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Abstract 

Background: The concept of minimal cut sets (MCS) has become an important math-
ematical framework for analyzing and (re)designing metabolic networks. However, the 
calculation of MCS in genome-scale metabolic models is a complex computational 
problem. The development of duality-based algorithms in the last years allowed the 
enumeration of thousands of MCS in genome-scale networks by solving mixed-integer 
linear problems (MILP). A recent advancement in this field was the introduction of the 
 MCS2 approach. In contrast to the Farkas-lemma-based dual system used in earlier 
studies, the  MCS2 approach employs a more condensed representation of the dual 
system based on the nullspace of the stoichiometric matrix, which, due to its reduced 
dimension, holds promise to further enhance MCS computations.

Results: In this work, we introduce several new variants and modifications of duality-
based MCS algorithms and benchmark their effects on the overall performance. As one 
major result, we generalize the original  MCS2 approach (which was limited to blocking 
the operation of certain target reactions) to the most general case of MCS computa-
tions with arbitrary target and desired regions. Building upon these developments, 
we introduce a new MILP variant which allows maximal flexibility in the formulation 
of MCS problems and fully leverages the reduced size of the nullspace-based dual 
system. With a comprehensive set of benchmarks, we show that the MILP with the 
nullspace-based dual system outperforms the MILP with the Farkas-lemma-based dual 
system speeding up MCS computation with an averaged factor of approximately 2.5. 
We furthermore present several simplifications in the formulation of constraints, mainly 
related to binary variables, which further enhance the performance of MCS-related 
MILP. However, the benchmarks also reveal that some highly condensed formulations 
of constraints, especially on reversible reactions, may lead to worse behavior when 
compared to variants with a larger number of (more explicit) constraints and involved 
variables.

Conclusions: Our results further enhance the algorithmic toolbox for MCS calcula-
tions and are of general importance for theoretical developments as well as for practi-
cal applications of the MCS framework.

Keywords: Constraint-based modeling, Stoichiometric modeling, Metabolic networks, 
Metabolic engineering, Computational strain design, Duality, Elementary modes

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi 
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Klamt et al. BMC Bioinformatics          (2020) 21:510  
https://doi.org/10.1186/s12859-020-03837-3

*Correspondence:   
klamt@mpi-magdeburg.
mpg.de 
1 Max Planck Institute 
for Dynamics of Complex 
Technical Systems, 
Sandtorstrasse 1, 
39106 Magdeburg, Germany
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0003-2563-7561
https://orcid.org/0000-0002-1270-9063
http://orcid.org/0000-0002-2956-7815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03837-3&domain=pdf


Page 2 of 21Klamt et al. BMC Bioinformatics          (2020) 21:510 

Background
The computer-aided analysis of complex metabolic networks has become an essential 
tool to understand functions, properties, and capabilities of the cellular metabolism and 
to rationally modify it for biotechnological applications. In particular, constraint-based 
metabolic modeling has evolved as a powerful framework providing a plethora of math-
ematical techniques to explore genome-scale metabolic networks [1–3]. One particular 
technique from this toolbox is based on the concept of minimal cut sets (MCS) [4–7]. 
MCS represent a minimal set of interventions in the metabolism (typically gene or reac-
tion knockouts) that will block a given (target) phenotype. The approach of MCS is very 
flexible as it allows the user to specify complex phenotypes to be blocked (e.g. growth or 
phenotypes with low yield of a certain product) and to account for (desired or protected) 
phenotypes that should be kept feasible when blocking the targeted phenotype. For this 
reason, and due to a number of useful theoretical properties, the concept of MCS has 
been used for various applications, for example, to compute synthetic lethals [7, 8], to 
find targets in cancer cells [8], to identify metabolic engineering strategies (computa-
tional strain design) [9–12], or to study the robustness of metabolic networks [13].

The development of algorithms for the efficient calculation of MCS has been a subject 
of many research activities [6, 7, 14–24]. In the first decade after its inception, MCS were 
mainly calculated from elementary (flux) modes, which are minimal functional units of 
metabolic networks that can operate in steady state [25, 26]. Having the complete set 
of elementary modes (EM) available enables one to fully enumerate all MCS for a given 
problem [6, 14, 17]. Generally, an MCS problem comprises a metabolic network, the tar-
get phenotype(s) to be blocked, and (optionally) desired phenotypes to be protected [6]. 
Most of the algorithms used to calculate the MCS from the EM are related to the cal-
culation of so-called minimal hitting sets, a method known from hypergraph theory [6, 
14, 17]. However, although this approach is straightforward and elegant, it essentially 
requires the full enumeration of EM in a preprocessing step which is not normally feasi-
ble in larger or even genome-scale networks [27]. An important theoretical development 
to overcome this limitation was achieved by Ballerstein et al. [15] who made use of the 
Farkas lemma to show that MCS can be calculated as EM in a dual network. Although 
the full enumeration of MCS (via EM in the dual network) was still infeasible in genome-
scale networks, this finding opened a completely new branch of MCS algorithms. In par-
ticular, in [7], the duality-based scheme could be employed to conceive a mixed-integer 
linear program (MILP) that can be used to enumerate the smallest MCS. Importantly, 
this algorithm now also allowed the calculation of thousands of MCS in genome-scale 
networks. The fact that the MILP-based algorithm delivers in genome-scale networks 
only a subset of the MCS with smallest (increasing) cardinality was not limiting since in 
most applications (especially for strain design) the MCS with the fewest interventions 
are typically most relevant. Several subsequent studies presented variants and exten-
sions of the duality-based MILP approach [18–21].

A major modification for the duality-based MCS computation was recently proposed 
by Miraskarshahi et  al. [21]. They suggested the use of a more compact dual network 
based on the nullspace of the stoichiometric matrix reducing the dimension of the prob-
lem compared to the Farkas-lemma based dual network derived by Ballerstein et al. [15]. 
The authors proved the correctness of their dual network approach for MCS calculation 
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(which they named minimal coordinated support MCS = MCS2), presented several useful 
properties of this method and showed that it may speed up the full enumeration of MCS 
in (smaller) networks whenever this enumeration is feasible. Moreover, motivated by their 
findings, they also proposed another variant of a duality-based MILP algorithm for the 
computation of shortest MCS in large networks [21].

In this study we present new theoretical and algorithmic developments that, on the one 
hand, extend and generalize the results of Miraskarshahi et al. [21], and, on the other hand, 
may further speed up duality-based MCS algorithms in general. First of all, we noticed that 
the mentioned new duality approach in [21] may only handle single or multiple target reac-
tions but not the more general approach of phenotypes specified by target region(s). Like-
wise, desired phenotypes cannot be protected which is crucial for applications in metabolic 
engineering. Furthermore, inhomogeneous constraints (e.g. lower and upper bounds of 
reaction rates different from zero), which are important features of constraint-based meta-
bolic models, were not considered. We therefore generalize the  MCS2 approach to allow 
integration of those specifications. Second, we found that the duality-based MILP algo-
rithm presented by Miraskarshahi et al. [21] did not fully leverage the smaller dual network 
introduced by the authors and mainly represented a small modification of the traditional 
MILP formulation [7], which is based on the duality approach of Ballerstein et al. [15]. We 
therefore develop a new MILP formulation that fully exploits the dimension reduction 
implied by the nullspace-based dual network representation. We perform several bench-
marks and show that our new nullspace-based MILP algorithm is significantly faster than 
the traditional MILP formulation derived from the Farkas lemma [7]. We finally also pre-
sent and test different variants of constraints representations in the two MILP formulations 
and quantify their effect on overall performance. It can be shown that the way constraints 
are represented in both approaches may have a high impact on algorithm performance and 
that highly condensed formulations of constraints do not always lead to superior compu-
tational performance compared to variants with a larger number of (more explicit) con-
straints and involved variables.

Methods
Definitions

The structure of a metabolic network with m metabolites and n reactions is represented by 
a stoichiometric matrix N ∈ R

m×n . In steady state with constant concentrations of internal 
metabolites the vector of reaction rates r ∈ R

n satisfies

The reaction rates ri may be constrained by lower (lbi) and upper ( ubi ) bounds expressing, 
for example, physiological flux limits (e.g. maximal substrate uptake rates or minimal ATP 
maintenance demand) and irreversibilities ( lbi ≥ 0):

For the sake of simplicity, we assume that ubi ≥ 0 for all reactions (if this is not the 
case for a reaction i then its direction can be reversed to fulfill this requirement). Some-
times we will use an equivalent representation of the flux bounds (2):

(1)
Nr = 0.

(2)lbi ≤ ri ≤ ubi
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By Irrev =
{
i|lbi ≥ 0

}
 we denote the set of indices of irreversible reactions, and with 

Rev =
{
i|lbi < 0

}
 the indices of the reversible reactions. Pure reversibility constraints 

can be expressed by

Other linear constraints on the fluxes, e.g. enzyme allocation constraints [28, 29], can 
be included in a more general set of linear (in)equalities:

The set of steady-state flux vectors r obeying (1), (2), and (4) span the space of feasible 
steady-state flux vectors (the flux polyhedron). In some applications and formulations 
only the steady state (1) and reversibility constraints (3) are considered, in this (homoge-
neous) case the solution space is the flux cone.

For the calculation of minimal cut sets (MCS), one first needs to specify a target func-
tionality that is to be blocked by the MCS. This can be the operation of a single or a set 
of target (or objective) reaction(s), i.e., one demands that knocking out the reactions of an 
MCS implies a zero flux in the target reaction(s) [4, 21]. A more general formulation is 
based on a target region characterized by inequalities posed by a matrix T ∈ R

t×n and a 
vector t ∈ R

t:

Importantly, the target region is spanned by (5) together with (1), (2) and (4) and thus 
forms a subset (a sub-polyhedron also called target polyhedron) of the flux polyhedron. 
The case of a target reaction can easily be represented by (5). For example, if h is the 
index of an irreversible target reaction whose operation is to be blocked by the MCS, 
then one includes a row in T containing only zeros except a −1 at position h and the cor-
responding element in t is a negative number c < 0 . However, for applications in compu-
tational strain design one typically needs more complicated formulations going beyond 
target reactions [e.g., to express (minimum) product yield constraints], which can con-
veniently be integrated as inequalities in (5). As mentioned above, the target region is 
defined by (5) together with (1), (2) and (4) and, for technical reasons, we assume in the 
following that the inhomogeneous flux bounds of (2a) (excluding pure reversibility con-
straints of type (3); these will be treated separately) as well as the additional constraints 
(4) have been incorporated in T and t ; the target region is then spanned by (1), (3) and 
(5). Again, in applications and formulations that only operate on the flux cone, inhomo-
geneous (non-zero) flux bounds in (2a) and other constraints of type (4) will not be pre-
sent. It should also be noted that the target region must not contain the zero vector since 
otherwise no MCS exists that could block the entire target region (reaction knockouts 
cannot eliminate the zero flux vector).

A further requirement for many MCS applications is the additional definition of a desired 
region, which contains the “wanted” stationary flux vectors of which at least some must 
be kept feasible after introducing the interventions of an MCS. MCS satisfying these 

(2a)
ri ≤ ubi

−ri ≤ −lbi

(3)ri ≥ 0 ∀i ∈ Irrev.

(4)Ar ≤ b.

(5)Tr ≤ t
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constraints (in addition to blocking the target region) are also called constrained MCS 
[6]. However, in the following, we will omit the prefix “constrained” as it should be clear 
from the context whether constrained MCS are meant or not. As for the target region, the 
desired region (desired polyhedron) can be specified by suitable inequalities based on a 
matrix D ∈ R

d×n and a vector d ∈ R
d:

The inequalities (6) may, for example, demand that a minimum growth rate or product 
yield should be feasible when knocking out the reactions of an MCS. In particular, with 
appropriate definitions of the target and desired regions one may search for MCS that 
enforce strong coupling of growth with product synthesis [11, 30], a frequently used strain 
design principle. Again, the actual desired region is contained in the flux polyhedron of the 
entire network, i.e., (6) needs to be fulfilled in combination with (1), (2) and (4). Similar 
as for the target region, we incorporate constraints of type (4) in matrix D and vector d , 
however, the flux bounds (2) are not included in D as they will be treated separately in the 
optimization problem given below. Accordingly, the desired region is then specified by (1), 
(2) and (6). Depending on the application, we allow that the desired space can also be empty 
if the only goal is to block the target region. This case of unconstrained MCS is relevant, for 
example, when computing synthetic lethals [7, 8].

Dual network based on Farkas lemma

As already described in the introductory section, for a long time, MCS have been com-
puted from the elementary modes of a given network by variants of the Berge algorithm 
for computing minimal hitting sets [5, 6, 14, 17]. One disadvantage of this approach is that 
the EM need to be calculated in a first step before the MCS can be determined. Since EM 
calculation in genome-scale metabolic networks is usually infeasible [27], this prevented 
the application of MCS in those cases. The introduction of the dual network approach by 
Ballerstein et al. [15] was a first major step to overcome this limitation because it allows 
one to compute MCS directly as EM from a dual network. The dual network introduced 
in [15] is based on the Farkas lemma and the theory of irreducible inconsistent subsets. 
Together with small simplifications suggested in [11, 19], the dual network with stoichio-
metric matrix Ndual and dual flux vector rdual reads:

I is the n× n identity matrix and ĨIrrev the n× |Irrev| reduced identity matrix contain-
ing one canonical unit vector for each irreversible reaction. The MCS that block all flux 
vectors of the target region can be obtained as follows: one first computes the EMs edual 
of the dual network and discards those dual EM that either violate tTw ≤ −c or are not 
support-minimal in the v-part. The set of MCS is then obtained by taking the support 
(the active elements) of the v-part of the selected EMs. In this formulation, the desired 

(6)Dr ≤ d

(7)

Ndualrdual =
�
NT I −ĨIrrev TT

�



u
v
s
w


 = 0

tTw ≤ −c

u ∈ R
m
, v ∈ R

n
, vi ≥ 0 ∀i ∈ Irrev, s ∈ R

|Irrev|
≥0

, w ∈ R
t
≥0, c > 0
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region is not yet considered, however, once the MCS are determined as described above, 
one may check for each MCS whether at least one vector of the desired region remains 
feasible after blocking the reactions of the MCS, otherwise the MCS is discarded. The 
more direct integration of the desired region is discussed below for the MILP-based 
computation of MCS.

We call the dual network described by (7) the Farkas-lemma-based (FLB) dual net-
work and note that its dimension is n× (m+ n+ |Irrev| + t) . The reactions of the pri-
mal have become metabolites in the dual while quite a large number of “reactions” exist 
in the dual network. The rank of the dual stoichiometric matrix is n and its nullspace 
[which contains the solutions rdual of (7)] has dimension m+ |Irrev| + t (Table 1).

Dual network based on the nullspace

The dimension of the solution space (nullspace) of the FLB dual system appears rather 
large compared to the nullspace of the primal system which is n− rank(N) and thus 
n−m if dependent rows (metabolites) have been removed from N as usually done 
in standard preprocessing steps (removal of conservation relations) [31]. Indeed, 
Miraskarshahi et  al. [21] showed that a more compact dual network with consider-
ably reduced dimension exists, from which the MCS can be computed as EMs. Their 
approach, which was designed for the case of target reactions (as a special case of 
the more general definition of target regions), is based on the following observation. 
Suppose we are given an irreversible target reaction with index h whose operation 
in steady state is to be blocked by finding suitable MCS. Suppose there is a metabo-
lite (row) i in N where reaction h produces this metabolite, i.e. Nih > 0 . Now, a cut 
set (but not necessarily minimal cut set) for target reaction h can be constructed by 
deleting all reactions that may consume this metabolite, i.e. by deleting all reversible 
reactions j with Nij  = 0 and all irreversible reactions j with Nij < 0 . This set

Table 1 Comparison of  the  number of  variables and  equations and  of  the dimension 
of  the  resulting solution space (nullspace) of  the  FLB and  NB dual system and  their 
corresponding MILP

The number of variables of the MILP includes the variables for the desired system integrated in the MILP, whereas the 
number of (in)equalities of the MILP excludes (flux) bounds and indicator constraints. m : number of metabolites; n : number 
of reactions; t  : number of rows (inequalities) in matrix T/vector t in Eq. (5);d : number of rows (inequalities) in matrix D
/vector d; |Irrev| number of irreversible reactions. (*) It is assumed that the stoichiometric matrix N has full row rank 
(conservation relations removed), i.e. rank(N) = m.

FLB dual system [Eq. (7)] Generalized NB dual system 
[Eq. (13)]

# dual variables m+ n+ |Irrev| + t n+ t

# (in)equalities n+ 1 n−m+ 1(*)

Dimension of solution space (nullspace) of 
the dual system

m+ |Irrev| + t m+ t

FLB MILP [Eq. (14)] NB MILP [Eq. (16)]

# variables in the corresponding MILP Continuous: 2n+m+ t Continuous: 2n+ t

Binary: n Binary: n

# (in)equalities in the corresponding MILP n+ 1+m+ d (n−m)+ 1+m+ d = n+ 1+ d
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is called the coordinated support of the (metabolite row) vector Ni,· and inactivating these 
reactions ensures that the target reaction cannot operate anymore because it would oth-
erwise violate the steady-state condition (1). Miraskarshahi et  al. [21] next concluded 
that this relationship holds true for any artificial metabolite p obtained by linear combi-
nations of rows (metabolites) of the stoichiometric matrix ( p = NTg ) and showed that 
such linear combinations are in fact sufficient to enumerate all MCS. Hence, the goal is 
to find linear combinations of the metabolites (i.e., a suitable vector of the row space of 
N ) such that the coordinated support of the resulting virtual metabolite becomes mini-
mal. An elegant solution to find these vectors was also suggested in [21]: one computes 
a kernel matrix K , which contains a basis of the nullspace of the stoichiometric matrix 
N (i.e. NK = 0) , and considers its transpose KT as stoichiometric matrix of the dual net-
work together with corresponding steady-state conditions for the dual metabolites:

Due to the construction, the reactions in this dual network are in 1:1 correspondence 
to the reactions of the original (primal) network but in the dual they are all treated as 
reversible. The metabolites of the dual system represent the degrees of freedoms of the 
primal system. From linear algebra it is known that the nullspace of the nullspace yields 
the primal row space, here of N . The trick is now to compute the EM of the dual network 
which delivers all support-minimal solutions of the row-space of N . Since all reactions 
in the dual system (9) are treated as reversible, each resulting EM of the dual, edual , is 
reversible, i.e., −edual also solves (9). After computation, we select all EM where the tar-
get reaction is involved and assume that the target reaction is positive (otherwise the EM 
can be multiplied by − 1 ). From these dual EM one may identify the ones with minimal 
coordinated support with respect to the target reaction which are then the MCS. Note 
that the reversibility of the reactions in the primal is thus accounted for by the coor-
dinated support (8), which differentiates between reversible and irreversible reactions. 
Although the correctness of the  MCS2 approach was also proven by means of the Farkas 
lemma [21], we call (9) the nullspace-based (NB) dual system to contrast it with the FLB 
dual system (7).

We note that the dimension of the NB dual network is (n− rank(N))× n and thus 
(n−m)× n if we again assume full row rank of N . Accordingly, compared to the FLB 
dual network (7), even if we neglect the dimension of matrix T , which allows specifi-
cation of more complex target regions, there are m+ |Irrev| less dual reactions (col-
umns in Ndual ) and m less dual metabolites (rows) showing that this representation is 
indeed more compact. Furthermore, the NB dual system has only m degrees of freedom 
(dimension of its nullspace) which is also reduced compared to the FLB system. The NB 
approach requires the determination of the kernel (nullspace) matrix of N , which, how-
ever, has low computational costs. As mentioned by the authors in [21], another advan-
tage of the  MCS2 approach is that the EM of the dual network can be used to determine 
the MCS for any target reaction or any combination of target reactions, hence, a recal-
culation of the EM is not necessary if the target reaction is changed. However, the NB 

(8)R
(
Ni,·

)
= {j|Nij < 0} ∪

{
j
∣∣j ∈ Rev ∧ Nij > 0

}

(9)
Ndualrdual = KTrdual = 0

rdual ∈ R
n
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approach in its current formulation cannot be applied with arbitrary target regions 
with inhomogeneous (non-zero) flux bounds or with more general constraints of type 
(4), moreover, it cannot deal with desired fluxes to be protected and is thus limited to a 
smaller class of applications. In the following we modify the NB dual network approach 
to allow incorporation of target and later of desired regions.

Incorporating arbitrary target regions in the NB dual network

We recall that a target region is specified by (1), (3) and (5)

and that the network’s inhomogeneous flux bounds (2a) and other constraints of type 
(4) have been integrated in T and t , respectively. By introducing slack variables w , this 
inhomogeneous system of linear inequalities can be recast to an extended homogeneous 
system of linear equations with one remaining single inequality:

Here, I is the t × t identity matrix. Putting the y = 1 inequality aside for a moment, we 
can now apply the NB dual network approach (9). For this we need a kernel matrix Ke 
for the extended system (10) which can be easily constructed as

where K is, as before, the kernel matrix of the stoichiometric matrix N of the original 
system. For the NB dual network (9) of the extended system (10) we thus obtain:

We still need to take into account that y = 1 and from (12) we see that this holds if and 
only if tTw = −1 . We can thus also write

Note that constraint tTw = −1 can be replaced with tTw ≤ −c, c > 0 [which is 
equivalent to the related constraint in Eq.  (7)] or simply with tTw < 0 , because the 

Nr = 0

ri ≥ 0 ∀i ∈ Irrev

Tr ≤ t

(10)
Nere =

�
N 0 0
T I −t

�


v
w
y


 = 0

v ∈ R
n
, vi ≥ 0 ∀i ∈ Irrev, w ∈ R

t
≥0, y = 1

(11)Ke =




K 0
−TK t
0 1


,

(12)Ne,dualre,dual = KT
e re,dual =

�
KT −KTTT 0

0 tT 1

�


v
w
y


 = 0

(13)

Ne,dualre,dual = KT
e re,dual =

(
KT −KTTT

)( v
w

)
= 0

tTw = −1

v ∈ R
n
, w ∈ R

t
≥0
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signed support of the solution 
(

v
w

)
 is identical for any c > 0 implying identical MCS. 

To apply the  MCS2 approach for this generalized system (13), we first compute the 
EM for (13) and discard all EM for which tTw < 0 does not hold. We then drop the w
-part of the remaining EM vectors and determine their coordinated support R 
[Eq. (8)]. The set of minimal coordinated supports finally represents the set of MCS. 
As explained for the FLB dual system, if also desired regions have been defined for the 
MCS problem, for all obtained MCS it can be easily tested which of them keep some 
flux vectors feasible in the desired region, all others are discarded.

We note that the dimension of the dual stoichiometric matrix in (13) is 
(n−m)× (n+ t) which is significantly smaller than the FLB dual network (7). A com-
parison of the dimensions of the FLB versus the (generalized) NB dual system and of 
the associated solution spaces is given in Table 1. For the simple case of target reac-
tions [treatable with the original NB approach (9)], system (13) is only slightly larger 
than (9) as it adds only one additional row in T [and thus one additional column in 
Ne,dual in (13)] for each target reaction. On the other hand, a filtering of all EM for the 
participation of the target reaction(s) (as needed by the original  MCS2 approach) is 
then not necessary anymore.

Computing MCS from the FLB dual system via a mixed‑integer linear program

While both the FLB and the NB dual networks allow direct enumeration of MCS as 
EM of a dual system, they are in this form still limited to smaller networks since full 
enumeration of MCS (EM in the dual system) remains infeasible in genome-scale net-
works. The development of duality-based MCS calculation schemes was nevertheless 
valuable as they provide a framework for the optimization-based calculation of the 
shortest MCS (MCS with smallest cardinality), which are most relevant in realistic 
applications [7]. Starting with the FLB dual network (7), searching for the smallest 

MCS translates to the task to find a vector rdual =




u
v
s
w


 which has minimal support 

in v . This optimization problem requires the introduction of integer variables indicat-
ing the support of v , i.e. the deleted reactions, and the optimization problem thus 
becomes a mixed-integer linear program (MILP). Since a MILP can deal with any 
type of linear (in)equalities and does not need a zero on the right-hand side in (7), 
structure and dimension of the system can partially be simplified. Moreover, the 
requirement that vectors of the desired system [posed by constraints (1), (2) and (6)] 
must be feasible can also directly be integrated in the MILP. There have been different 
MILP variants in treating the n× n identity matrix I and its associated vector v in (7), 
for example, they can be split into separate parts for reversible and irreversible reac-
tions [11]. The arguably most compact representation of the MILP based on the FLB 
dual network reads as follows:
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Blocking of the target region is demanded via the first two rows in the matrix which 
express the duality-based relationship (7). The associated variables for this dual subsystem 
are u , v and w . In contrast to the target region, the requirement of feasible flux vectors in 
the desired region (third and fourth row in the matrix in Eq. (14) as well as the flux bounds 
for the associated flux variable r ) are formulated via their primal representation [cf. Eqs. (1), 
(2) and (6)]. The continuous dual ( u, v,w ) and primal ( r ) variables are interconnected via 
the binary zi variables. The latter are directly linked to the dual v variables via indicator 
constraints. The zi being 1 mark the cuts, which happens if a reversible reaction i has a non-
zero vi or if an irreversible reaction i has a positive vi (hence, negative entries for irreversible 
reactions in v do not count). The smallest MCS can be found by the given objective func-
tion which minimizes the number of cuts.

Note that the constraints for the indicator variables for irreversible reactions as used 
above incorporate the original constraints expressed by the −̃IIrrev submatrix and its asso-
ciated variables s in (7), which thus become obsolete. The indicator constraints in (14) have 
been reduced and simplified compared to previous versions. In particular, each dual reac-
tion variable vi has only one associated indicator variable and no explicit constraint has 
been specified for the case zi = 1 . In principle, in Eq. (14), zi could be 1 (and thus indicate 
a cut) even if vi = 0 . However, with the objective function minimizing the number of cuts 
the solver will always seek to set all zi to zero as long as the indicator constraint for zi = 0 in 
(14) allows that. A similar simplification was used in [21].

As already mentioned above there are variants in treating the identity matrix I and the 
associated dual reaction vector v and its associated Boolean variables zi . In particular, the 
vi entries of reversible and irreversible reactions have often been separated and then been 
split for reversible reactions [7, 11, 20]. Using equivalent (reduced) indicator constraints as 
in (14), the split variant, which we will later compare with the more compact version (14), 
reads as follows:

(14)

minimize
�

i

zi

s.t.




NT I TT 0

0 0 tT 0
0 0 0 N
0 0 0 D







u
v
w
r




=
≤
=
≤




0
−c
0
d




∀i ∈ Irrev : zi = 0 → vi ≤ 0

∀i ∈ Rev : zi = 0 → vi = 0

(1− zi) · lbi ≤ ri ≤ (1− zi) · ubi

u ∈ R
m
, t ∈ R

t
, w ∈ R

t
≥0, v, r ∈ R

n
, c > 0, zi ∈ {0, 1}
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The subscripts Irrev and Rev at the matrices NT and TT indicate the respective subma-
trices containing the columns associated with the irreversible and reversible reactions, 
respectively. In (14a), the identity matrix and the v vector from (14) have accordingly 
been separated in two parts associated with irreversible and reversible reactions, and the 
reversible part has in turn be split into a positive and a negative part. (Note: with slight 
abuse of notation, in the term ∀i ∈ Irrev : zi = 0 → vIrrev,i = 0 , the variable vIrrev,i refers 
to the associated value of the irreversible reaction with original index i in the new vector 
vIrrev , the same interpretation holds for the indicator constraints of the reversible reac-
tions.) Instead of allowing a vIrrev,i to become negative in the absence of a cut, which then 
effectively turns it into a slack variable, we now use ≥ constraints for the first |Irrev| rows 
associated with irreversible reactions. This formulation requires |Rev| more continuous 
and |Rev| more Boolean variables but now all v variables are constrained to be non-nega-
tive which simplifies the indicator constraints.

The MCS C computed by (14) or (14a) is given by C = {i|zi = 1} . Multiple MCS solu-
tions (with increasing cardinality) can be found by adding integer cut constraints to the 
MILP for a previously found solution. If Ck denotes the set of reaction indices that are 
knocked-out in the k-th MCS, then the integer cut constraint are given by

In practice, we successively enumerate MCS with increasing size following the pro-
cedure introduced in [7]: during the q-th iteration of this procedure all MCS of size q 
are being enumerated using the populate feature of CPLEX. At the end of each iteration 
exclusion constraints (15) for the newly found MCS are added to prevent supersets of 
them being found as solutions in the next iteration.

Computing MCS from the NB dual system via MILP

Together with their NB-based dual system and the  MCS2 method, Miraskarshahi et al. [21] 
presented also a MILP for the calculation of shortest MCS for a given set of target reac-
tions. As central constraint for the continuous variables they derived uTN = v . However, 

with u being not sign-limited, this can be rewritten to 
(
NT I

)( u
v

)
= 0 which is the core 

(14a)

minimize
�

i

zi

s.t.



NT
Irrev IIrrev 0 0 TT

Irrev 0

NT
Rev 0 IRev −IRev TT

Rev 0

0 0 0 0 tT 0
0 0 0 0 0 N
0 0 0 0 0 D







u
vIrrev
v
p
Rev
vnRev
w
r




≥
=
≤
=
≤




0
0
−c
0
d




∀i ∈ Irrev : zi = 0 → vIrrev,i = 0

∀i ∈ Rev : zi = 0 → v
p
Rev,i = 0 ∧ vnRev,i = 0

(1− zi) · lbi ≤ ri ≤ (1− zi) · ubi

u ∈ R
m
, t ∈ R

t
, w ∈ R

t
≥0, vIrrev ∈ R

|Irrev|
≥0

,

v
p
Rev , v

n
Rev ∈ R

|Rev|
≥0

, r ∈ R
n
, c > 0, zi ∈ {0, 1}

(15)
∑
j∈Ck

zj ≤ |Ck | − 1.
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of (14), hence, this approach represents merely another variant of the MILP based on the 
FLB dual system (without desired/target regions). In fact, the MILP they presented does 
not exploit the reduced dimensionality of the NB dual network. Taking the derived NB dual 
system for arbitrary target regions (13) as starting point and using similar indicator con-
straints and an analogous integration of the desired system as in (14), a suitable MILP for 
computing the shortest MCS via the NB dual network can be constructed as follows:

As for the two different dual networks, this MILP has also reduced dimensions and there-
fore less variables compared to the FLB MILP (14) (see Table 1). A closer inspection also 
reveals a fundamental relationship between the two formulations (14) and (16): the FLB 
MILP (14) can directly be converted to the NB MILP (16) by multiplying the first row of the 
matrix with KT . Since KTNT = NK = 0 , the first column in the matrix in (14) completely 
vanishes and can be removed yielding system (16).

Analogous to the FLB MILP (14a), an alternative formulation of the NB MILP (16) can be 
obtained by separating the vi entries of irreversible and reversible reactions and subsequent 
splitting of vi for reversible reactions. We will later compare this variant with the most con-
densed version (16):

(16)

minimize
�

i

zi

s.t.




KT KT · TT 0

0 tT 0
0 0 N
0 0 D







v
w
r




=
≤
=
≤




0
−c
0
d




∀i ∈ Irrev : zi = 0 → vi ≤ 0

∀i ∈ Rev : zi = 0 → vi = 0

(1− zi) · lbi ≤ ri ≤ (1− zi) · ubi

t ∈ R
t
, w ∈ R

t
≥0, c > 0, v, r ∈ R

n
, zi ∈ {0, 1}

(16a)

minimize
�

i

zi

s.t.




KT
Irrev KT

Rev −KT
Rev KT · TT 0

0 0 0 tT 0
0 0 0 0 N
0 0 0 0 D


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

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v
p
Rev
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w
r




=
≤
=
≤




0
−c
0
d


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∀i ∈ Irrev : zi = 0 → vIrrev ≤ 0

∀i ∈ Rev : zi = 0 → v
p
Rev,i = 0 ∧ vnRev,i = 0

(1− zi) · lbi ≤ ri ≤ (1− zi) · ubi

t ∈ R
t
, w ∈ R

t
≥0, vIrrev ∈ R

|Irrev|
,

v
p
Rev , v

n
Rev ∈ R

|Rev|
≥0

, r ∈ R
n
, c > 0, zi ∈ {0, 1}
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Reduced representation of the desired region

The kernel matrix K can also be used to simplify the constraints for the desired behav-
ior in the two MILP variants (14) and (16): the flux vector r of the desired system lies 
in the nullspace of N and can thus be written as linear combination of columns of the 
kernel matrix r = Ka . For example, by substituting r with Ka in (14), the third row in 
the matrix disappears and the system reduces to:

Applying the same transformation to the MILP (16) yields the reduced NB system

Results
For benchmarking the different MILP variants, we enumerated MCS in three 
genome-scale metabolic networks: iJO1366 (Escherichia coli), iMM904 (Saccharomy-
ces cerevisiae), and iJM658 (Corynebacterium glutamicum). As a classical problem for 
computational strain design, we first computed MCS for the growth-coupled produc-
tion of a variety of products (iJO1366: 49 products, up to MCS size 7; iMM904: 45 
products up to MCS size 7; iJM658: 94 products up to MCS size 8). The calculations 
were repeated three times with different seeds to induce different branching behavior 
in the MILP search tree and to thus obtain runtime statistics with higher fidelity. This 
gives a total of 564 enumerations per setup. As a second class of MCS problems, we 
also enumerated synthetic lethals in these three networks (up to size 4 in iJO1366 

(17)

minimize
�

i

zi

s.t.




NT I TT 0

0 0 tT 0
0 0 0 D · K





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u
v
w
a


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d


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∀i ∈ Irrev : zi = 0 → vi ≤ 0
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(1− zi) · lbi ≤ Ki,· · a ≤ (1− zi) · ubi

u ∈ R
m
, t ∈ R

t
, w ∈ R

t
≥0, v, r ∈ R

n
, a ∈ R

n−m
, c > 0, zi ∈ {0, 1}

(18)
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�
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

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t ∈ R
t
, w ∈ R

t
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n
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, zi ∈ {0, 1}.
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and iMM904, up to size 5 in iJM658). Synthetic lethals are MCS that suppress growth 
either completely or above some given threshold for the growth rate. Here, 11 thresh-
olds (0.1%, 1%, 10%, …, 90% of the maximal growth rate) were used and the calcula-
tions repeated with three different seeds which gives 99 enumerations per setup. Note 
that computation of synthetic lethals does not involve a desired region and has thus a 
simpler structure.

With these benchmarks we will compare the following MILP variants for calculating 
MCS: (1) The main goal of the benchmarks is to compare the runtime behavior of the 
MILPs derived from (a) the Farkas-lemma-based (FLB) versus (b) the nullspace-based 
(NB) dual system [Eqs. (14) and (16)]. (2) Afterwards we investigate whether the dimen-
sion reduction of the MILP via the kernel-based integration of the desired region in the 
MILP [Eqs. (17) and (18)] leads to runtime improvements. (3) Finally, it will be tested 
whether it is advantageous to split reversible dual reaction variables v as done in (14a) 
and (16a).

During the MCS enumerations, millions of linear programs (LPs) are being solved 
which, depending on the chosen MILP formulation and type of MCS problem, can be 
sensitive to numerical issues and sometimes lead to erroneous results. A typical problem 
that can occur is that an MCS of size l is missed and consequently several supersets of 
size l + 1 are found in the next iteration. However, faulty results of this type are easy to 
recognize and fix by running additional validation LPs: The correctness of a computed 
MCS can be checked by running LPs to verify that (i) each MCS is a cut set (must disable 
the target region), that (ii) it is not a cut set anymore if any knock-out is removed (mini-
mality), and that (iii) the desired region (when given) remains feasible. Apart from erro-
neous MCS, it may also happen that certain MCS are overlooked. However, as we used 
different setups and multiple seeds it is reasonable to assume that a result is complete if 
the same result is being obtained for a variety of conditions. For the pairwise compari-
son of computation times below we will therefore consider only those calculations which 
gave the correct results, hence, the number of enumerations that enter a comparison 
may vary.

All benchmark calculations were performed on a cluster node with two 8-core proces-
sors (Intel Xeon Silver 4110) and 192 GB RAM. The different functions for MCS enu-
meration are part of the latest CellNetAnalyzer package [32, 33] (version 2020.2) and 
the scripts to recalculate the benchmarks can be found on GitHub: (https ://githu b.com/
ARB-Lab/FLB_NB_bench marks ).

Comparing FLB versus NB dual system in the MILP formulation

Figure 1 shows the effect on the runtime when using the NB MILP (16) instead of FLB 
MILP (14) for enumerating MCS for (a) growth-coupled production (Fig. 1a) and (b) for 
synthetic lethals (Fig. 1b). The NB variant is in both cases clearly favorable and speeds 
up the total computation time (over all considered scenarios) by a factor of around 2.5. 
The advantageous effect can consistently be seen for all three models and both types of 
problems, although there is a smaller fraction of scenarios (7.7% for growth-coupling 
MCS, 17.2% for synthetic lethals), where the FLB approach was faster than the NB MILP. 
However, at least for the synthetic lethals, this pertains to scenarios where the computa-
tion time is relatively low.

https://github.com/ARB-Lab/FLB_NB_benchmarks
https://github.com/ARB-Lab/FLB_NB_benchmarks
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Beside the computation time one can also evaluate how the two approaches affect 
the sizes of the actual MILP instances and the memory requirements. These are given 
in Additional file  1 where it can be seen that the NB MILPs have, as expected, fewer 
columns (variables) and fewer rows (inequalities) than their FLB counterparts. In con-
trast, the FLB MILPs have less non-zero entries because stoichiometric matrices are very 
sparse whereas their kernels typically contain more non-zeros which could, in principle, 
negatively affect the runtime behavior. The number of binary variables is the same for 
FLB and NB MILPs, but the latter require a few less indicators. As a result, the memory 
(peak) requirements appear to be lower for NB MILPs (Additional file 1), although these 
values have to be taken with caution because CPLEX does not provide comprehensive 
memory usage logging.

Effect of using kernel‑based description of the desired region

Next we investigated the effect of using the kernel (instead of the stoichiometric) matrix 
for expressing the constraints of the desired region. We tested this for both MILP vari-
ants, first for the FLB dual system [MILP (14) against MILP (17); Fig. 2a] and then for 
the NB dual system [MILP (16) against MILP (18); Fig. 2b]. Since synthetic lethals do 
not involve desired regions, these benchmarks were restricted to MCS for growth-cou-
pled strain designs. Despite its reduced dimension, the kernel-based formulation of the 
desired system led to only marginal overall improvements (~ 1.5%) in both MILP vari-
ants. For the FLB approach, there was even a slightly higher number of cases where the 

Fig. 1 Comparison of computation times of the FLB MILP [Eq. (14)] versus the NB MILP [Eq. (16)] for 
determining MCS for a growth-coupled production strains or b synthetic lethals. Each dot represents one 
particular MCS enumeration scenario (product/organism/seed combination in a and growth rate threshold/
seed combination in b) and the dot color marks the respective model (organism) in which the computation 
has been conducted: green iJM658; red: iMM904; black: iJO1366. The total number of comparable 
enumeration scenarios as well as the cumulative sum of the computation times over all scenarios for the 
MILP variants are given under the diagram. The percentage at the axes quantifies the relative frequency with 
which the respective MILP variant was faster than the other MILP variant
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variant with the stoichiometric matrix in the desired system was faster (although the 
cumulative computation time over all scenarios was higher).

Effect of separating irreversible and reversible reactions

The FLB MILP formulation in Eq. (14) is more condensed than previously used variants 
because it (1) uses a reduced and non-redundant formulation of indicator constraints, 
(2) uses only one binary variable zi per dual reaction variable vi and (3) does not separate 
and split dual reaction variables vi related to reversible reactions. In dedicated bench-
marks we found that (1) and (2) indeed speed up the calculations in both FLB and NB 
MILP with a factor of 1.2–4 (not shown). Regarding the third simplification, in a last set 
of benchmarks we compared the condensed representations of the FLB (14) and NB (16) 
MILP representations against the equivalent but expanded formulations given in (14a) 
and (16a), where dual variables vi related to reversible reactions have been split.

Surprisingly, although the number of variables increases (for the reversible reactions, 
the number of vi variables is doubled), splitting the v variables has a strong beneficial 
effect in both FLB and NB MILP (Fig. 3). In particular, for computing MCS represent-
ing growth-coupled strain designs, the runtime for the FLB MILP improves by a fac-
tor of 5.6. For the new NB MILP, the speed-up factor is 2.9 and thus still significant, 
however, due to the smaller relative improvement, the overall advantage of the NB over 
FLB is reduced from a factor of 2.5 (Fig. 1a) to 1.24 (Fig. 3c). Less significant but still 
relevant speed-ups of the split MILP variants can be observed when computing MCS 

Fig. 2 Comparison of computation times of the a FLB MILP and of the b NB MILP with either the 
stoichiometric matrix (“stoichmat desired”) or the kernel matrix (“kernel desired”) in the formulation of the 
desired system. The x-axis and y-axis in a refer to the MILPs in Eqs. (14) and (17), respectively, and in b to 
the MILP in Eqs. (16) and (18), respectively. Each dot represents one particular MCS enumeration scenario 
(product/organism/seed combination) for enumerating MCS for growth-coupled strain designs and the 
dot color marks the respective model (organism) in which the computation has been conducted: green 
iJM658; red: iMM904; black: iJO1366. The total number of comparable enumeration scenarios as well as 
the cumulative sum of the computation times over all scenarios for the MILP variants are given below the 
diagram. The percentage at the axes quantifies the relative frequency with which the respective MILP variant 
was faster than the other MILP variant
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representing synthetic lethals, where the runtimes are improved by 15% (FLB; Fig. 3c) 
and 30% (Fig. 3e). As the split variant of the NB MILP improves relatively better than the 
FLB MILP, the former even expands its advantage over the FLB variant in this case (aver-
aged speed-up factor of 3.0 for NB; Fig. 3f ).

Discussion
The development of a duality-based algorithmic framework for MCS computation was 
a cornerstone to allow the enumeration of thousands of MCS in genome-scale networks 
via mixed-integer linear programming. Several recent refinements and extensions con-
tributed to the improved performance of the respective algorithms and broadened the 
spectrum of applications in systems biology and computer-aided metabolic engineering.

In this work we introduced several modifications and variants of the duality-based 
core algorithm and benchmarked their effects on the overall performance. The main 
theoretical results build upon the recently introduced  MCS2 approach [21] and 

Fig. 3 Comparison of computation times of the FLB MILP and the NB MILP when used either with the 
condensed (“no split”) MILP variant [Eqs. (14) and (16), respectively] or the (“rev. split”) MILP variant with 
separated and split reversible reactions [Eqs. (14a) and (16a), respectively]. a, d “no split” versus “rev. split” in 
FLB for MCS for growth coupling (a) and for synthetic lethals (d); b, e “no split” versus “rev. split” in NB for MCS 
for growth coupling (b) and for synthetic lethals (e); c, f: comparison of “rev. split” variants for FLB and NB for 
MCS for growth coupling (c) and for synthetic lethals (f). Each dot represents one particular MCS enumeration 
scenario (product/organism/seed combination in a–c and growth rate threshold/seed combination in d, e 
and the dot color marks the respective model (organism) in which the computation has been conducted: 
green iJM658; red: iMM904; black: iJO1366. The total number of comparable enumeration scenarios as well 
as the cumulative sum of the computation times over all scenarios for the MILP variants are given below the 
diagram. The percentage at the axes quantifies the relative frequency with which the respective MILP variant 
was faster than the other MILP variant
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extend it in several directions. In contrast to the Farkas-lemma-based dual system 
used in earlier studies, the  MCS2 approach employs a more condensed representa-
tion of the dual system based on the nullspace of the stoichiometric matrix, which, 
due to its reduced dimension, holds promises to further enhance MCS computations. 
Herein, we generalized the original NB approach (which was limited to blocking the 
operation of certain target reactions) to the most general case of MCS computations 
with arbitrary target and desired regions. Moreover, we introduced a new MILP vari-
ant which fully leverages the reduced size of the NB dual system. With a large set of 
benchmarks we could show that this NB MILP outperforms the MILP based on the 
FLB dual system speeding up MCS computation with an averaged factor of approxi-
mately 2.5. Thus, in contrast to the findings in [21], with our version of the NB MILP 
we could demonstrate a significant benefit compared to the conventional FLB MILP. 
Although the latter has the same number of binary (indicator) variables as the NB 
MILP (which is often seen as a main factor for the complexity of a MILP), the reduced 
number of continuous variables ( m less) and equalites ( m less; see Table 1) leads in 
most cases to a decrease of the runtime and peak memory usage. The new NB MILP 
thus seems to be the fastest currently known algorithm for the dual calculation of 
MCS. However, it should be noted that there is no guarantee that the NB MILP is 
always faster than the FLB MILP for a given MCS problem. For example, despite the 
averaged speed-up factor of 2.5, there were a few cases in all three considered net-
works where the FLB MILP ran faster than the NB version (see Fig. 1a). Furthermore, 
although the use of the kernel instead of the stoichiometric matrix in the dual reduces 
the dimension of the NB MILP, the kernel matrix has usually more non-zero entries 
than the normally very sparse stoichiometric matrix (Additional file 1), which could 
potentially lead to adverse effects when using the NB MILP. This might also be the 
reason why the replacement of the stoichiometric matrix with the kernel matrix in 
the description of the desired system in the FLB MILP (17) and NB MILP (18) led 
only to minor runtime improvements. Methods that help to compute sparse kernel 
matrices might therefore help to further boost the NB MILP (and the FLB MILP with 
a kernel-based formulation of the desired system).

Apart from the generalized NB dual system and its MILP, we also introduced sim-
plifications for the formulation of constraints related to binary MILP variables. These 
simplifications can be applied in both FLB as well as NB MILPs and allow a very com-
pact representation of MCS-related MILPs [Eqs. (14) and (16)], despite of the wide 
range of problems that can be addressed with them. We found that most of these con-
densed formulations accelerated the respective calculations, however, the number of 
variables and constraints of two different MILP variants is not always a predictor for 
their relative performance as was shown in the third set of our benchmarks. Separat-
ing and then splitting the dual variable of reversible reactions in the FLB MILP (14a) 
and in the NB MILP (16a) increases the number of continuous variables but it nev-
ertheless led to a remarkable up to fivefold speed-up. This example also shows that 
the relative outperformance of the NB over the FLB MILP may vary with (seemingly 
minor) modifications in the respective MILP formulation and also with the type of 
MCS problem (e.g., MCS for growth-coupled strain designs vs. synthetic lethals).
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We finally note that the new MCS MILP variants presented herein can be easily 
adapted to generalized MCS problems recently proposed in [24], including the con-
sideration of multiple target and desired regions or the computation of gene MCS.

Conclusion
In this study we presented several algorithmic advancements for the dual calculation 
of MCS in metabolic networks. This includes (1) a generalization of the recently intro-
duced nullspace-based dual network approach, (2) its translation to a corresponding 
MILP with reduced dimensions compared to previous configurations, and (3) several 
simplifications in the formulation of constraints related to binary MILP variables. A 
large set of benchmark calculations was performed, demonstrating the superior per-
formance of the new nullspace-based MILP formulation but also revealing that highly 
condensed formulations of constraints, especially on reversible reactions, may behave 
worse than variants with a larger number of (more explicit) constraints and involved 
variables. Our results are of high importance for theoretical and algorithmic develop-
ments as well as for practical applications of the MCS framework.
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Additional file 1. Tables with information on MILP sizes and average peak memory requirements for the different 
computations shown in Figs. 1–3.
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