
Inferring chromosome radial organization 
from Hi‑C data
Priyojit Das1, Tongye Shen2 and Rachel Patton McCord2* 

Background
The three dimensional (3D) structure of the human genome is composed of differ-
ent structures at different length scales. At smaller length scales, nucleosome posi-
tions, loops, and topologically associating domains are the most salient features, 
followed by compartmentalization at a longer length scale [1]. At the largest scale of 
this genome organization, the 3D bodies of individual chromosomes arrange mostly 
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as discrete entities, known as chromosome territories (CTs) [2]. The arrangement of 
all the CTs inside the nucleus with respect to nuclear center and periphery forms the 
higher-order genome architecture. This CT organization is nonrandom with respect 
to the nucleus periphery and can play important roles in different nuclear mecha-
nisms ranging from DNA replication and gene expression to the processing of RNA 
[3]. Recently, it has been shown that chromosome territorial organization can also 
protect genome from deleterious rearrangements during DNA damage [4]. Altera-
tions in CT organization can also be important during cell differentiation [5] and in 
different disease conditions. For example, in Hutchinson–Gilford progeria syndrome 
cells, chr18 shifts toward the nucleus interior as compared to its position in normal 
proliferating fibroblast cells [6], while certain gene-rich chromosomes localize near 
the periphery in blebs in progeria cells [7]. Alterations in CTs can influence the likeli-
hood of chromosomal translocations. For example, during adipogenesis, chr12 and 
chr16 become spatially proximal, increasing the chance of translocation between 
those chromosomes, which is the driving event of liposarcoma tumorigenesis [5]. 
Recently, researchers have shown that in breast cancer, a gain in inter-chromosomal 
interactions for chrX correlates with its gene expression changes [8]. Approaches to 
characterize CT positions can thus further our understanding of the implications of 
CT arrangements in health and disease.

From careful microscopic measurements over the past several decades, largely using 
sequence specific probes in fluorescence in situ hybridization (FISH), principles of CT 
organization in certain cell types have been identified. It has been observed that CTs are 
often organized according to one of two different distributions: either a gene density or 
chromosome length based pattern [9, 10]. Opposing forces of gene activity and lamina 
associated domain (LAD) density on different chromosomes likely contribute to these 
different distributions [11, 12]. In general, LADs are likely to be repressive to gene activ-
ity and occur more frequently on gene poor chromosomes, which also tend to be longer 
than gene rich chromosomes [13]. The proliferation rate of cells and nuclear shape have 
also been implicated as factors influencing CT organization. For example, proliferating 
cells tend to follow a gene density-based organization compared to the length-based dis-
tribution in quiescent or senescent cells [14]. Further, the spherical human lymphocyte 
nucleus follows a gene density based organization, which is conserved across several 
related species [15, 16], while the chromosome size based distribution is more prevalent 
in ellipsoidal fibroblast nuclei [17]. Our understanding of the relationships between fac-
tors influencing CT distribution are limited, however, by the fact that relatively few dif-
ferent cell types have been characterized in depth by this type of microscopic analysis.

Thorough analysis of CT positions requires not only observing their average, but also 
the distribution of possible positions across the cell population. The position of each 
chromosome varies between cells in the population, even while following certain ten-
dencies [18]. Throughout interphase the CT positions remain stable, but change from 
one generation to another during mitosis as the nuclear envelope is broken down and 
re-established [19–22]. Improvements to microscopy experiments [23, 24] and image 
analysis methods make sampling this variation in CT position across the population 
increasingly feasible [25–27], yet such analyses of all CT positions in a large number of 
cells exist for only few cell types [28].
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In contrast, genome wide chromosome conformation capture (Hi-C) approaches are 
being applied to characterize the 3D genome structure of rapidly increasing numbers 
of cell types and conditions for the past decade [1, 29–31]. This Hi-C technique and its 
variants capture a snapshot of pairwise chromosomal interactions ranging from spe-
cific enhancer-promoter interactions [32] to large scale inter-chromosomal interactions. 
Due to the effect of noise and high variability, the inter-chromosomal interactions have 
received less attention compared to their intra-chromosomal counterparts. In a past 
few years, with the improvement of experimental protocols, the effect of noise on inter-
chromosomal contacts has been reduced and studies based on relevant inter-chromo-
somal interactions have started to emerge [33–36]. For example, genes corresponding to 
olfactory receptors from different chromosomes form specific inter-chromosomal con-
tacts in mouse olfactory sensory neurons which strengthen upon differentiation from a 
progenitor cell [37]. In an another set of studies, by analyzing Hi-C inter-chromosomal 
contacts obtained from different malignant diseases, researchers have identified several 
novel chromosomal rearrangements [38, 39]. Though Hi-C does not directly capture the 
radial position of the CTs, approaches that infer 3D chromosome positioning informa-
tion from Hi-C contact data provide a valuable supplement to microscopic data, greatly 
increasing the number of cell types for which CT positions can be analyzed. In this study, 
we explore a set of Hi-C analysis approaches focused on rapid and efficient prediction of 
CT radial organization, ranging from very simple direct calculations on the Hi-C contact 
matrix to a network model tuned by additional chromosome property information.

Many approaches have been developed to reconstruct the 3D folding of individual 
chromosomes and the genome from Hi-C data at different resolutions using restraint 
and polymer physics based approaches [40, 41]. Some models focus on detailed struc-
tures of local regions of chromatin rather than the whole genome, and for others, the 
primary focus is often to understand the mechanistic principles underlying the organi-
zation of the interphase and metaphase genome rather than a prediction of CT arrange-
ment [42–48]. But, some of the approaches have also explored the radial arrangement 
of CTs in their 3D models. An early restraint-based model of the 3D genome based on 
tethered chromosome conformation capture (TCC) data predicted CT positions that 
agreed with the major principles of lymphoblast genome organization characterized by 
microscopy [42]. In an another work, Hi-C maps were probabilistically deconvolutated 
into a population of single cell structures, and the averaged radial position of the CTs 
predicted from those structures matched fairly well with microscopic measurements 
from a single cell type [49]. A series of coarse-grained polymer simulation based stud-
ies have been performed to characterize non-random organization of the chromosomes 
using gene activity and random and biological looping constraints [50–52]. In a recent 
polymer modeling based study, the researchers used Hi-C derived properties and a chro-
matin state based energy function to study the principles of the spatial as well as radial 
genome organization [53].

Because numerous arrangements can potentially be consistent with a set of Hi-C con-
tacts, in many cases, whole genome 3D models generated from Hi-C also have to take 
into account external information in order to increase the accuracy of CT positioning 
predictions. For example, Stevens et al. combine imaging and Hi-C contacts on single 
cells to orient their 3D chromosome models [54]. Similarly, the Chrom3D algorithm 
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combines LAD data along with Hi-C data to capture spatial and radial organization 
of the chromosomes [55]. Di Stefano et  al. used a steered molecular dynamics based 
approach to reconstruct diploid genome organization from Hi-C data [56]. Using sig-
nificant Hi-C interactions as the constraints, the modeling technique was able to capture 
the preferential nuclear position of different genomic regions based on their gene den-
sity, lamina association and epigenetic marks.

To supplement this landscape of approaches to predict 3D genome conformations 
from Hi-C data, we have several specific goals in this study. We describe and test direct, 
computationally non-intensive analysis approaches that have the focused aim of infer-
ring CT radial positions from Hi-C data rather than a full model of 3D chromosome 
folding. Specifically, we demonstrate that radial organization patterns can be inferred 
from PCA analysis of thresholded inter-chromosomal contact matrices and show the 
utility of a force-directed graph layout algorithm to infer the average and variation 
around the average CT positions. These approaches thus do not require the computa-
tional resources necessary to calculate high resolution polymer models, and could be 
used to screen for potentially important differences in CT organization across a wide 
range of cell types and conditions without creating detailed 3D models in each case. 
We further evaluate the strengths and limitations of Hi-C contact data when it is used 
toward the goal of inferring large scale 3D positions of chromosomes, and where addi-
tional reference information needs to be added to the contacts to generate reliable radial 
positioning information. We finally evaluate the different stages of our approach on a 
variety of cell types and conditions, comparing to a variety of published microscopic 
data and predicting additional details of CT organization where limited microscopy data 
exists.

Results
Thresholding contacts extracts meaningful chromosomal interaction patterns from Hi‑C 

data

Hi-C experiments capture spatial genome organization by measuring the interac-
tion frequency between different genomic fragments, yielding information about both 
intra-chromosomal and inter-chromosomal interactions. Inter-chromosomal interac-
tions generally occur much less frequently than intra-chromosomal interactions, and 
true interactions are mixed in with noise that arises from random background ligation 
[30, 57]. Despite this inherent noise and sometimes low signal, the interactions between 
chromosomes also contain information that reflects the radial organization of the chro-
mosome territories inside the nucleus. But, excluding contacts that may primarily reflect 
the background is important to prevent those contacts from masking the true signal. In 
order to extract strong interactions that are more likely to distinguish radial chromo-
some positions between cell types, we applied a thresholding technique to the genome-
wide contact matrix (see “Methods” section). The thresholding cutoff hcut value was 
calculated by taking a certain percentile of all the genome-wide Hi-C interactions and 
then the interactions greater than this cutoff limit are considered as strong interactions. 
To determine the desired cutoff value, we compared a Hi-C matrix from a specific cell 
type with a corresponding simulated random ligation matrix (see “Methods” section) 
for different values of hcut ranging from the 5th to 95th percentile. We examined two 
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different cell types with  different nuclear shapes (Additional file  1: Table  1), since the 
nuclear shape has been observed to correlate to some extent with the non-random radial 
organization of the CTs. The human blood lymphoblastoid cell, GM12878, has a spheri-
cal nucleus and follows a gene density based radial CT organization [9]. On the other 
hand, BJ1-hTERT human skin fibroblast cell has an ellipsoidal nucleus, which shows a 
chromosome length based CT organization [17]. The whole genome Hi-C contact matri-
ces were obtained from Sanders et al. [58].

For each hcut value, the number of chromosomal contact bin pairs passing the thresh-
old were summed between each pair of chromosomes to a single bin (Eqn. 4).

Then, Pearson’s correlation was applied to compare the whole chromosome pair inter-
action sums obtained from the original and corresponding random ligation Hi-C data. 
From Fig. 1a, it can be seen that with the increase in hcut values from the 45th to the 
85th percentile, the pairwise strong chromosomal interaction similarity between ran-
dom and real data decreased rapidly and reached a stable value around the 90th percen-
tile. Similarly, we compared the strong chromosomal interaction sums with the pairwise 
product of the chromosome lengths to measure how much the number of interactions 
was primarily driven by chromosome length (i.e. two large chromosomes will have more 
interactions at random overall than two small chromosomes). This analysis produced a 
similar correlation trend as the random ligation effect comparison: strong interaction 
sums are no longer primarily explained by chromosome length at 90th–95th percentile 
hcut (Fig. 1a). Based on these two comparison results for both GM12878 and BJ1-hTERT, 
we chose the 95th percentile as the final value of hcut that leads to a minimized effect of 
chromosome length and random ligation for both cell types. While this optimal value 
was similar for two different datasets we considered, we note that Hi-C library complex-
ity, read depth, and cis/trans ratio could affect the most appropriate hcut value. As an 
alternative to this thresholding approach, we also explored the FitHiC [59] algorithm to 
extract significant chromosomal interactions from the Hi-C data. The analysis results 
obtained using those interactions are discussed in the following subsection.

Radial chromosome ordering can be inferred from PCA on inter‑chromosomal strong 

interaction pattern matrix

The pairwise chromosomal strong interaction pattern is not only able to distinguish the 
true biological interaction pattern from the random ligation, but also reveals distinct 
patterns specific to each cell type. By looking at the inter-chromosomal component of 
the pairwise strong interaction patterns (Eq. 5) for GM12878 and

BJ1-hTERT represented in Fig. 1b, d respectively, we can clearly see that these two dif-
ferent cell types have distinct patterns—in BJ1-hTERT, the smaller chromosomes have 
higher strong inter-chromosomal interactions among themselves, whereas in GM12878 
that pattern is dispersed. In order to capture the major interaction trends between 

(1)CHRSTRONG
ij = total number of strong interaction bins between chr i and j

(2)CHRTRANS
ij =

{

CHRSTRONG
ij if i �= j

0 otherwise
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Fig. 1  Determination of strong contact threshold and inference of radial CT distribution type. a Correlation 
of pairwise chromosomal strong interaction matrix obtained from original Hi-C with the matrix from 
corresponding randomly ligated Hi-C (solid lines) and chromosome length (dotted lines) at different values 
of hcut . b, d, f Pairwise inter-chromosomal strong interaction pattern matrix for GM12878 (b), BJ1-hTERT (d) 
and GM12878 simulated random ligation (f) Hi-C data respectively. Each entry of the matrix represents the 
total number of strong interacting bins between a pair of chromosomes. c, e, g 2D PCA projection of the 
pairwise inter-chromosomal strong interaction pattern matrices obtained from GM12878 (c), BJ1-hTERT (e) 
and GM12878 simulated random ligation (g) Hi-C data respectively. Correlations of the PC1 projection with 
gene density and chromosome length (in bp) are shown. Chromosomes are color coded based on their gene 
density (orange) or length (blue). Dark color = high gene density/large chromosome size and light color = 
low gene density/short chromosome length
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chromosomes from those distinct patterns, we applied principal component analysis 
(PCA) to these pairwise strong interaction matrices. PCA has been frequently applied 
to contacts within or between chromosomes to detect the spatial segregation of A/B 
compartments [29, 60–62]. Further, the A/B compartment status of bins within a chro-
mosome has been found to correlate with their lamina association and radial position-
ing, and therefore has been used in models predicting the lamin associations of domains 
within a chromosome [63]. Here, by contrast, we are not detecting the compartment sta-
tus of regions within a chromosome but instead applying PCA to the pattern of thresh-
olded pairwise interactions between whole chromosome territories and then examining 
the projection of chromosomes onto the first two principal components. We find that 
PCA on the pattern of strong contacts between all pairs of chromosomes can detect the 
spatial segregation and relative ordering of chromosome territories. (Here we note that 
since the Hi-C matrix represents the average of the two copies of each chromosome, we 
use chromosome (chr) and chromosome territory (CT) interchangeably, noting that the 
CT positions will represent the average of the chromosome locations of each homolog 
across the cell population). Figure 1c shows the 2D PCA projection of the pairwise inter-
chromosomal strong interaction pattern matrix for the GM12878 cell. From this figure, 
it can be seen that chromosome 17, 19 and 22 and chromosome 13, 18 and X are on 
the opposite ends along the PC1 axis due to the high dissimilarity in their inter-chro-
mosomal interaction patterns. In addition to that, this separation also correlates highly 
with the gene density based distribution of the chromosomes, as gene-rich chromo-
somes (e.g., chr19, chr17) are on the right extreme and gene-poor chromosomes (e.g., 
chr18, chr13) on the other extreme. This ordering thus corresponds to previous reports 
showing that lymphoblast cells with spherical nuclei tend to position their chromosomes 
in the nucleus in a gene density associated pattern [9]. Indeed, the PC1 values of the 
chromosomes show a higher absolute value correlation with their gene density than with 
their chromosome length. Next, we analyzed the pairwise inter-chromosomal significant 
interaction pattern matrix obtained using FitHiC for the GM12878 Hi-C data. We again 
see a higher PC1 correlation with gene density than chromosome length, but the cor-
relation is much weaker (Additional file 1: Fig. 1b). This is not surprising given that the 
interaction pattern in the FitHiC chromosome pair interaction map is less distinct and 
more uniform across chromosomes (Additional file 1: Fig. 1a). Therefore, we choose to 
proceed with the strong interaction thresholding approach for our remaining analyses to 
detect the inherent radial arrangement of the CTs.

When we applied PCA to the BJ1-hTERT pairwise inter-chromosomal strong 
interaction pattern matrix, PC1 showed a different separation, where chromosomes 
are ordered from left to right roughly according to decreasing length (Fig. 1e). The 
strong correlation between this ordering and chromosome length matches previous 
observations from fibroblast nuclei [17]. There is still some gene density correla-
tion with this pattern, likely reflecting the complex picture of the radial CT organi-
zation in fibroblast nuclei. It has indeed been reported that while chromosomes 
are generally radially positioned by length in fibroblast nuclei, CT18 (gene poor 
and short) is still nearer to the nuclear envelope than CT19 (gene rich and short). 
When we applied PCA to the simulated random-ligation matrices generated from 
the GM12878 and BJ1-hTERT, we find that chromosomes are ordered along PC1 
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in a strong length-based distribution (Fig. 1g and Additional file 1: Fig. 2d). This is 
expected, since by chance longer chromosomes will have more random strong inter-
actions than shorter chromosomes, as is evident in Fig. 1f.

The above results suggest that a simple application of PCA to the pairwise inter-
chromosomal strong pattern matrix can reveal chromosome spatial distribution 
type, while also showing the limitations of this direct use of Hi-C contacts alone. 
Though PC1 can infer the radial CT distribution type, the direction of the ordering 
(whether inwards to outwards or outwards to inwards) is arbitrary and cannot be 
inferred based only this PCA result. Further, the random ligation result provides a 
caution that a length-based radial distribution would be detected even when no dis-
tinct interaction patterns are present.

To further explore the utility of such PCA ordering of CT positions, we next 
applied this analysis technique to Hi-C data from conditions which have been previ-
ously shown to exhibit large-scale rearrangement of chromosome territories. Spe-
cifically, in the premature aging disease Hutchinson–Gilford Progeria syndrome, it 
has been shown that chr18 moves to the nuclear interior compared to its peripheral 
location in normal proliferating fibroblasts, while chr10 shows the opposite trend 
[6, 64]. To check whether our analysis technique can also detect these CT reorgani-
zations, we analyzed WI38-hTERT proliferating fibroblast Hi-C data [65] and Hi-C 
data from progeria patient fibroblasts at passage 19, when the cells are approaching 
senescence [66]. Figure  2a, b show the 2D PCA projections of the pairwise inter-
chromosomal strong interaction pattern matrices obtained from the proliferating 
fibroblast and the progeria cells respectively. As mentioned above, while these pro-
jections reflect the underlying CT organization, inferring the directionality requires 
additional experimental information. There is evidence that chrX does not change 
its peripheral position in progeria cells compared to normal proliferating fibroblasts 
[6]. Indeed, in our analyses, chrX is positioned at a far extreme of PC1 in both pro-
geria and proliferating fibroblasts, so we assigned the end of the PC1 axis near chrX 
as the periphery and the opposite end as the nucleus center, as seen in Fig.  2a, b. 
Now, if we examine the positions of chr18 in these projections, we can see that chr18 
occupies a more internal position in the progeria cell (Fig. 2a, b). We can visualize 
the relative changes in chromosome positions by ordering the chromosomes based 
on the PC1 value in an increasing fashion from center to periphery in a radar plot 
(Fig.  2d). Here, we can see the internal shift of chr18 in progeria compared to the 
proliferating fibroblast. We did not find any significant change in the chr10 position 
in our analysis. However, we noticed that chr13 in progeria also moves to interior 
similar to chr18, which can be found in proliferating laminopathy fibroblasts [64]. 
Progeria cells approaching senescence have a CT arrangement that to some extent 
matches other quiescent and senescent cells [6]. Therefore, next, we performed 
PCA ordering analysis on WI38-hTERT oncogene induced senescent cell Hi-C data 
[65]. When we compared the result with normal proliferating cells, we found chr10, 
chr13, chr18 and chrX radial rearrangements similar to the progeria cells (Fig. 2c, d 
bottom). Overall, this analysis shows that the strong inter-chromosomal interaction 
pattern from Hi-C has the potential to infer changes in the underlying CT distribu-
tion within the nucleus.
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Network modeling predicts probabilistic radial CT organization

Though applying a simple PCA approach to a pairwise inter-chromosomal strong 
interaction pattern matrix is surprisingly powerful at detecting relative chromosome 
ordering in different cell types, as shown above, it is limited to predicting a single 
position for each chromosome, and will predict ordering patterns even for data that 
is actually random noise. In reality, chromosome territory positions vary substantially 
within individual cells, even while following certain general trends. The positioning 
of CTs in individual cells changes from mother cell to daughter cell during mitosis 
[19, 20]. Thus, we sought an approach to model not only the average position, but the 
variability of chromosome positions in an ensemble of arrangements derived from 
Hi-C data. For this, we tested a network modeling approach. We used the strong 

Fig. 2  Rearrangement of radial CT position in progeria and senescent cells compared to proliferating 
fibroblasts. a–c 2D PCA projection of the pairwise inter-chromosomal strong interaction pattern matrices 
obtained from WI38 proliferating (a), Hutchinson–Gilford progeria syndrome patient passage 19 (b) and WI38 
senescent fibroblast (c) Hi-C data respectively. In progeria and senescent cells, chr10 (red color) and chr18 
(green color) change their radial positions compared to the proliferating cells (chr10 change is not significant 
in progeria), while chrX maintains its peripheral position in all of the cases. d Radar plot representing the 
change in the radial order of the CTs in progeria and senescence compared to the proliferating condition. 
Chromosome radial positions are shown as ordered (ranked) in an increasing fashion from the center to 
periphery. Salient chromosomes discussed in the text are highlighted with red arrows
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interaction matrix obtained from the thresholding step to construct an undirected 
weighted graph in three-dimensional space using the 3D Fruchterman-Reingold 
(FR) force-based layout [67] algorithm. Each node of the graph represents a genomic 
region of fixed size and the weights are the contact frequencies. In such a graph lay-
out, the nodes within each chromosome become clustered together due to high intra-
chromosomal contacts while chromosomes that have higher inter-chromosomal 
contacts among themselves will end up close together in 3D space compared to the 
other chromosomes with less inter-chromosomal contacts. To model the variable CT 
arrangements possible within the average Hi-C data, 1000 independent runs of the 
FR algorithm were performed with different random initial configurations, which led 
to the formation of 1000 different 3D network graphs (see “Methods” section). Next, 
a minimum volume ellipsoid algorithm was used to fit a geometrical object around 
the models to serve as the nuclear periphery. From each of those models, we calcu-
lated the distance of the center of mass of each chromosome from the nucleus center 
(center of the geometrical fitted object).

When we examined the models, we found that they cluster into several different pos-
sible chromosome organization patterns (Additional file 1: Fig. 3). As we discovered with 
the PCA analysis, the Hi-C data alone cannot determine the absolute ordering from 
interior to periphery, so some clusters of models represent inverted patterns of organi-
zation. We also find some clusters of models that do not coincide with the length or 
gene density based distributions inferred from PCA CT ordering. These may repre-
sent local minima reached from certain initial conditions of the network model which 
do not reflect the true chromosome arrangements. Given these observations, we com-
bine information from the previous PCA analysis with these network models to select 
the cluster of models for further analysis. After observing that the PCA analysis reports 
whether the cell type in general follows a length or gene density-based radial distribu-
tion, we use this information to select the cluster of models which has the highest abso-
lute correlation between its mean CT distances and gene density or chromosome length 
(based on the inferred CT distribution type from the pairwise inter-chromosomal PCA 
transformation).

With the selected cluster of models (Fig.  3a, b), we next examined the predicted 
heterogeneity in chromosome territory positioning within each cell type (Fig. 3 and 
Additional file  1: Fig.  4). Figure  3c shows the radial distance profiles of four exam-
ple CTs - CT1, CT18, CT19 and CT20 obtained from GM1878 and BJ1-hTERT net-
work model clusters. Among these CTs, CT18 (length 78.1 Mbp and gene density 
3.4 genes/sequenced Mbp) and CT19 (length 59.1 Mbp and gene density 23.9 genes 
/ sequenced Mbp) have comparable DNA content but have drastically different gene 
densities. The network modeling result shows a trend in which, in GM12878, CT18 
has a peak near the periphery and CT19 has a more internal peak. On the other hand, 
in BJ1-hTERT, both CT18 and CT19 peaks are located toward the nuclear center with 
a similar distribution. The next contrasting pair is CT1 (length 249.3 Mb and gene 
density 8.70 genes/sequenced Mb) and CT20 (length 63.0 Mb and gene density 8.71 
genes/sequenced Mb). They both have comparable gene densities but strikingly dif-
ferent lengths. Again based on modeling results, we can see that CT1 and CT20 have 
internal locations in GM12878, but in BJ1-hTERT CT1 occupies a much peripheral 
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location. As expected given the overall gene density or length correlations of the 
model cluster, these mean positions are consistent with microscopy data regarding the 
different positioning of chr18, chr19, and chr1 in different cell types. Beyond mean 
position shifts, we also observe that the distributions of possible chromosome posi-
tions also match microscopic evidence for chromosome position variation in some 
respects. For example, in the models, CT4 in lymphoblasts is highly skewed toward 
peripheral positions and almost never observed near the center of the nucleus. This 
matches the distribution of positions of a gene located on chr4 measured by FISH 
[27] in which the gene was almost never observed in the interior 30 percent of the 
nuclear radius in any individual cell (Additional file 1: Fig. 5d). In contrast, the models 
predict that CT10 in fibroblasts can be found throughout the middle of the nucleus, 

Fig. 3  Network modeling generated distributions of CT radial positions and comparison of the predicted 
tuned result with microscopy data. a, b Network modeling generated model clusters for both GM12878 (a) 
and BJ1-hTERT (b), selected based on respective inferred CT distribution types. c The radial distance profiles 
of 4 CTs (chr18, chr19, chr1 and chr20) for both GM12878 and BJ1-hTERT obtained from the respective 
selected model clusters (# of models in the selected clusters: for GM12878—109, and BJ1-hTERT—122). d 
Correlation between predicted tuned CT distance from GM12878 Hi-C data and lymphoblastoid microscopy 
imaging data. e Correlation between predicted tuned CT distance from BJ1-hTERT Hi-C data and fibroblast 
microscopy imaging data
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but almost never at the extreme center or periphery (Additional file 1: Fig. 5c). This 
matches the measured chr10 distribution by FISH [68]. In some cases, however, the 
model-inferred CT distribution matches the mean position observed in microscopy, 
but not the distribution of positions. For example, the models locate chr19 near the 
nucleus center on average in both cell types we considered, as in microscopy data 
(Additional file  1: Fig.  5a, b). However, in single cell images, chr19 is found over a 
broader range of positions [69], while our models predict a more tightly focused con-
sistent positioning of chr19. This narrow predicted distribution likely stems from 
the highly specific interaction pattern for chr19, visible in the strong contact matrix 
and distinct PCA position of this chromosome in Fig.  1. Additionally, while chr13 
has been observed by microscopy to be strongly skewed toward the nuclear periphery 
[68, 70], our model sometimes predicts a strongly peripheral distribution (GM12878) 
and sometimes a strongly internal distribution (BJ1-hTERT) (Additional file 1: Fig. 4). 
This occurs because there are relatively few strong inter-chromosomal interactions 
detected by chr13 in the Hi-C data, and the model cannot distinguish whether this 
means the chromosome is located on its own far to the center or far to the periphery. 
So, while our network model approach shows a strong ability to predict chromosome 
position variability for some chromosomes, in other cases, there are inherent limita-
tions of what can be predicted from Hi-C contacts alone.

In contrast to the original Hi-C contact maps, simulated random ligation maps pro-
duced network models that were much more variable and did not form tight clusters 
(Additional file 1: Fig. 2a, e). This primarily happens due to non-specific pairwise inter-
chromosomal interaction pattern driven by length which ultimately leads to the genera-
tion of wide variety of random network model configurations. Although these simulated 
random ligation datasets show a strong length based distribution of CTs from the PCA 
ordering, the pairwise inter-chromosomal strong interaction pattern is quite different 
from true length based distribution as shown by ellipsoidal cells. When we examine the 
distributions of chromosome positions predicted for these random models, most chro-
mosomes showed broad indistinct distributions that did not vary based on the cell type 
the random matrix was derived from (Additional file 1: Fig. 6). This demonstrates that 
real Hi-C contacts contribute important information to our network modeling predicted 
radial distance distributions.

Chromosome property‑based tuning improves predicted consensus radial arrangement 

of CTs

Although the network modeling generated radial distribution of the CTs can reveal sev-
eral interesting features of the CT organization that match with prior observations, the 
direct correlation with microscopy measured mean positions is only modest (Fig.  3a, 
b). Meanwhile, the direct correlation between gene density or chromosome length and 
microscopy measured positions may be quite high (Additional file 1: Table 2), but these 
values are cell type invariant and can never be used alone to infer different CT posi-
tions between different cell types. Thus, we next  tested an approach of using chromo-
somal properties, informed by PC1 ordering, to further tune the network model inferred 
mean radial positions. We add the effects of gene density and chromosome length to 
the averaged positions using weighted averaging and loess (locally estimated scatterplot 
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smoothing) [71] techniques. This tuning procedure is described in detail in the “Meth-
ods” section, but the basic idea behind it involves several concepts. First, we incorporate 
information about the length and gene density of each chromosome explicitly. Second, 
going back to our earlier observation that the PC1 of the pairwise inter-chromosomal 
strong interaction pattern matrix can provide meaningful ordering information, we 
combine the network model output with PC1 ordering result obtained from selected 
model cluster through weighted averaging. Finally, in calculating weights for our averag-
ing calculation, we take into account how much of the variance in the chromosome posi-
tioning pattern in the selected model cluster is captured by PC1 and PC2. We find this 
metric captures a major distinction between random and real Hi-C data. In the previous 
steps, random data will give some pattern, often highly chromosome length related, but 
we find that PC1 and PC2 explain a much lower percentage of the overall variance in the 
chromosome contact pattern for random data, while for real data these first two PCs 
capture most of the variance, indicating that the orderings along these PCs are highly 
meaningful. Thus, weighting by the variance explained by PC1 and PC2 will emphasize 
meaningful patterns over random patterns.

In order to evaluate the accuracy of the tuning procedure, we compared the tuned 
radial CT positions of GM12878 and BJ1-hTERT with corresponding microscopy imag-
ing data, as shown in Fig. 3d, e. From Fig. 3d, it can be seen that, in GM12878, most 
of the CT positions correlate well with the experimentally obtained position with slight 
displacements, apart from the CT1 position, which moves outwards compared to the 
experimental data. Similarly, predicted CT distances for the BJ1-hTERT cell shows 
high similarity with the corresponding imaging data. For this particular cell, out of all 
the CTs, CT19 showed a higher amount of displacement towards the center in the pre-
dicted result. When the tuning technique was tested on simulated random ligation Hi-C 
data generated from GM12878 and BJ1-hTERT, it produced a far weaker correlation 
with the fibroblast imaging result in both cases (length based inferred CT distribution 
type) compared to the original Hi-C analysis results (Additional file 1: Fig. 2b, f ). Fur-
thermore, we checked the consistency of the predicted tuned results between two Hi-C 
replicates of the BJ1-hTERT cell and found very little difference in chromosome posi-
tioning (Additional file 1: Fig. 7f ). In case of GM12878, variation between replicates was 
higher (Additional file 1: Figs. 8f and 9), perhaps reflecting the larger variation in quality 
metrics between these two datasets. However, a strength of employing the PCA order-
ing is revealed in comparing these replicates: the PCA ordering of the strong interaction 
matrix is robust to such variations in dataset quality (Additional file 1: Fig. 8d).

Paternal and maternal homologs show mostly similar radial arrangement of CTs

Our modeling approach places only one copy of each chromosome in the radial organi-
zation network, and we assume that this represents the average of the two homolog posi-
tions. In any given cell, it is known from microscopy that the CT positions of homologs 
can be quite different [69], but we assume that both homologs would follow the same 
overall distribution of positions, and thus averaging their positions is reasonable. To test 
this assumption, we applied our approach to the deeply sequenced GM12878 Hi-C data 
from Rao et al. that can be mapped to maternal and paternal homologs based on allele-
specific single nucleotide polymorphisms (SNPs) [72]. Once we had the genome wide 
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Hi-C contact matrices for the paternal and maternal copies, thresholding was applied 
and pairwise inter-chromosomal strong interaction pattern matrix was analyzed using 
PCA transformation for each of them. Figure 4c shows the 2D PCA projection of the 
pairwise inter-chromosomal strong interaction pattern matrix obtained from the pater-
nal copy. By looking at this figure, we can clearly see that the paternal homologs are 

Fig. 4  Paternal and maternal homologs follow a similar CT distribution pattern. a, b Pairwise 
inter-chromosomal strong interaction pattern matrices for GM12878 paternal (a) and maternal (b) copies. c 
2D PCA projection of the pairwise inter-chromosomal strong interaction pattern matrix for GM12878 paternal 
copy. d, e Correlation of GM12878 paternal copy PC1 values with maternal copy (d) and diploid averaged 
GM12878 (e) PC1 values obtained from the PCA transformation of the respective pairwise inter-chromosomal 
strong interaction pattern matrices. f, g Network modeling generated model clusters for both GM12878 
paternal (f) and maternal (g) copies, selected based on respective inferred CT distribution types. h Predicted 
radial distance distributions of 4 CTs (chr18, chr19, chr1 and chr20) for GM12878 diploid averaged, paternal 
and maternal copies, obtained from the respective selected model clusters (# of models in the selected 
clusters: GM12878 diploid average—109, paternal—194, and maternal—148)
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following a gene density driven distribution along the PC1 axis, which we also found for 
the the maternal homologs (Fig. 4d y-axis). In addition, the PC1 values from the paternal 
and maternal copies are highly correlated to each other and also with the PC1 values 
obtained from the previous GM12878 data (Fig. 4d, e). This suggests that the paternal 
and maternal homologs follow a similar radial distribution inside the nucleus, and that 
it is fair to infer a single average position for both homologs. We also applied the net-
work modeling approach to the paternal and maternal copies individually and selected 
the model cluster for each of them whose mean CT distances has highest absolute cor-
relation with the inferred CT distribution type, as above. By looking at the mean CT dis-
tances from Fig. 4f, g, we can see that the mean radial CT distribution pattern between 
two copies are highly comparable with a single drastic exception in case of chr2, which 
shows an internal position in maternal copy and occupies a peripheral position in the 
paternal one. Again this can be explained by distinct patterns of inter-chromosomal 
strong interaction of chr2 paternal and maternal homologs. Finally, when we compared 
the radial distance profiles of the 4 CTs - CT1, CT18, CT19 and CT20 among the pater-
nal, maternal and the standard GM12878, we found the density peaks in similar radial 
positions (Fig. 4h and Additional file 1: Fig. 10). However, in case of chr1, we found a 
strong narrow peak from the standard GM12878 data compared to the short broad peak 
obtained from both the paternal and maternal copies, which might arise due to the less 
specific inter-chromosomal interaction pattern of chr1 in both maternal and paternal 
copies compared to the interaction patterns of rest of the chromosomes in those copies. 
Overall, we observe that representing both homologs with an average predicted position 
is valid.

Radial CT organization in epithelial cells changes depending on their nuclear shape

After testing the performance of the analysis technique on the GM12878 and BJ1-
hTERT cells, we applied our analysis to MCF10A non-tumorigenic breast epithelial cells. 
The Hi-C contact data of this cell was downloaded from Barutcu et al. [73] and binned 
at 2.5 Mb resolution. We obtained corresponding imaging data for 8 CTs (CT1, CT4, 
CT11, CT12, CT15, CT16, CT18 and CT21) of the MCF10A from Fritz et al. [8]. When 
we applied PCA to the pairwise inter-chromosomal strong interaction matrix, PC1 
showed higher absolute correlation with chromosome length compared to gene den-
sity, as expected from experimental data (Fig. 5b), and corroborating the association of 
the length based distribution with ellipsoidal nucleus shape. Next, we used the network 
modeling approach to generate radial distance profiles of the 8 CTs and found the distri-
butions match the ordering of CT positions reported in imaging data (Fig. 5c). We note 
that we predict some chromosomes (chr4, chr15) have a much broader distribution than 
others (chr16, chr21), but this distribution is not reported for comparison in microscopy 
data. Finally, when the tuned CT positions were compared with the experimental data, a 
high correlation was obtained (Fig. 5d).

Since epithelial cells can take different nuclear shapes depending on their proper-
ties in culture, we next applied our analysis to Hi-C data from another human nor-
mal mammary epithelial cell (HMEC) [72]. In this cell type, the PCA analysis of the 
pairwise inter-chromosomal strong interaction pattern inferred a gene density based 
distribution as represented in Fig. 5e. We hypothesize that this is related to the fact 
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that these cells are closer to normal epithelium than MCF10A, which harbor chro-
mosomal translocations, and that classical epithelial patterns would lead to a more 
spherical nucleus shape even in 2D culture, rather the flat, spreading growth pattern 
of MCF10A cells [74]. When the network modeling inferred radial distance profiles 

Fig. 5  Epithelial cells show different radial CT organization in a nuclear morphology dependent manner. a 
Pairwise inter-chromosomal strong interaction pattern matrix for MCF10A Hi-C data. b, e 2D PCA projection 
of the pairwise inter-chromosomal strong interaction pattern matrices obtained from MCF10A (b) and HMEC 
(e) Hi-C data respectively. c The radial distance profiles of 8 CTs (chr1, chr4, chr11, chr12, chr15, chr16, chr18 
and chr21) for MCF10A obtained from the selected model cluster (# of models in the selected cluster: 48). 
Relative mean chromosome positions measured by microscopy shown below graph. d Correlation between 
predicted tuned CT distance from Hi-C data and microscopy imaging data for MCF10A cells. f The radial 
distance profiles of 4 CTs (chr18, chr19, chr1 and chr20) for both MCF10A and HMEC obtained from the 
respective selected model clusters (# of models in the selected clusters: for HMEC: 165)
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of four CTs - CT1, CT18, CT19 and CT20 were compared between MCF10A and 
HMEC (Fig. 5f ), CT19 and CT20 showed density peaks at a similar radial position in 
both cell types. On the other hand, CT18 showed a preference for interior radial posi-
tions in MCF10A (length based) and for peripheral positions in HMEC (gene den-
isty based) and in case of CT1 that trend was the opposite. These results suggest that 
similar cell types can show different CT organization that correlates with their cell 
morphology, and Hi-C contact patterns can capture these differences.

Variation between the radial arrangement of lymphoblastoid cells and neutrophils

To test the utility of our analyses on a cell having an irregular nuclear shape, we focused 
on neutrophils and obtained the corresponding Hi-C data from Javierre et al. [75]. Neu-
trophils have a multi-lobed nucleus with a toroid shaped genome where lobes are con-
nected by thin filaments [76]. When we analyzed the pairwise inter-chromosomal strong 
interaction pattern matrix using PCA, we found that the PC1 values have a higher abso-
lute correlation with gene density (Fig. 6b), though the effect is much weaker compared 
to GM12878 case, which is consistent with the divergence of a neutrophil from its pre-
cursor cell’s round nucleus shape. This is another indication that the Hi-C contact data 
provides more information about chromosome positioning than just the underlying 
length based or gene density based distribution. Based on microscopy imaging data, it 

Fig. 6  Radial arrangement of CTs in irregularly shaped neutrophil nuclei. a Pairwise inter-chromosomal 
strong interaction pattern matrix for neutrophil Hi-C data. b 2D PCA projection of the pairwise 
inter-chromosomal strong interaction pattern matrix obtained from neutrophil Hi-C data. In neutrophil cells, 
chr2 (blue color) and chr18 (green color) occupy radial positions near nuclear envelope. c The radial distance 
profiles of 2 CTs (chr2, and chr18) in neutrophils obtained from the selected model cluster (# of models in 
the selected clusters: 100). d Comparison of predicted tuned CT distances from neutrophil Hi-C data and 
lymphoblastoid microscopy imaging data shows important differences between these cell types
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has been reported that chr2 and chr18, which have drastic differences in their lengths, 
both occupy a position near nuclear envelope in neutrophil cells [77]. Upon inspecting 
the positions of those chromosomes along the PC1 axis in Fig.  6b, we found the two 
chromosomes in very close proximity near the left extreme of the PC1 axis. Although 
projection data does not infer the directionality of the ordering, based on its higher simi-
larity with gene density, we can assume the left extreme as the periphery which con-
tains mostly gene poor chromosomes. Furthermore, for those two chromosomes, we 
also observed similar trend in the network model-derived radial CT distance profiles as 
represented in Fig. 6c. The network model predicts a highly variable positioning of chr2, 
likely related to the overall dearth of strong contacts between chr2 and other chromo-
somes in the initial thresholded contact map. We observe that the predicted tuned CT 
positions for neutrophils are only weakly correlated with lymphoblastoid imaging data 
(Fig. 6d), revealing the ability of the model to predict different chromosome positions 
from different initial Hi-C contact data.

Discussion
In this study, our goal has not been only to predict one final set of CT positions from 
Hi-C data. Instead, we have explored what aspects of 3D chromosome radial position-
ing can and cannot be inferred with a series of direct and non-computationally intensive 
Hi-C contact analysis approaches that have not been previously used for this purpose.

Our results demonstrate that a straightforward statistical calculation (PCA) on the 
pattern of strong inter-chromosomal contacts can capture important biological features 
of CT radial positioning. With this approach, we not only can capture important pat-
terns of gene density or chromosome length based ordering of chromosomes previously 
observed for very different cell types, but also can detect meaningful shifts of individ-
ual chromosomes in related cell types. We were able to infer changes in CT ordering in 
premature aging and senescence directly from contact data, and these changes are sup-
ported by previous microscopy results. We also note that this PCA ordering approach 
is actually quite robust to differences in Hi-C data quality and depth. While our sub-
sequent network graph layout approach was somewhat sensitive to different quality 
metrics of different Hi-C replicates, the PCA ordering of chromosomes was robust to 
different levels of noise in these datasets.

We have also demonstrated that a network graph layout algorithm approach can 
generate an ensemble of models that capture the experimentally validated mean and 
variation of CT positions in a cell type. We demonstrate that these approaches can 
be applied to a variety of cell types and can even detect differences in underlying CT 
radial distributions between highly related cell types (two different breast epithelial cell 
types). Interestingly, for these cell types, the difference in CT distribution corresponds 
to documented differences in nucleus geometry of these cell types when grown in cul-
ture. This suggests that not only do spherical and elliptical nuclei exhibit different CT 
organization in completely different cell lineages (lymphoblast vs. fibroblast), as previ-
ously documented, but that even cells within the same overall type may have different 
CT positioning associated with their nucleus shape. This result emphasizes the impor-
tance of approaches to detect changes in CT ordering directly from a given cell type in 
its particular condition, rather than assuming that a measurement in one circumstance 
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will define CT organization principles across, for example, all epithelial cells. Our rapid 
approaches to inferring CT distribution makes screening across such varieties of data-
sets more feasible, as a complement to more intensive computational models or micro-
scopic measurements.

In addition to the validation of these approaches that makes them useful for future 
applications, our results also show that while Hi-C contacts are useful for inferring a 
relative ordering of radial chromosome positions, inferring absolute ordering often 
requires an external reference point. We observe this in that the PCA based ordering 
of chromosomes can represent either direction (interior-exterior or vice versa) and that 
some clusters of network models display the same chromosome relative ordering in 
reverse orientation. This is an important factor to consider in any model that attempts to 
use Hi-C contacts in isolation to generate 3D structure models.

The analysis approach described in this paper is highly flexible due to its modular 
nature and can be integrated with different kinds of genome analysis applications. For 
example, both PCA ordering and inferred tuned positions can be used to characterize 
the changes in the radial CT organization in a perturbed (e.g. relocation of CTs dur-
ing DNA damage response [78]) or diseased cell (e.g. mislocalization of CT18 and CT19 
in lamin B2 depleted colorectal cancer cells [79]) compared to a control cell, which in 
turn allows us to study how these changes affect higher-order chromatin structure. The 
method also generates a population of 3D network structures, which can further be used 
to characterize inter-chromosomal dynamics and can be compared to single-cell Hi-C 
results.

Conclusions
We have described a set of approaches that can be used sequentially or as separate mod-
ules to predict chromosome territory radial positioning in the nucleus from Hi-C data. 
We find that analyzing only the strongest interchromosomal contacts emphasizes differ-
ences in CT arrangement between cell types, and that PCA on this strong contact matrix 
can be used as a simple, fast approach to detect relative CT radial positions. We describe 
a network modeling approach that builds on this overall pattern detected by PCA to 
simulate the variability in CT positioning across the cell population. Finally, we dem-
onstrate both the strengths and limitations of what Hi-C data alone can predict about 
radial CT organization and show that intrinsic chromosome properties can be added to 
tune CT organization predictions. These methods provide researchers with additional 
tools to infer the properties of radial CT organization for the growing numbers of cell 
types that have available Hi-C data but not detailed microscopic measurements of chro-
mosome positions.

Methods
The schematic representation of our whole analysis approach is given in Fig. 7.

Pre‑processing of Hi‑C data

All original Hi-C data sources for this study are listed in Additional file 1: Table 1. We 
mapped the data to hg19 to obtain a set of unique valid interacting fragment pairs and 
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then binned the data at a resolution of 2.5 Mb, where each bin of the contact matrix 
represents the interaction frequency between a pair of 2.5 Mb genomic regions. We 
then perform two pre-processing steps on the Hi-C matrix. First, to remove biases 
related to GC content and cut site frequency, the raw contact matrix is normalized 
using the ICE technique [62]. Next, the unmappable (repetitive) genomic regions 
are removed from the normalized Hi-C matrix. Also, we do not consider chrY in our 
analysis since this chromosome is not present in both male and female cell types, 
and we remove those corresponding bins from the Hi-C matrix. This modified Hi-C 
matrix is used for further downstream processing.

Fig. 7  Overview of the computational analysis approaches. At the first step, the whole genome Hi-C 
matrix is thresholded in order to extract strong interactions. Next, the pairwise inter-chromosomal strong 
interaction pattern matrix obtained from the thresholded Hi-C data is analyzed using PCA to determine the 
underlying CT distribution type. The radial CT organization is also modeled from the thresholded interactions 
by generating multiple 3D network model configurations. Out of those configurations, clusters of models 
having similar radial arrangements are identified and the particular cluster matching the inferred CT 
distribution type from PCA is selected for further downstream analysis. Finally, the network modeling inferred 
radial organization can be tuned by incorporating chromosome gene density and length properties
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Let Hm×m represent a square symmetric Hi-C contact matrix where each row and col-
umn correspond to genomic regions (bins) of specific size, with each element hij repre-
senting the normalized number of contacts between ith and jth bins.

Determining a threshold to capture strong interactions in Hi‑C matrix

After prepossessing the Hi-C contact data, we proceed to identify the strong interactions 
which have the best potential to infer cell-type specific radial organization of the CTs, 
distinct from the levels of average background noise. To do this, we define a cutoff limit 
and apply that to Hm×m , to obtain a matrix of only filtered strong interactions Sm×m.

where sij is the element of matrix Sm×m , which represents the normalized number of 
contacts between ith and jth bins and hcut is the cutoff limit. For 2.5 Mb genomic reso-
lution, the value of cutoff limit is set to: hcut = 95th percentile of all the genome-wide 
interactions from Hm×m . The significance of and reason for choosing this 95th percentile 
cutoff is discussed in the “Results” section. Due to the application of this cutoff limit 
hcut , the resultant matrix Sm×m contains mostly the intra-chromosomal interactions and 
a few inter-chromosomal interactions. In addition, to detect significant chromosomal 
interactions, we apply the FitHiC tool [59] with default parameters to the genome-wide 
Hi-C contact data, binned at 2.5 Mb resolution. From those significant intra- and inter-
chromosomal interactions detected, we further select highly significant interactions 
for analysis by applying a q-value cutoff - 10−2 (for intra-chromosomal) and 10−12 (for 
inter-chromosomal). The reason behind selecting a very stringent q-value cutoff for 
inter-chromosomal interactions is to make the number of significant inter-chromosomal 
interactions from FitHiC comparable to the strong interactions from our method.

Simulating random ligation Hi‑C from original Hi‑C data

Random ligation Hi-C data are simulated by taking an original raw/non-normalized 
Hi-C contact map, binned at 2.5 Mb, and shuffling the bins (including the diagonal) of 
this matrix five times. Then, the shuffled matrix is passed through the ICE normalization 
step [62]. The reason for generating the random ligation matrix from the original matrix 
by random shuffling is to ensure that both the contact matrices have an equal number of 
total reads and a similar dynamic range of values, ensuring a matched comparison of the 
results from real and random Hi-C data.

Identifying CT radial distribution patterns with PCA transformation on the pairwise strong 

inter‑chromosomal interaction pattern matrix

For our most direct approach to infer a radial organization pattern from Hi-C data, 
we begin by creating a pairwise strong inter-chromosomal interaction pattern matrix. 
For the chosen hcut value, the number of bin pairs passing the threshold are summed 
between each pair of chromosomes to a single bin (Eqn.  4). This sum thus includes a 
count of the number of bin pairs that passed a threshold, rather than the total number of 
interactions in each included bin.

(3)
{

sij = hij for hij > hcut
sij = 0 otherwise
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Then, we exclude cis contacts and look only at the inter-chromosomal component of this 
pairwise strong interaction pattern (Eqn. 5).

To capture the major interaction trends from this matrix, we apply principal compo-
nent analysis (PCA) to this pairwise strong inter-chromosomal interaction pattern. We 
then calculate the projection of all chromosomes onto PC1, and we find that the order-
ing of chromosomes along this PC can capture the radial organization ordering of the 
chromosomes.

Constructing 3D network graphs from Hi‑C matrix

The thresholded strong interaction matrix Sm×m is treated as a weighted adjacency 
matrix to generate an undirected weighted graph G, where nodes represent genomic 
bins and the number of interactions between each pair of bins is used as the edge 
weight. Next, we apply a 3D Fruchterman-Reingold (FR) force based layout to draw 
the undirected Hi-C graph in 3D space. This graph drawing layout adds an attractive 
force between the connected nodes and creates repulsion between the nodes that are 
not connected. Along with this, gravitational force is used in this layout to pull the 
nodes towards the center. The rationale behind using the FR layout is that it uncovers 
the intrinsic structure of the network, as the strong interactions only matrix Sm×m has a 
large number of intra-chromosomal interactions and fewer inter-chromosomal interac-
tions. The resulting 3D network graph infers the radial organization of the CTs inside the 
nucleus. Next, ns number of 3D network graphs - G3D1,G3D2, . . . ,G3Dns are generated 
by performing independent runs of the FR algorithm with different random initial con-
figurations to model the variability in the radial CT organization.

Fitting a geometrical structure to the 3D network graphs

For each 3D network graph, the next objective is to find the distance of each CT from 
the center of that network graph. This step is performed in two parts.

In the first part, given a 3D network graph, the 3D Cartesian coordinates of the nodes 
are extracted and then Khachiyan’s algorithm is used to find a minimum volume ellipsoid 
enclosing the set of nodes [80]. The center of the fitted object is calculated and assigned 
as the nucleus center. Along with this, the center of mass of each of the individual CTs is 
calculated from the coordinates of the nodes of the network graph.

where COMi
j represents the center of mass of a particular CT j in the structure G3Di and 

j ∈ {1, 2, . . . , 22,X}.
After obtaining the center of mass of each CT and nucleus center, the Euclidean dis-

tance is calculated between the center of mass of each CT and the nucleus center. Also, 
to remove the heterogeneity that arises from different minimum volume ellipsoid fits of 

(4)CHRSTRONG
ij = total number of strong interaction bins between chr i and j

(5)CHRTRANS
ij =

{

CHRSTRONG
ij if i �= j

0 otherwise

(6)COMi
j =

∑

coordinates of nodes of CT j in G3Di

#of nodes of CT j in G3Di
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different 3D network structures, for each structure the distance values are normalized in 
the [0,1] range using Min-max normalization. In this way, by iterating over all of the 3D 
network graphs, for each CT, ns distances from the center of the nucleus are obtained. 
This distance information is represented in a matrix Dns×23 of size ns × 23 , where rows 
represent ns 3D network graphs and columns correspond to 23 CTs (22 autosomes 
and one X chromosome), and each matrix entry dij is the distance of the CT j from the 
nucleus center of network graph G3Di.

The parameter ns represents the number of configurations required to mimic the het-
erogeneity in CT arrangement originating during cell division within the same cell type. 
To estimate this parameter, for different values of ns we compare the fitted distance pro-
files of all CTs between GM12878 and BJ1-hTERT cells using non-parametric hypoth-
esis testing - a Two-sided Mann-Whitney U test. From the statistical test results, it can 
be observed that with increasing ns value, more chromosomes show significant differ-
ences in their CT distance profiles between lymphoblastoid and fibroblast cells, reaching 
a maximum at ns = 1000 (Additional file 1: Fig. 11). Hence, we set the ns parameter to 
1000 in our analysis.

Identifying the specific cluster of network models having meaningful CT organization

The network modeling approach produces 3D graph models with heterogeneous CT 
organization, as intended, but we find that some groups of models may capture an 
inverted ordering of some groups of CTs or all CTs (reversing central to peripheral dis-
tances). Thus, rather than blindly averaging all models together, we first identify these 
different clusters of organization patterns and then choose for further consideration the 
cluster of models that follows the radial CT organization distribution captured by the 
PCA analysis described above. We perform K-means clustering [81] with determinis-
tic initialization on the distance matrix Dns×23 by treating the models (rows) as samples 
and chromosomes (columns) as features. The initial centroid positions for the clustering 
technique are calculated using the algorithm from Nazeer et al. [82]. In addition to that, 
to estimate optimal number clusters for the K-means, we use a modified elbow method 
approach. Here, first we calculate inertia [83] which represents within cluster sum of 
squares for different increasing number of clusters and detect the elbow of the inertia 
curve with the help of the algorithm from Satopaa et al. [84]. After detecting the elbow, 
again we calculate the average silhouette score [83] for each of the different number of 
clusters and select the point as optimal number of clusters which will have the high-
est average silhouette score in the vicinity of the elbow point (two points upstream of 
elbow, two points downstream and the elbow itself ). As our set of predictions for further 
analysis, we take the cluster whose mean radial CT positions shows the highest absolute 
correlation with the CT distribution type obtained by the PCA transformation of the 
pairwise inter-chromosomal strong interaction pattern matrix.

Gene density and chromosome length based tuning of consensus radial organization 

of CTs

The last aspect of our approach considers how the predicted averaged radial CT dis-
tances can be further tuned using two chromosomal properties - gene density and 
chromosome length. Human chromosome gene density (genes/ sequenced Mb) is 
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obtained from “Short guide to the human genome” [85] and length information from 
UCSC Genome Browser hg19 [86]. But before discussing the steps involved with this 
tuning procedure, let us assume, D′

t×23 represents the selected model cluster based on 
inferred CT distribution type. This cluster contains t number of network models and 
the average CT distance of each chromosome across all of the t models is denoted by 
the column vector M23×1 . After having the selected model cluster D′

t×23 , we calcu-
late a pairwise chromosome correlation matrix of size 23× 23 from that and perform 
PCA transformation on that correlation matrix. The PC1 value obtained from this 
transformation represents the major separation of the chromosomes based on pair-
wise interactions and is denoted by the column vector P23×1 . Once we have the two 
column vectors - M23×1 and P23×1 representing the average radial position of the CTs 
and their separation respectively, we combine them using a weighted averaging tech-
nique as per Eqn. 7.

where C23×1 represents the resultant combined column vector and W1 and W2 denote the 
weights calculated from the percentage of the the variance explained by PC1 and PC2.

Next, in order to model the effect of both chromosome length and gene density, we 
combine these two properties using weighted averaging as described in the Eqn.  8. 
The first and second components on the right hand side of each of the equations are 
related to the normalized gene density and normalized chromosome length respec-
tively. Also, we use the same set of weights W1 and W2 in this equation but the weights 
are ordered based on the inferred CT distribution type. For example, if the inferred 
CT distribution follows a gene density based radial positioning, in that case the com-
ponent having gene density will have the higher weight W1 and vice verse.

Here, GD and LN are column vectors of size 23× 1 and contain the gene density and 
length of each chromosomes respectively.

Following the chromosomal properties modeling procedure, in the final step of the 
tuning, the modified consensus radial distance of the CTs C23×1 is locally smoothed 
based on R23×1 using the Loess technique. The radial distance of the CTs obtained 
from this step represents the tuned arrangements of the CTs inside the nucleus.
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(7)

C23×1 = W1 ∗M23×1 +W2 ∗ P23×1

W1 =
% of variance explained by PC1

% of variance explained by PC1+ % of variance explained by PC2

W2 =
% of variance explained by PC2

% of variance explained by PC1+ % of variance explained by PC2

(8)R23×1 =

{

W1 ∗ exp(1− GD23×1)+W2 ∗ LN 23×1 if inferred - gene density
W2 ∗ exp(1− GD23×1)+W1 ∗ LN 23×1 if inferred - length
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