0.3 5.2 7.7 43.8

SA-Median 0 0 0 0.8 1.9 2.0 7.3 27.8 55.0

GRAPPA-Exact 0 0 0 0 – – – – –

Program Distance to the true ancestor (90% inversions/10% transpositions)

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180

IDQPSO-Median 0 0.2 0 1.7 2.0 10.1 47.7 53.0 99.6

SA-Median 0 0.2 0 2.1 3.1 13.9 69.8 60.6 115.4

GRAPPA-Exact 0 0.2 0 – – – – – –

Page 27 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

up to r = 120 . For datasets without tranpositions, even for difficult datasets such as
r = 140 and r = 160 , the ancestors inferred by IDQPSO is only a few DCJ events away
from true ancestors. The accuracy decreases when 10% transpositions are added, but
remains below 100 for the most difficult datasets.

We also conduct experiments on some biological datasets including the genomes of
10 drosophila species, each with 7332 genes. Fig. 5 shows both the phylogeny published
by Clark et al. [27] and the tree reconstructed by IDQPSO, which demonstrates that our
new method is able to infer accurate phylogenies for large genomes in real data.

Discussion
Based on the experimental results set forth above, a conclusion can be reached that all
of the compared median solvers can have their own different advantages and disadvan-
tages. The search space of the median problem is extremely large when the genomes are
distant and large, which presents a crucial task that continues to challenge the available
techniques in this area. However, GAMedian is quite limited by its lower speed and its
low potential for scalability arising from the necessity of it maintaining a large candidate
pool in order to obtain the optimal solution. In comparison, SAMedian achieves the sec-
ond best performance on performance indicator of running time; however, these perfor-
mance results come at significant disadvantages insofar as it returns lower performance
scores on three of the most significant criteria–namely, the median score, true distance,
and adjacency accuracy scores–which presents a palpable limitation on its practical
applications. Moreover, ASMedian further requires a considerable amount of storage
space and comprises a heavy burden for RAM since most of these partial solutions are
saved onto the hard disk.

In comparison with the other median solvers, when the genomes are large and distant,
IDQPSO-Median can achieve the relatively best scores for the performance indicators
of the median score, the true distance score, and the score for measuring the adjacency
accuracy. Because QPSO has fewer parameters to control, it requires the capacity to
iteratively search to find the global optimal and local optimum. In contrast, IDQPSO-
Median strategically preserves a piece of useful heuristic information from the current
generation to the next and thus, consequently shortens the number of generations to
reach convergence. Furthermore, the number of rearrangement events has no effect on
the computation cost, which means the IDQPSO-Median approach can overcome the
premature convergence problem even while the number of rearrangement events con-
tinues to increase. In conclusion, the IDQPSO-Median approach we propose has a supe-
rior performance when considering each of the significant criteria used in measuring
the performance of median solvers for ancestral genome inference, including the perfor-
mance metric of its running time.

In the experiments, it can be found that IDQPSO-Median, SAMedian, and GAMedian
can sustain their performance levels at a consistent speed even when the rearrangement
events become larger, which means metaheuristic algorithms can solve the complex-
ity problem presented by genome rearrangement problems notwithstanding that these
problem arise in the context of large and distant genomes. When compared to the
other criteria we have used to evaluate the approaches we tested, an additional conse-
quential factor, as compared to the other criteria, is whether it can converge with fewer

Page 28 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

generations or can converge even if it does not incorporate the use of computational
algorithms. GAMedian is far too expensive to face this set of challenges, for this reason,
the generation maximum for GAMedian was set as 100.

In contrast, the performance of the IDQPSO-Median demonstrates that IDQPSO-
Median has better scalability when compared with the existing parsimony-based meth-
ods. Therefore, the approach proposed in our IDQPSO-Median is significant in light
of the performance metrics achieved by the other state-of-the-art methods since it can
currently provide better scalability for phylogenetic reconstruction when the genomes
are large and distant. Based on the results of our experiments and the analysis set forth
above, the advantages obtained by the IDQPSO-Median approach we propose not only
rivals the advantages derived from the methods implemented by the other median solv-
ers we compared but also sets a new competitive paradigm for use in ancestral genome
inference.

Conclusions
This paper has proposed an IDQPSO-Median for ancestral genome inference. We
first propose the IDQPSO algorithm that adopts a process of obtaining two averages
of the fitness values in order to find the mean best position and then utilizes the sort-
ing operation to realize the evolution of IDQPSO. Next, we introduced an IDQPSO-
Median, which incorporates DCJ sorting into the IDQPSO algorithm, for undertaking
ancestral genome inference. We also conducted experimental studies that have served
to demonstrate the effectiveness of the IDQPSO-Median approach over comparable
median solver methods—ASMedian, SAMedian, and GAMedian. When the genomes
are large and distant, the IDQPSO-Median obtains the lowest median score, the high-
est adjacency accuracy, and the closest distance to the true ancestors. In conclusion, our
IDQPSO-Median achieves exceptional prowess in its flexibility, which results in its bet-
ter scalability, and does so, even when faced with increasing whole-genome data. Thus,
the IDQPSO algorithm and its incorporation of the IDQPSO-Median approach can
effectively be applied to address the critical median problem that continues to challenge
the current state-of-the-art techniques used in ancestral genome inference.

Although IDQPSO-Median has a desirable performance, especially when the genomes
are large and distant, a few issues exist that warrant our further attention and study. In
this vein, we would like to extend our work within larger genome rearrangement events,
such as deletion, insertion, and duplication. In addition, we could finish all of the experi-
ments we conduct on the quantum computer in order to increase the computation
speed by way of using the characteristics of the quantum algorithm: because the quan-
tum computer is times faster than any classical computer. Moreover, we would like the
opportunity to take advantage of distributed computation capacity using Spark, which is
a distributed framework that is designed to expedite computation. Finally, this research
shows us that we have the potential to find deep evolutionary histories using deep learn-
ing algorithms if more datasets with unequal gene length are supplied.

Abbreviations
IDQPSO: An improved discrete quantum-behaved particle swarm optimization algorithm; IDQPSO-Median: A median
solver by incorporating the DCJ sorting into IDQPSO; ASMedian: Adequate subgraphs median; GAMedian: GA-based

Page 29 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

median; SAMedian: Simulated annealing median; QPSO: Quantum-behaved particle swarm optimization; GA: Genetic
algorithm.

Acknowledgements
The authors wish to thank the editors and anonymous reviewers for their valuable comments and helpful suggestions
which greatly improved the paper’s quality. We would like to thank Marilyn E. Gartley for excellent and professional copy-
editing of the paper. This work was cooperated with the Department of Computer Science and Engineering at University
of South Carolina.

Authors’ contributions
ZZ performed the analyses and wrote the manuscript. ZZ and RX carried out experiments and conducted data analysis.
GP and JW Wrote the Review and Editing. WW and JT supervised the project and revised the manuscript. All authors read
and approved the final manuscript.

Funding
This study was supported by National Natural Science foundation of China (61873240). The funding body did not play
any role in the design of the study and collection, analysis, and interpretation of data and writing the manuscript.

Availability of data and materials
An C code implementation of the method is freely available at: https ://githu b.com/jenni fer19 /media n_solve r.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests, and Dr. Jijun Tang is a member of the editorial board (associ-
ate editor).

Author details
1 College of Computer Science and Technology, Zhejiang University of Technology, Liuhe Road, Hangzhou, China.
2 Department of Computer Science and Engineering, University of South Carolina, Assembly Street, Columbia, USA.
3 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Yaguan Road, Tianjin, China.

Received: 5 February 2020 Accepted: 23 October 2020

References
 1. Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA

repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49(6):856.
 2. Xia R, Lin Y, Zhou J, Geng T, Bing F, Tang J. Phylogenetic reconstruction for copy-number evolution problems. IEEE/

ACM Trans Comput Biol Bioinform. 2018;16:694–9.
 3. Toosi H, Moeini A, Hajirasouliha I. BAMSE: Bayesian model selection for tumor phylogeny inference among multiple

samples. BMC Bioinform. 2019;20(11):282.
 4. Stolzer M, Siewert K, Lai H, Xu M, Durand D. Event inference in multidomain families with phylogenetic reconcilia-

tion. BMC Bioinform. 2015;16(14):S8.
 5. Karpov N, Malikic S, Rahman MK, Sahinalp SC. A multi-labeled tree dissimilarity measure for comparing “clonal trees”

of tumor progression. Algorithms Mol Biol. 2019;14(1):17.
 6. Pe’er I, Shamir R. The median problems for breakpoints are NP-complete. In: Electronic colloquim on computational

complexity, report., vol. 71. Citeseer; 1998. p. 1–16.
 7. Caprara A. Formulations and hardness of multiple sorting by reversals. In: RECOMB, vol. 99. Citeseer; 1999. p. 84–93.
 8. Xu AW, Sankoff D. Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem.

In: International workshop on algorithms in bioinformatics. Springer; 2008. p. 25–37.
 9. Xu AW. A fast and exact algorithm for the median of three problem: a graph decomposition approach. J Comput

Biol. 2009;16(10):1369–81.
 10. Xu AW, Moret BM. GASTS: parsimony scoring under rearrangements. In: International workshop on algorithms in

bioinformatics. Springer; 2011. p. 351–363.
 11. Feijão P. Reconstruction of ancestral gene orders using intermediate genomes. BMC Bioinform. 2015;16(14):S3.
 12. Feijão P, Mane A, Chauve C. A tractable variant of the single cut or join distance with duplicated genes. In: RECOMB

international workshop on comparative genomics. Springer; 2017. p. 14–30.
 13. Mane AC, Lafond M, Feijão P, Chauve C. The rooted SCJ median with single gene duplications. In: RECOMB interna-

tional conference on comparative genomics. Springer; 2018. p. 28–48.
 14. Hill T, Lundgren A, Fredriksson R, Schiöth HB. Genetic algorithm for large-scale maximum parsimony phylogenetic

analysis of proteins. Biochim Biophys Acta (BBA) Gen Subj. 2005;1725(1):19–29.
 15. Gao N, Yang N, Tang J. Ancestral genome inference using a genetic algorithm approach. PLoS ONE.

2013;8(5):e62156.
 16. Gao N, Zhang Y, Feng B, Tang J. A cooperative co-evolutionary genetic algorithm for tree scoring and ancestral

genome inference. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(6):1248–54.

https://github.com/jennifer19/median_solver

Page 30 of 30Zhang et al. BMC Bioinformatics (2020) 21:516

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 17. Xia R, Lin Y, Zhou J, Feng B, Tang J. A median solver and phylogenetic inference based on double-cut-and-join sort-
ing. J Comput Biol. 2018;25(3):302–12.

 18. Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior. In: Proceedings of the
2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753). vol. 1. IEEE; 2004. p. 325–331.

 19. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permutations by translocation, inversion and block
interchange. Bioinformatics. 2005;21(16):3340–6.

 20. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements. In: International workshop on algo-
rithms in bioinformatics. Springer; 2006. p. 163–173.

 21. Braga MD, Stoye J. Counting all DCJ sorting scenarios. In: RECOMB international workshop on comparative genom-
ics. Springer; 2009. p. 36–47.

 22. Xu S, Mu X, Discrete Ma J, Optimization quantum-behaved particle swarm, for 2-D maximum entropic multilevel
thresholding image segmentation. In: 2015 Chinese Automation Congress (CAC). IEEE; 2015. p. 651–656.

 23. Li L, Jiao L, Zhao J, Shang R, Gong M. Quantum-behaved discrete multi-objective particle swarm optimization for
complex network clustering. Pattern Recogn. 2017;63:1–14.

 24. Lukemire J, Mandal A, Wong WK. d-qpso: a quantum-behaved particle swarm technique for finding d-optimal
designs with discrete and continuous factors and a binary response. Technometrics. 2019;61(1):77–87.

 25. Lai X, Hao J, Yue D, Gao H. A diversification-based quantum particle swarm optimization algorithm for the multi-
dimensional knapsack problem. In: 2018 5th IEEE international conference on cloud computing and intelligence
systems (CCIS). IEEE; 2019. p. 315–319.

 26. Sun J, Xu W, Fang W, Chai Z. Quantum-behaved particle swarm optimization with binary encoding. In: International
conference on adaptive and natural computing algorithms. Springer; 2007. p. 376–385.

 27. Clark A, Eisen M, Smith D, et al. Evolution of genes and genomes on the drosophila phylogeny. Nature.
2007;450(7167):203–18.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Achieving large and distant ancestral genome inference by using an improved discrete quantum-behaved particle swarm optimization algorithm
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Introduction
	Genome rearrangement events
	DCJ distance and DCJ sorting
	DCJ median problem

	Methods
	Quantum-behaved particle swarm optimization (QPSO)
	An improved discrete QPSO algorithm
	Update by adopting two averages of the fitness value
	Evolving through generations

	An IDQPSO-Median for ancestral genome inference
	Algorithm overview
	Initialization
	Fitness function
	Update the mean best median genome (mbest) by adopting two average of the median score
	Update the intermediate best median genomes (  ) by adopting DCJ sorting
	Update the current best median genomes (  ) by adopting DCJ sorting
	Pseudocode of the proposed IDQPSO-Median

	Results
	Experimental environments and parameters setting
	Performance of IDQPSO-Median
	Comparison with SAMedian, GAMedian and ASMedian
	Median score
	Distance from median genome to actual ancestor
	Adjacency accuracy
	Running time

	Phylogeny reconstruction and ancestor inference

	Discussion
	Conclusions
	Acknowledgements
	References

