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Background
Survival analysis based on clinical factors (e.g., age, gender, race, stage) is crucial for 
cancer prognosis. However, it is just as important to identify and understand essential 

Abstract 

Background:  Survival analysis is an important part of cancer studies. In addition to 
the existing Cox proportional hazards model, deep learning models have recently been 
proposed in survival prediction, which directly integrates multi-omics data of a large 
number of genes using the fully connected dense deep neural network layers, which 
are hard to interpret. On the other hand, cancer signaling pathways are important and 
interpretable concepts that define the signaling cascades regulating cancer develop-
ment and drug resistance. Thus, it is important to investigate potential associations 
between patient survival and individual signaling pathways, which can help domain 
experts to understand deep learning models making specific predictions.

Results:  In this exploratory study, we proposed to investigate the relevance and 
influence of a set of core cancer signaling pathways in the survival analysis of cancer 
patients. Specifically, we built a simplified and partially biologically meaningful deep 
neural network, DeepSigSurvNet, for survival prediction. In the model, the gene expres-
sion and copy number data of 1967 genes from 46 major signaling pathways were 
integrated in the model. We applied the model to four types of cancer and investigated 
the influence of the 46 signaling pathways in the cancers. Interestingly, the interpret-
able analysis identified the distinct patterns of these signaling pathways, which are 
helpful in understanding the relevance of signaling pathways in terms of their applica-
tion to the prediction of cancer patients’ survival time. These highly relevant signaling 
pathways, when combined with other essential signaling pathways inhibitors, can be 
novel targets for drug and drug combination prediction to improve cancer patients’ 
survival time.

Conclusion:  The proposed DeepSigSurvNet model can facilitate the understanding of 
the implications of signaling pathways on cancer patients’ survival by integrating multi-
omics data and clinical factors.
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biomarkers given large-scale genomics data (e.g., gene expression and copy number vari-
ation). The cox proportional hazards model (Cox PH) model [1] is the classic model for 
survival analysis. The Kaplan–Meier estimator curve [2], CoxPH model and logrank test 
[3] are widely used to display and compare the survival probability over time of patients 
in different groups or conditions. Recently, deep learning models have been developed 
for survival analysis. Deep learning models have been used widely in image analysis [4, 
5], medical informatics data analysis [6], and natural language process (NLP) [7], and 
have shown exceptional performance over traditional machine learning models. Thus, 
deep learning models developed for survival analysis are also promising, e.g., DeepSurv 
[8], Cox-nnet [9], SCNN [10], and DeepHit [11].

Compared with the Cox PH model, the deep learning models showed improved pre-
diction accuracy by flexibly integrating a large number of genomics features without 
strong parametric assumptions. For example, the DeepSurv [8] model used the deep 
neural network to integrate the biomarker genes and personal treatment information to 
improve the survival time prediction. The DeepHit [11] model also used a deep neural 
network, and jointly model different events, like different causes of death. In the liver 
cancer subtyping and survival analysis [12], the auto-encoder model was first employed 
to reduce the dimensions of the feature space given the large-number of genomics fea-
tures (e.g., gene expression, miRNA, methylation). The important features (non-linear 
combinations of raw genomics features) were identified using the Cox PH model [1] for 
clustering analysis which identified sub-groups with distinct survival outcomes. Then, 
the analysis of variance (ANOVA) based on the clustering results was applied to the raw 
genomics features to further identify the important genes. However, the auto-encoder 
model itself was not used to identify the important raw genomics features in a non-lin-
ear perspective. In the Cox-nnet model [9], RNA-seq data from The Cancer Genome 
Atlas (TCGA) samples was used as the input in a deep neural network to predict the sur-
vival time. To identify the potentially associated signaling pathways of hidden nodes, the 
Pearson’s correlation values between the expression of individual genes and the output 
of the given hidden nodes were calculated to identify the most linearly correlated genes. 
Then, gene set enrichment analysis (GSEA) [13] was employed to link the hidden nodes 
with the enriched signaling pathways. Moreover, the Survival Convolutional Neural Net-
works (SCNN) [10] was developed to predict survival using histologic images of cancer 
patients. Finally, heat map visualizations of the regions of interest (image patches) from 
the SCNN model output were overlaid on the image to indicate the significant regions in 
the images correlated with survival outcome.

Compared with existing models, we aimed to investigate the relevance or influence 
of individual cancer signaling pathways (pathway level) to the survival time prediction 
in cancer patients. In another word, instead of using multi-omics data of a large num-
ber of genes, a set of cancer signaling pathways were modeled using a simplified and 
partially biological meaningful deep neural network architecture, which has not been 
well investigated. In cancer studies, many dysfunctional signaling pathways that play 
important roles in tumor development and drug response are identified. For example, 
the analysis of ten signaling pathways using the TCGA cancer samples indicated that 
many genetic biomarkers were included in the ten signaling pathways [14]. Such can-
cer signaling pathways and cancer hallmark networks have been used for prediction 
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of cancer clinical phenotypes and cancer prognosis [15, 16]. In this study, we aimed to 
investigate the relevance or influence of these signaling pathways within the context of 
survival outcome prediction using a biologically meaningful and simplified deep learn-
ing model, DeepSigSurvNet. Specifically, only signaling pathways (46 pathways) were 
collected from the KEGG [17] signaling database. The gene expression and copy number 
data of 1967 genes from the 46 major signaling pathways are from four types of cancer: 
breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), glioblastoma multi-
forme (GBM), and skin cutaneous melanoma (SKCM). The model was evaluated using 
the c-index. Moreover, it is critical that domain experts can understand the mechanisms 
of deep learning models making specific predictions. It is challenging because the com-
plex network architectures. To interpret deep learning models’ prediction, a set of inter-
pretation and explaining approaches have been proposed, e.g., the smmothgrad [18] and 
Layer-Wise Relevance Propagation (LRP) approach [19], to identify the features that can 
influence the model prediction results. Interestingly, the interpretable analysis using 
the smoothgrad approach identified distinct probability density distribution patterns of 
these signaling pathways, which can be helpful in understanding the relevance of the 
signaling pathways in terms of their association with cancer patients’ survival. These 
important signaling pathways can be novel targets for drug and drug combination pre-
diction to improve cancer patients’ survival time. In the following sections, the materials 
and methods, results and discussions are presented.

Methods
RNA‑seq and Copy number data of 4 types of cancer

From the UCSC Xena data server, the mean-normalized log2 scaled RSEM [20] val-
ues (per gene) across all TCGA cohorts (HiSeqV2_PANCAN dataset) and integer copy 
number data (per gene) from GISTIC2 analysis were downloaded for four types of can-
cer: breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), glioblastoma 
multiforme (GBM), and skin cutaneous melanoma (SKCM). The phenotype (clinical) 
data (survival time, age, gender, stage, etc.) of the cancer samples are also available from 
the Xena data server. Table 1 shows the number of cancer samples, dataset and URLs to 
download these datasets. For the purposes of prediction, cancer patients with survival 
times greater than 3000 days are not included.

The 46 major signaling pathways

KEGG (Kyoto Encyclopedia of Genes and Genomes) [17] is a database for the system-
atic understanding of gene functions. The KEGG signaling pathways provide knowledge 
of signaling transduction and cellular processes. There are 303 pathways in the KEGG 
database, and 45 of them are annotated as “signaling pathways”. Many of the signaling 
pathways are important oncogenic signaling pathways [14], e.g., EGFR, WNT, Hippo, 
Notch, PI3K-Akt, RAS, TGFβ, p53. The ‘cell cycle’ cellular process is also included. For 
simplicity, the ‘cell cycle’ is also viewed as one ‘signaling’ pathway. In total, 46 signaling 
pathways (45 signaling pathways + cell cycle) are selected (see Table 2). Among these 46 
signaling pathways, there are 1967 genes with both gene expression and copy number 
variation data. In summary, there are gene expression (TPM) and copy number variation 
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data of 1967 genes in 46 signaling pathways of 45 cancer cell lines, which was used as the 
input for the deep learning model.

Model Architecture of DeepSigSurvNet

Figure 1 shows the schematic architecture of the proposed DeepSigSurvNet model. In 
the ‘input layer’, there were two input features, i.e., normalized gene expression across 
TCGA samples and integer copy number variation, for each gene. Genes that have 
zero expression among training dataset will be excluded from input. In the model, 
gene expression and copy number variation information were first linked to indi-
vidual genes to compute gene state respectively for each gene. Then, the genes’ state 
were connected to the 46 signaling pathways only if a gene was included in a signal-
ing pathway (not a full connection layer). The gene connection matrix and pathway 
connection matrix were used to design the connections. The output of the 46 sign-
aling pathways was used as the input for the convolution and inception [21] layers 

Table 1  Number of  samples, dataset_id and  URLs to  download the  gene expression 
and copy number data from UCSC Xena data server

Cancer type DataSet URLs

BRCA​
(n = 1057)

HiSeqV2_PANCAN https​://xenab​rowse​r.net/datap​
ages/?cohor​t=TCGA%20Bre​ast%20
Can​cer%20(BRCA)&remov​eHub=https​
%3A%2F%2Fxen​a.treeh​ouse.gi.ucsc.
edu%3A443​

Gistic2_CopyNumber_Gistic2_all_thresholded.
by_genes

LUAD
(n = 500)

HiSeqV2_PANCAN https​://xenab​rowse​r.net/datap​ages/?cohor​
t=TCGA%20Lun​g%20Ade​nocar​cinom​
a%20(LUAD)&remov​eHub=https​
%3A%2F%2Fxen​a.treeh​ouse.gi.ucsc.
edu%3A443​

Gistic2_CopyNumber_Gistic2_all_thresholded.
by_genes

GBM
(n = 484)

HiSeqV2_PANCAN https​://xenab​rowse​r.net/datap​
ages/?cohor​t=TCGA%20Gli​oblas​
toma%20(GBM)&remov​eHub=https​
%3A%2F%2Fxen​a.treeh​ouse.gi.ucsc.
edu%3A443​

Gistic2_CopyNumber_Gistic2_all_thresholded.
by_genes

SKCM
(n = 358)

HiSeqV2_PANCAN https​://xenab​rowse​r.net/datap​
ages/?cohor​t=TCGA%20Mel​anoma​
%20(SKCM)&remov​eHub=https​
%3A%2F%2Fxen​a.treeh​ouse.gi.ucsc.
edu%3A443​

Gistic2_CopyNumber_Gistic2_all_thresholded.
by_genes

Table 2  The 46 signaling pathways used for analysis

MAPK FoxO TGF-beta T cell receptor Adipocytokine

ErbB Sphingolipid VEGF B cell receptor Oxytocin

Ras Phospholipase D Apelin Fc epsilon RI Glucagon

Rap1 p53 Hippo TNF Relaxin

Calcium mTOR Toll-like receptor Neurotrophin AGE-RAGE

cGMP-PKG PI3K-Akt NOD-like receptor Insulin Cell cycle

cAMP AMPK RIG-I-like receptor GnRH

Chemokine Wnt C-type lectin receptor Estrogen

NF-kappa B Notch JAK-STAT​ Prolactin

HIF-1 Hedgehog IL-17 Thyroid hormone

https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(GBM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(GBM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(GBM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(GBM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(GBM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Melanoma%20(SKCM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
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(see Fig. 1). The inception [21] module used multiple kernel filter sizes in each layer, 
instead of stacking more layers sequentially. It can capture informative features via 
the dimension reduction and reduce the vanishing gradient problem. The activation 
functions for the dense and convolution layers are the ReLU activation function. 
The last dense layer uses a linear activation function. To better model and predict 
the survival time of cancer patients, three clinical factors (age, gender and stage) 
and the vital status were concatenated with the genomics data. To reduce overfitting 
effects, the dropout layer and L2 weight decay were added in each inception module 
and the dense layer. For the training parameters, the batch size was 32 and the opti-
mizer was “Adadelta”. The loss function is mean square error between the real sur-
vival time and predicted survival time. We divided the cancer samples in each type 
of cancer into training data (80%) and test data (20%). For the four cancer types, we 
used the same model architecture with a different dropout rate, regularization value, 
and epoch. After each epoch, we will evaluate the performance of model, the model 
parameter with the best test c-index will be recorded. To investigate the relevance of 
individual signaling pathways in survival time prediction, we employed the smooth-
grad approach, which is available in the “iNNvestigate” package [22]. Specifically, 
noise signals or perturbations would be added to individual signaling pathways, and 

Fig. 1  Schematic architecture of the DeepSigSurvNet model
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corresponding changes on the model prediction accuracy will be calculated. The gra-
dient of the prediction accuracy changes for each individual signaling pathways (fea-
tures) can be calculated and smoothed to indicate their influence to the survival time 
prediction. For the noise scale, we adjust it based on the input. To be more specific, 
noisescale = (max (input)−min(input)) ∗ 0.1.Then the distributions of the relevance 
scores of all 46 signaling pathways for each type of cancer were estimated using kernel 
density estimation based on the relevance scores of all samples and were obtained in 
order to investigate and understand the relevance of individual signaling pathways to 
the patients’ survival.

Results
Model performance evaluation

To evaluate the performance of the proposed model, the concordance index (c-index) 
metric was used. The c-index is defined as follows. Let yi and ŷi > ŷj

∣∣yi > yj be the 
true and predicted survival time. The concordance is defined as P(ŷi > ŷj

∣∣yi
〉
yj) , where 

i and j are two randomly selected samples. The c-index indicates the probability that 
the prediction and the real survival time are relatively consistent or concordant, i.e., 
ŷi > ŷj , and yi > yj , or ŷi < ŷj , and yi < yj . Let C, D, T represent the numbers for the 
concordant, discordant, and equal survival times, then the c-index is defined as:

We compared the proposed model with the random forest model, which is available 
as RandomForestRegression in the scikit-learn package. We trained the random for-
est model using the same training and test dataset settings for the four types of cancer. 
The “n_estimator” and “max_depth” parameters were fine-tuned to find the best perfor-
mance of the random forest models. For the DeepSigSurvNet model, we used the same 
architecture for all four types of cancer, but different dropout rates, regularization values 
and epoch numbers for each cancer type. Tables 3 and 4 show the comparison results. 
As shown, the random forest model has higher c-index values in the training datasets. 
However, it has much lower c-index values on the test datasets compared with the pro-
posed DeepSignSurvNet model, which indicates that the proposed deep learning model 
is robust.

c−index =
C +

1

2
T

C + D + T
.

Table 3  C-index values of random forest model in four types of cancer

Data set n_estimator Max_depth c-index

Training-GBM 30 5 0.6550

Test-GBM 30 5 0.5598

Training-BRCA​ 40 7 0.7849

Test-BRCA​ 40 7 0.5946

Training-LUAD 30 6 0.7433

Test-LUAD 30 6 0.5593

Training-SKCM 60 9 0.9419

Test-SKCM 60 9 0.5112
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Considering the heterogeneity in TCGA dataset, multiple sampling at different ratios 
were also performed for evaluation of robustness. Specifically, we have tested different 
ratios of training data varying from 50, 60, 70, 80 and 90%, and repeated 50 times. The 
epoch time was set to 25, and the average c-index value of the 50 testing was used. The 
results are shown in Table 5. As seen, larger training dataset and small testing data have 

Table 4  C-index values of DeepSigSurvNet in four types of cancer

Data set Epoch number c-index

Training-GBM 35 0.6808

Test-GBM 35 0.6274

Training-BRCA​ 35 0.7930

Test-BRCA​ 35 0.6013

Training-LUAD 30 0.8263

Test-LUAD 30 0.7438

Training-SKCM 20 0.8103

Test-SKCM 20 0.7627

Table 5  Average c-index values of  the  proposed model and  random forest model using 
different amount of training data. The mean c-index was obtained by randomly selecting 
the training and test dataset 50 times

Ratio of training 
data (%)

Proposed model Random forest model

Mean c_index 
on training data

Mean c_index 
on test data

Mean c_index 
on training data

Mean c_index 
on test data

GBM

50 0.6672 0.5869 0.7202 0.5383

60 0.6630 0.6033 0.7034 0.5404

70 0.6745 0.6029 0.6982 0.5450

80 0.6568 0.6085 0.6936 0.5493

90 0.6636 0.6392 0.6929 0.5612

SKCM

50 0.7959 0.6961 0.7975 0.5178

60 0.7576 0.6680 0.7879 0.5237

70 0.7209 0.6950 0.7751 0.5277

80 0.7685 0.6717 0.7653 0.5255

90 0.7246 0.6643 0.7541 0.5208

BRCA​

50 0.6235 0.5435 0.8356 0.5217

60 0.6723 0.5768 0.8298 0.5262

70 0.6942 0.5627 0.8222 0.5154

80 0.7038 0.5835 0.8075 0.5026

90 0.7076 0.6157 0.8069 0.5036

LUAD

50 0.7043 0.5857 0.8486 0.5641

60 0.7345 0.6708 0.8294 0.5702

70 0.6954 0.6363 0.8187 0.5704

80 0.7560 0.7249 0.8088 0.5809

90 0.7394 0.7419 0.8020 0.5822
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relatively better c-index values in the testing data. Overall, the proposed model outper-
formed the random forest on the testing data, though random forest model had better 
performance on the training data.

To further test the influence of the number of pathways, the model was tested using 
the 10, 20, 30 and 40 signaling pathways. Specifically, a number of signaling pathways, 
e.g., 10 signaling pathways, were randomly selected for 50 times, using the 80% of 
the data as training and 20% of the data as the test data. The average c-index val-
ues were listed in Table 6. As can be seen, more signaling pathways achieved better 
c-index values in the training data and testing in general. The proposed model had 
better performance than the random forest model on the testing dataset. The results 
indicated that a small set of cancer signaling pathways are strongly informative for the 
cancer survival time prediction. It might be because that many of the cancer signaling 
pathways are overlapping and interact with each other. The random forest model had 
much better performance on the training data. However, it had poor performance on 
the testing data, which might be caused by the overfitting.

Table 6  Average c-index values of  the  proposed model and  random forest model 
using different numbers of  randomly selected signaling pathways. The mean c-index 
was  obtained by  randomly selecting the  training (80% of  the  dataset) and  test (20% 
of dataset) data for 50 times

# of pathway Proposed model Random forest model

Mean c_index 
on training data

Mean c_index 
on test data

Mean c_index 
on training data

Mean c_index 
on test data

GBM

10 0.6428 0.6115 0.6832 0.5182

20 0.6442 0.6129 0.672 0.5159

30 0.6247 0.5975 0.6617 0.5314

40 0.6300 0.6196 0.6602 0.5418

SKCM

10 0.6948 0.6626 0.7684 0.4943

20 0.7226 0.6702 0.7701 0.4434

30 0.7197 0.6614 0.772 0.4336

40 0.7629 0.6772 0.7739 0.4265

BRCA​

10 0.4397 0.3713 0.7859 0.5294

20 0.6051 0.4577 0.8029 0.5225

30 0.6661 0.5622 0.81 0.5282

40 0.6497 0.5506 0.8093 0.5139

LUAD

10 0.7349 0.7050 0.8158 0.5195

20 0.7226 0.7131 0.8162 0.5349

30 0.7347 0.7171 0.8101 0.5551

40 0.7119 0.7226 0.8091 0.5669
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Relevance of individual signaling pathways in the four types of cancer

As discussed, it is interesting to investigate and understand how the individual sign-
aling pathways contribute to the cancer patients’ survival prediction. After training 
the deep learning models, we employed the ‘iNNvestigate’ package to calculate the 
relevance scores of the individual signaling pathways on individual cancer patients in 
each of the four types of cancer. Figures 2 and 3 show the probability density distribu-
tions of 46 signaling pathways in the four types of cancer.

Specifically, the BRCA, mTOR, Hedgehog, PI3K-Akt, TGF-beta, AMPK, VEGF, Ape-
lin, Adipocytokine and Oxytocin signaling pathways have the strongest relevance scores. 
P53, Wnt, Notch, NF-Kaapa B, FoxO, cGMP-PKG, cAMP, Chemokine, Sphingolipid, 
Relaxin, and Thyroid hormone signaling pathways have relatively high relevance scores. 
Surprisingly, the MAPK, ErbB, Ras, Rap1, and JAK-STAT signaling pathways as well as 
the cell cycle are not well associated with patients’ survival outcome, even though it is 

Fig. 2  Density distribution of the relevance scores of the 46 signaling pathways on BRCA (top) and LUAD 
(bottom) cancers
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well known that these signaling pathways play important roles in cancer development. 
However, they can be separated in BRCA cancer samples and identified as the essential 
signaling pathways for patients’ survival outcome prediction. For LUDA, the patterns 
of density distribution are different from BRCA. More signaling pathways show high 
but not very strong relevance scores. For example, the MAPK, Ras, Rap1, cGMP-PKG, 
HIF-1, mTOR, PI3K-Akt, Wnt, Notch Hedgehog, C-type lectin receptor, GnRH, Neu-
rotrophin, and Thyroid hormone signaling pathways have relatively high and consistent 
relevance scores. On the other hand, the AMPK, Hippo and NOD-like signaling path-
ways have zero-mean values but with great variance. Thus, it is hard to evaluate their rel-
ative importance in cancer patients’ survival prediction analysis. For GBM, the Ras, p53, 
mTOR, PI3K-Akt, Notch, Hippo, TNF, Estrogen, Thyroid hormone and Relaxin sign-
aling pathways have relatively high relevance scores; the other signaling pathways are 
not correlated with patients’ survival. For SKCM, the patterns are similar to the LUAD 

Fig. 3  Density distribution of the relevance scores of the 46 signaling pathways on GBM (top) and SKCM 
(bottom) cancers
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cancer samples. The Ras, Calcium, cGMP-PKG, NF-Kappa B, HIF-1, FoxO, Sphingolipid, 
Phospholipase D, p53, mTOR, Wnt, Hedgehog, NOD-like receptor, Estrogen, Prolactin, 
and Thyroid hormone signaling pathways have relatively high and consistent relevance 
scores. Whereas, the MAPK, Rap1, PI3K-Akt, AMPK, and VEGF signaling pathways 
have zero-mean values but with great variance.

In summary, the probability density distribution patterns of all 46 signaling pathways 
vary significantly among the four types of cancer. For example, the p53 and mTOR sign-
aling pathways are strongly relevant to patients’ survival outcomes in BRCA, GBM, and 
SKCM cancer patients, but not in the LUDA cancer patients. The MAPK, RAS, Rap1, 
and ErBB signaling pathways are known as the important signaling pathways in can-
cer, but they are not strongly correlated with cancer patients’ survival outcome in the 
prediction models. This might be because all of these important signaling pathways are 
always activated in cancer patients. Thus, they are important targets for cancer therapy, 
but not informative in terms of the survival time prediction. Also, the cell cycle signal-
ing does not play an important role in the survival time prediction. Moreover, a small 
set of signaling pathways (e.g., T cell receptor, B cell receptor, Fc epsilon RI, TNF) do 
not show important contributions to the survival of cancer patients across all four types 
of cancer. Also, for each type of cancer, less than half of the signaling pathways have 
strong effects on the survival prediction. Thus, drugs and drug combinations that can 
inhibit these essential signaling pathways as well as the signaling pathways with strong 
relevance scores for each type of cancer might be effective in improving cancer patients’ 
survival time and outcome.

Discussion
Survival prediction is important in cancer studies. Deep learning models that integrate 
multi-omics data have been proposed for survival prediction and have outperformed the 
classic Cox PH model. Signaling pathways are important in cancer research to under-
stand the signaling cascades regulating cancer development and drug response. How-
ever, it is challenging to understand the contributions of individual genes considering 
the non-linear combinations of a large number of genomic features, e.g., gene expres-
sion, copy number variation. Instead of using a large number of genomics features, in 
this study, we proposed a relatively biologically meaningful and simplified deep learning 
model, DeepSigSurvNet, for survival prediction. In the model, the gene expression and 
copy number data of 1967 genes from 46 major signaling pathways were used. The deep 
learning model analysis on four types of cancer can identify the distinct patterns of these 
signaling pathways, which are helpful in understanding the relevance of the signaling 
pathways in the context of survival analysis. These pathways can also be novel targets 
for drug and drug combination prediction to improve cancer patients’ survival outcome.

There are some improvements to the proposed model that need to be further investi-
gated. In addition to the 46 signaling pathways, other KEGG pathways, like metabolism 
pathways, will be further evaluated. Moreover, Gene oncology [23] (GO) terms provide 
alternative meaningful biological processes (BP) (gene sets). Moreover, cancer subtype 
information is often related to different survival patterns. Identification and incorpora-
tion of the subtype information can be useful to improve the model. In addition, valida-
tion using independent datasets is necessary in order to evaluate the generalizability of 
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the model. Other omics data such as protein, methylation, and genetic mutation can be 
conveniently integrated into the model in addition to the copy number, gene expression 
data. As aforementioned, the important genes within the important signaling pathways 
can be used as potential gene signatures to discover drugs using the connectivity map 
(CMAP) [24, 25]. In this study, the proposed model is partially biological meaningful 
due to the use of signaling pathways. However, the detailed signaling structure informa-
tion has not been modeled. The deep graph neural network (GNN) could be used to 
better model the signaling structure, i.e., cascade connections. We will investigate these 
possible directions in future work.

Conclusion
In this study, we proposed a biologically meaningful and simplified deep learning model, 
DeepSigSurvNet, based on a set of signaling pathways to model cancer patients’ sur-
vival. Multi-omics data and clinical factors can be integrated into the model in a rela-
tively meaningful manner compared with existing deep learning models, and the model 
is robust for testing data. The interpretable analysis can help researchers understand the 
effects of individual signaling pathways and identify new therapeutic drugs that target 
the top correlated signaling pathways relevant to patient survival time and outcome.
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