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Abstract 

Background:  Human skeletal muscle responds to weight-bearing exercise with 
significant inter-individual differences. Investigation of transcriptome responses could 
improve our understanding of this variation. However, this requires bioinformatic 
pipelines to be established and evaluated in study-specific contexts. Skeletal muscle 
subjected to mechanical stress, such as through resistance training (RT), accumulates 
RNA due to increased ribosomal biogenesis. When a fixed amount of total-RNA is used 
for RNA-seq library preparations, mRNA counts are thus assessed in different amounts 
of tissue, potentially invalidating subsequent conclusions. The purpose of this study 
was to establish a bioinformatic pipeline specific for analysis of RNA-seq data from skel-
etal muscles, to explore the effects of different normalization strategies and to identify 
genes responding to RT in a volume-dependent manner (moderate vs. low volume). 
To this end, we analyzed RNA-seq data derived from a twelve-week RT intervention, 
wherein 25 participants performed both low- and moderate-volume leg RT, allocated 
to the two legs in a randomized manner. Bilateral muscle biopsies were sampled from 
m. vastus lateralis before and after the intervention, as well as before and after the fifth 
training session (Week 2).

Result:  Bioinformatic tools were selected based on read quality, observed gene 
counts, methodological variation between paired observations, and correlations 
between mRNA abundance and protein expression of myosin heavy chain fam-
ily proteins. Different normalization strategies were compared to account for global 
changes in RNA to tissue ratio. After accounting for the amounts of muscle tissue used 
in library preparation, global mRNA expression increased by 43–53%. At Week 2, this 
was accompanied by dose-dependent increases for 21 genes in rested-state muscle, 
most of which were related to the extracellular matrix. In contrast, at Week 12, no read-
ily explainable dose-dependencies were observed. Instead, traditional normalization 
and non-normalized models resulted in counterintuitive reverse dose-dependency for 
many genes. Overall, training led to robust transcriptome changes, with the number of 
differentially expressed genes ranging from 603 to 5110, varying with time point and 
normalization strategy.

Conclusion:  Optimized selection of bioinformatic tools increases the biological 
relevance of transcriptome analyses from resistance-trained skeletal muscle. Moreover, 
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normalization procedures need to account for global changes in rRNA and mRNA 
abundance.

Keywords:  RNA-seq, Skeletal muscle, Bioinformatics pipeline, Normalization

Background
Skeletal muscle is a highly adaptable tissue that responds to environmental stress by 
altering growth rates and differentiation processes. During resistance training, signaling 
cascades that stimulate muscle plasticity are triggered. Upon repeated exposures, this 
facilitates growth and a phenotypic shift in a metabolically active direction [1], with the 
opposite happening during inactivity [2]. Despite this generalized view, muscle respon-
siveness and plasticity vary, both in response to different resistance-training protocols 
[3] and, perhaps more importantly, between individuals [4, 5]. Selected individuals show 
a near-complete absence of muscle growth after prolonged resistance training, which 
markedly reduces the beneficial outcomes of such interventions for muscle function 
and overall health [4, 5]. Currently, little is known about the etiology of this variation. 
However, it is usually associated with phenotypic traits of skeletal muscle [6–8], which 
implies interactions with environmental factors, genetics, epigenetics, and composites 
of the intra physiological milieu [9, 10]. This multifaceted origin makes the training-
response-spectrum difficult to study directly, with each of the underlying factors offer-
ing limited explanatory value alone [11]. Instead, a more indirect approach is necessary, 
whereby the combined effects of the factors are targeted by studying global patterns of 
mRNA, protein expression, and skeletal muscle biology.

Previous studies have investigated transcriptome responses to acute resistance exer-
cise [12–14] and chronic resistance training [12, 13, 15–18], as well as described asso-
ciations between transcriptome characteristics and degrees of muscle growth [18, 19], 
and function [20, 21]. Whereas these studies have merited interesting findings, they lack 
clear coherences in terms of differential expression events, even for classical exercise-
inducible genes such as PGC1α [22]. This lack of clear coherence is potentially due to a 
combination of issues such as differences in study design and methods for synthesis and 
analysis of transcriptome data. First, biologically founded variability can be attributed to 
differences in exercise protocols (e.g., differences in exercise-volume or intensity). This 
makes it difficult to discern a general transcriptome exercise response, as training vari-
ables are not standardized between studies. Biological heterogeneity is also caused by 
differences between research participants, affecting signal-to-noise ratios and making it 
difficult to discern the effects of single independent factors such as training variables. 
Design stage decisions such as the use of within-participant designs [3, 23] are likely to 
reduce this variation and to provide transcriptome data with increased biological mean-
ingfulness. Second, technical variability can be attributed to decisions made during the 
bioinformatical treatment of data. As described by Concea et al. [24], there is no optimal 
pipeline for sequencing technology as new tools keep evolving and emerging, different 
tools should be explored to an optimum pipeline for the specific type of data. To exploit 
the potential of any study design, there is a need for identifying an appropriate pipe-
line for transcriptome analyses to ensure a biologically valid interpretation of data. This 
entails identifying potential violations of common assumptions caused by the experi-
mental model at hand, relating to, for example, data normalization [25, 26].
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For transcriptome data to provide adequate biological information about a given 
experimental set-up, numerous bioinformatic steps need to be adopted in a custom-
ized manner [24, 27]. Of these steps, data normalization is particularly decisive [26], as 
it aims to transform naïve transcript counts into biologically meaningful results. This 
essentially means expressing them as per-cell abundances [28]. For most experimental 
models, this is equivalent to providing transcript-to-total RNA ratios, given the fulfill-
ment of the assumption that total RNA levels remain stable between conditions on a 
per-unit-cell or per-unit-tissue basis [28]. In cell models that exhibit high degrees of 
plasticity, gene expression events result in increased amounts of total RNA and mRNA 
transcripts per cell [29], specifically violating the assumption that most genes are not dif-
ferentially expressed [25, 28]. We are not aware of any study that has addressed the need 
to account for such perspectives during transcriptome analyses of skeletal muscle sub-
jected to mechanical stress, such as resistance training. Indeed, this assumption can be 
expected to be violated, as total RNA content increases markedly on a per-unit-weight 
basis [3], with potential global changes also occurring for the mRNA pool, though 
this remains unknown. The extent to which total RNA, and therefore ribosomal RNA, 
increases, coincides with the increase in muscle mass [3, 7], underlining its importance 
for cellular growth but also its inevitable presence as a potential confounding factor in 
RNA sequencing experiments.

In this study, we aimed to (1) establish a bioinformatic pipeline specific for analysis of 
RNA-seq data from skeletal muscles, (2) explore the effects of using different normaliza-
tion strategies for analyzing skeletal muscle tissue subjected to resistance training, and 
(3) identify genes responding to moderate versus low resistance exercise volume, while 
simultaneously identifying genes whose expression changes with time. To achieve these 
aims, we utilized RNA-seq data generated from a within-participant study, comparing 
the effects of low and moderate resistance training volume, as previously described [3]. 
Also, myosin heavy chain protein expression, quantified using immunohistochemistry, 
was used to validate RNA quantification tools.

Results
For the RNA-seq analyses presented here, a subset of participants was selected based on 
RNA quality measurements from a previously reported study comparing the functional 
and biological efficacy of low- and moderate-volume resistance training [3] (Fig.  1a). 
Twenty-five participants (out of 34) had a full set of RNA-samples with RNA quality 
indicator (RQI) scores ≥ 7 , which were subjected to bioinformatic data analysis (Fig. 1b). 
RQI scores were not associated with RNA yield (Fig. 1c). In these participants, twelve 
weeks of training with moderate volume led to greater increases in limb lean-mass than 
low volume (3.5% vs. 2.0%, pre-training MOD mean (SD) 8.9 (2.2), to post-training 9.2 
(2.3) kg; pre-training LOW 8.9 (2.2), to post-training 9.0 (2.2) kg, Fig. 1d), corresponding 
well with MRI-based muscle cross-sectional area data from the full data set [3]. Similar 
responses were seen in the excluded participants (Fig. 1d). This coincided with greater 
strength gains (~ 25% vs. ~ 19%, Fig. 1f ), which also agrees with observations made in the 
full cohort, accompanied by greater changes in muscle fiber proportions (type IIX fibers 
↓ ) [3].
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Fig. 1  Study overview and RNA-seq analysis pipeline. Forty-one participants performed twelve weeks of 
resistance training with low- (one set per exercise, LOW) and moderate-volume (three sets per exercise, MOD) 
in a contralateral manner (2–3 sessions week-1) (a). Pre- and post-training testing included strength and 
muscle lean-mass assessments. Muscle biopsies were collected from m. vastus lateralis at four time-points, 
prior to and after the intervention (Week 0 and 12) and before and after the fifth training session (Week 2). 
Biopsies from participants who completed > 85% of prescribed sessions were used for RNA extraction (n = 34; 
A). RNA quality was assessed (b), and participants with RNA quality indicator (RQI) scores > 7 were submitted 
for RNA-seq (n = 25). RNA quality was not associated with muscle tissue weight (c), and participants included 
in RNA-seq experiments did not differ from excluded in terms of limb lean-mass gains (d). Higher training 
volume led to greater gains in limb lean mass (e) and strength (f) in the lower extremities (n = 25). RNA-seq 
data were quality filtered using trimgalore and trimmomatic and reads were compared to unfiltered reads (g). 
Read alignment was performed using five tools of which RSEM, kallisto, and Salmon showed greater fractions 
of genes with robust expression after removing low-abundance genes (expression filtering; H) compared to 
HISAT2 and STAR. RSEM, kallisto and Salmon also showed less Log2-differences between biological replicates 
in a subset of genes with known robust expression (see text for details, i)
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Bioinformatic pipeline for analysis of RNA‑seq data from skeletal muscles
To select the most appropriate tools for bioinformatic analyses, we first compared 
quality filtering using Trimmomatic and Trim Galore, both of which are commonly 
used [30, 31]. Quality scores were generally better with Trimmomatic (Fig. 1g). Trim 
Galore did not improve scores over non-filtered data (Fig.  1g). Filtered reads were 
then aligned to the human genome using three alignment-based methods (includ-
ing HISAT2, STAR, RSEM, all used together with Bowtie 2) and two non-alignment-
based methods (kallisto and Salmon). RSEM, Salmon and kallisto all showed similar 
characteristics in terms of gene counts, resulting in the expected bimodal distribution 
of counts and a larger subset of detected genes after expression filtering compared 
to STAR and HISAT2 (Fig. 1h). For a selection of genes with known robust expres-
sion across tissues [32], Salmon, kallisto, and RSEM resulted in higher proportions 
of genes with high count numbers (Fig.  1i). RSEM was found to be associated with 
lower technical variation than Salmon, kallisto, HISAT2, and STAR expressed as 
log-differences in the expression of these genes between bilateral biopsies sampled 
prior to the intervention (Fig. 1j). For HISAT2 and STAR, this distorted correlations 
between RNA-seq based myosin heavy chain family mRNA and myosin heavy chain 
protein profiles (Fig. 2a and b), with the latter identified in Hammarström et al. [3], 
which are established hallmarks of skeletal muscle biology [33–35]. Overall, RSEM, 
kallisto, and Salmon thus displayed superior technical performance than HISAT2 and 
STAR, resulting in data with lower degrees of technical variation and higher degrees 
of biological validity. RSEM displayed slightly lower average variation between paired 
samples and was thus chosen for downstream analyses.
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Fig. 2  Correlations between myosin heavy chain mRNA and protein abundance. mRNA abundances of 
myosin-heavy chains in m. vastus lateralis estimated using RSEM, kallisto, and Salmon showed stronger 
correlations with immunohistochemistry-determined protein expression than HISAT2 and STAR (a, b). mRNA 
and protein abundances of MYH7/Type I, MYH2/Type IIA, and MYH1/Type IIX were calculated as percentages 
of overall myosin-heavy chain mRNA and protein expression, analyses unbiased by normalization [34, 46]
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Effects of normalization strategies on transcriptomic data analysis 
from skeletal muscle under hypertrophic stress
In the selected participants, similarly to what has been reported in the full cohort [3], 
resistance training led to an increase in total RNA per-unit tissue weight that was larger 
in response to moderate- versus  low-volume training (Week 2, low 15% vs. moderate-
volume 24%, mean difference 7.7%, 95% CI [1.1, 14.8]; Week 12, low 15% vs. moderate-
volume 24%, mean difference 7.7%, 95% CI [1.1, 14.8]). As equal amounts of total RNA 
were used for preparing RNA-seq libraries, the amounts of muscle tissue used for library 
preparations decreased from baseline to Week 2 and 12 in both legs (low volume, − 13% 
and − 9%; moderate volume − 20% and − 15%). This decrease was subsequently more 
pronounced in the moderate volume condition, resulting in lower amounts of tissue 
used in cDNA synthesis (− 7.1%, 95% CI [− 12.9, − 1.0]; − 6.3%, [− 11.8, − 0.4]; Fig. 3a). 
Despite the utilization of less muscle tissue during library preparations in the trained 
state, effective library sizes increased compared to baseline levels (low volume, 25%, 
and 38% at Week 2 and 12, respectively; moderate volume, 16%, and 26%; Fig. 3b). Ini-
tially, this increase was numerically less pronounced in the moderate volume condition 
(− 11%, [− 22, 1.7]; − 12%, [− 24, 2.2]; Fig. 3b), but after normalization to tissue weight, 
the two training modalities resulted in similar increases in effective library size (low vol-
ume, 43%, and 53% at Week 2 and 12, respectively; moderate volume, 43%, and 49%; 
Fig. 3c). Overall, this suggests marked increases in global mRNA expression in response 
to both low- and moderate-volume resistance training.

Identification of genes responding to moderate, compared to low exercise 
volume
During subsequent identification of differentially expressed (DE) genes in response 
to low- and moderate-volume resistance training, three normalization models were 
used and compared. The first model contained effective library sizes as a covariate, as 

(See figure on next page.)
Fig. 3  Global mRNA expression and transcriptome profiles in response to low and moderate volume 
resistance training. The amounts of muscle tissue used during cDNA synthesis varied over the course of the 
study and between volume conditions (a low-volume, LOW; moderate-volume, MOD). Library sizes increased 
during the course of the intervention, with a tendency towards a greater increase in the low-volume 
condition (b). Difference in library sizes between volume conditions when expressed per-unit tissue weight 
were diminished, though increases from baseline were maintained (c). The tissue offset-normalized model 
identified 21 genes with higher expression in the moderate volume condition (d, e), ten of which was shared 
with the effective library-size normalized model at week 2 (e), and none of which was shared with the naïve 
model. No volume-dependent differences were found at Week 12 using the tissue-offset model. At this time 
point, library-size and naïve models both showed a marked skew towards augmented expression in the 
low-volume condition. At Week 2, functional annotation identified gene sets relating to extracellular matrix 
in response to higher training volume (tissue-offset model, orange and purple circles, f), all of which were 
more highly expressed in MOD, indicated by the positive enrichment score. Orange circles denote gene sets 
that were identified from rank-based enrichment tests based on the full data set. Purple circles denote gene 
categories that were also identified using over-representation analysis (ORA). Normalization strategies had 
global effects on enrichment analyses using rank tests, assessed using fold-changes and minimum significant 
differences scores (not shown), illustrated with the tissue-offset model leading to marked increases in 
genes associated with the “Collagen containing extracellular matrix” gene set (g) as well as a shift in the full 
distribution of Log2 fold-changes between volume conditions towards MOD (shown as density curves). Black 
bars represent genes that belong to the gene set identified as enriched (g). Genes symbols indicate genes 
identified as differentially expressed in each normalization scenario
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previously suggested [36], while also containing tissue weight as an offset to account 
for amounts of tissue used during RNA-seq library preparation (tissue-offset model). 
The second model contained effective library sizes as a covariate only (library-size nor-
malization), thus representing an effort to compare expression levels across training 
modalities while accounting for technical variation during library preparation [25, 36]. 
The third model was a non-normalized model (naïve model, included for comparison) 
(Table 1).

At Week 2, 21 genes were identified as DE between low and moderate volume using 
the tissue-offset model, with all genes showing higher expression in the moderate vol-
ume condition (Fig.  3d; rested-state biopsies sampled after four training sessions). 
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Similarly, 10 and seven genes were identified as DE between volume conditions using the 
library-size model and the naïve model, respectively (Fig. 3d and e). For the library-size 
model, seven of these DE genes showed higher expression in the moderate-volume con-
dition, overlapping completely with genes found using the tissue-offset model (Fig. 3e). 
For the naïve model, the seven DE genes all showed decreased expression in the moder-
ate volume condition, with 3 genes still overlapping with the library-size model, thus 
resulting in a contra-intuitive decrease in expression. Using tissue-offset model-derived 
estimates for functional analyses (Rank-based enrichment tests of minimum significant 
differences, MSD), revealed enrichment of genes associated with extracellular matrix 
(ECM) gene ontology (GO) sets (Fig. 3f, Table 2). The top-ranked GO terms were also 
identified by over-representation tests (ORA) using DE genes (Fig. 3f, Table 2, detailed 
table in Additional files 1 and 2). Using library-size model estimates similar top-ranked 
GO sets were identified as with the tissue-offset model albeit with lower levels of sig-
nificance and lower degrees of agreement between methods (Table 2). The naïve model 
generally identified GO sets with negative enrichment scores indicating gene sets with 
lower expression in moderate volume compared to low volume, with a weak agreement 
between enrichment methods (Table 2). The analytical consequences of using the differ-
ent normalization strategies were particularly apparent in comparisons of rank metrics, 
such as fold-changes. Importantly, this analytical approach uses the entire gene set to 
identify enriched gene sets, rather than being confined to DE genes. After controlling 
for amounts of tissue used during preparation of RNA-seq libraries, the distribution of 
Log2 differences between volume conditions shifted markedly in favor of higher train-
ing volume (Fig. 3g), and robust gene sets appeared with higher expression in the mod-
erate volume condition, such as genes belonging to the Collagen-containing ECM GO 
set (Fig. 3g). Accordingly, the number of DE genes identified to this GO set was highest 
using the tissue-offset model (n = 11), followed by the library-size model (n = 6), with no 
genes identified using the naïve model (Fig. 3g).

At Week 12, no genes were identified as differentially expressed between resistance 
training with low and moderate volume using the tissue-offset model (Fig. 3h; rested-
state biopsies sampled after finalization of the intervention). In contrast, a small num-
ber of genes were identified as DE between volume conditions using library-size and 
naïve models (n = 4 and n = 3, respectively; Fig. 3h and i), with all genes showing lower 

Table 1  Participant characteristics

Values from pre-intervention assessments. Relative lean and fat mass from whole-body data

Mean SD

Female n = 11 Age (years) 22.6 0.9

Body mass (kg) 166.2 6.2

Stature (cm) 61.5 7.4

Lean mass (%) 63.7 5.6

Fat mass (%) 32.2 5.7

Male n = 14 Age (years) 23.9 4.2

Body mass (kg) 183.7 5.6

Stature (cm) 77.4 10.4

Lean mass (%) 75.4 5.5

Fat mass (%) 20.1 5.7
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Table 2  Functional annotation analysis comparing moderate- and low-volume training

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank P-valuea Gene-set enrichment 
analysis (GSEA)

ORA P-valuec

GSEA P-valueb NES

Week 2 MOD 
versus  LOW

Tissue offset Biological 
process

GO:0043062 Extracellular 
structure 
organization

6.19e−39 6.22e−24 1.93 4.70e−06

GO:0030199 Collagen fibril 
organization

1.46e−14 4.72e−11 2.22 NA

Cellular 
compo-
nent

GO:0062023 Collagen 
containing 
extracellular 
matrix

1.39e−60 7.90e−44 2.17 6.63e−12

GO:0031012 Extracellular 
matrix

1.01e−58 6.10e−44 2.08 2.88e−11

GO:0005788 Endoplasmic 
reticulum 
lumen

3.58e−25 7.82e−11 1.70 7.80e−07

GO:0005581 Collagen trimer 9.38e−19 7.20e−12 2.14 3.89e−05

GO:0031983 Vesicle lumen 4.15e−15 1.52e−10 1.67 NA

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

2.23e−43 3.67e−29 2.28 2.86e−11

GO:0005198 Structural mol-
ecule activity

9.12e−31 3.39e−14 1.58 NA

GO:0005518 Collagen bind-
ing

1.49e−16 5.96e−08 1.97 NA

Effective library 
size

Biological 
process

GO:0043062 Extracellular 
structure 
organization

7.50e−21 2.68e−27 2.63 NA

GO:0030199 Collagen fibril 
organization

1.56e−12 3.25e−08 2.46 NA

Cellular 
compo-
nent

GO:0062023 Collagen 
containing 
extracellular 
matrix

6.85e−35 4.30e−45 2.89 7.93e−08

GO:0031012 Extracellular 
matrix

1.77e−32 3.26e−41 2.73 1.29e−07

GO:0005788 Endoplasmic 
reticulum 
lumen

3.16e−14 1.56e−13 2.28 NA

GO:0005581 Collagen trimer 1.88e−13 7.84e−11 2.50 NA

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

2.67e−31 5.53e−26 2.83 1.67e−07

GO:0005198 Structural mol-
ecule activity

1.21e−18 7.39e−21 2.22 NA

GO:0005518 Collagen bind-
ing

2.24e−10 1.83e−08 2.37 NA

GO:0030020 Extracellular 
matrix struc-
tural constitu-
ent conferring 
tensile 
strength

8.51e−09 2.52e−06 2.26 NA

Naïve Biological 
process

GO:0006397 mRNA process-
ing

1.76e−17 5.03e−04  − 1.48 NA

GO:0008380 RNA splicing 3.19e−17 0.002  − 1.47 NA

GO:0000375 RNA splicing via 
transes-
terification 
reactions

3.41e−15 0.005  − 1.49 NA
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Table 2  (continued)

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank P-valuea Gene-set enrichment 
analysis (GSEA)

ORA P-valuec

GSEA P-valueb NES

GO:1903311 Regulation 
of mRNA 
metabolic 
process

7.48e−10 0.003  − 1.51 NA

GO:0050684 Regulation 
of mRNA 
processing

1.18e−07 0.015  − 1.64 NA

GO:0043484 Regulation of 
RNA splicing

1.76e−07 0.049  − 1.57 NA

GO:0048024 Regulation 
of mRNA 
splicing via 
spliceosome

3.48e−07 0.009  − 1.75 NA

GO:0000380 Alternative 
mRNA 
splicing via 
spliceosome

8.32e−07 0.027  − 1.74 NA

Cellular 
compo-
nent

GO:0005681 Spliceosomal 
complex

2.65e−11 0.007  − 1.56 NA

GO:0016607 Nuclear speck 3.10e−08 0.010  − 1.40 NA

Week 12 MOD 
versus  LOW

Tissue offset Biological 
process

GO:0010498 Proteasomal 
protein cata-
bolic process

0.046 0.685 1.00 NA

GO:0006401 RNA catabolic 
process

0.046 0.737  − 0.87 NA

GO:0006397 mRNA process-
ing

0.046 0.904 0.88 NA

GO:0000209 Protein poly-
ubiquitination

0.046 0.579 1.05 NA

Molecular 
function

GO:0003729 mRNA binding 0.003 0.844 0.99 NA

GO:0019783 Ubiquitin like 
protein spe-
cific protease 
activity

0.021 0.286 1.37 NA

GO:0019787 Ubiquitin like 
protein 
transferase 
activity

0.021 0.796 1.01 NA

GO:0008234 Cysteine type 
peptidase 
activity

0.021 0.247 1.40 NA

GO:0016874 Ligase activity 0.039 0.691 1.10 NA

GO:0003730 mRNA 3 utr 
binding

0.043 0.775 1.01 NA

Effective library 
size

Biological 
process

GO:0006613 Cotranslational 
protein 
targeting to 
membrane

1.18e−36 1.29e−07  − 2.11 NA

GO:0072599 Establishment 
of protein 
localization to 
endoplasmic 
reticulum

3.52e−36 6.44e−09  − 2.12 NA

GO:0070972 Protein 
localization to 
endoplasmic 
reticulum

1.52e−33 2.30e−08  − 2.04 NA

GO:0019080 Viral gene 
expression

1.14e−30 1.75e−07  − 1.86 NA
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expression in the moderate volume condition (Fig. 3h and i). Of these genes, two were 
shared between models (Fig. 3i). Using tissue-offset model-derived estimates for func-
tional annotation analyses, revealed no consensus GO sets, using either of the two 
enrichment approaches (Table 2). In contrast, functional annotation based on estimates 
from the library-size and naïve model revealed GO terms related to cellular respiration 
and protein translation with enrichment scores (NES) indicating higher expression of 

Table 2  (continued)

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank P-valuea Gene-set enrichment 
analysis (GSEA)

ORA P-valuec

GSEA P-valueb NES

Cellular 
compo-
nent

GO:0005840 Ribosome 6.28e−42 6.81e−12  − 2.01 NA

GO:0044391 Ribosomal 
subunit

6.74e−42 4.05e−12  − 2.09 NA

GO:0022626 Cytosolic ribo-
some

3.40e−36 2.36e−09  − 2.15 NA

GO:0098798 Mitochondrial 
protein 
complex

1.20e−35 7.52e−10  − 1.89 NA

GO:0019866 Organelle inner 
membrane

2.88e−35 7.52e−10  − 1.67 NA

Molecular 
function

GO:0003735 Structural 
constituent of 
ribosome

7.79e−43 7.81e−12  − 2.13 NA

Naïve Biological 
process

GO:0006613 Cotranslational 
protein 
targeting to 
membrane

7.73e−30 3.48e−08  − 2.14 NA

GO:0072599 Establishment 
of protein 
localization to 
endoplasmic 
reticulum

7.73e−30 1.65e−08  − 2.10 NA

GO:0070972 Protein 
localization to 
endoplasmic 
reticulum

7.58e−28 6.14e−07  − 1.92 NA

Cellular 
compo-
nent

GO:0019866 Organelle inner 
membrane

4.52e−43 3.70e−11  − 1.68 NA

GO:0098798 Mitochondrial 
protein 
complex

2.31e−40 8.47e−10  − 1.83 NA

GO:0005840 Ribosome 4.35e−39 1.75e−10  − 1.91 NA

GO:0044391 Ribosomal 
subunit

5.29e−39 2.47e−11  − 2.03 NA

GO:0098800 Inner mitochon-
drial mem-
brane protein 
complex

1.13e−30 6.41e−09  − 2.06 NA

GO:0022626 Cytosolic ribo-
some

2.07e−30 1.75e−10  − 2.23 NA

Molecular 
function

GO:0003735 Structural 
constituent of 
ribosome

2.12e−39 3.20e−12  − 2.17 NA

a  Rank-based enrichment test based on minimum significant difference identifies gene-sets that are over-represented 
among top-ranked genes without a directional hypothesis
b  Gene-set enrichment analysis (GSEA) tests for over-representation in among top and bottom genes based on Log2 fold-
changes in comparing moderate- (MOD) versus low-volume (LOW) conditions. Positive normalized enrichment scores (NES) 
indicates genes with higher expression in MOD compared to LOW, negative NES indicates genes with higher expression in 
LOW compared to MOD

c  Over-representation tests based on differentially expressed genes. P-values are adjusted for FDR
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genes in the low-volume condition (Table 2). No DE genes contributed to ORA-iden-
tified GO terms among the top-ranked GO terms from the library-size model. In the 
naïve model, genes related to cellular respiration were identified as DE with subsequent 
contribution in ORA-identified GO terms (Table 2).

Identification of genes with altered expression over time (0, 2 and 12 weeks)
At Week 2 and 12 (rested-state biopsies), we also investigated the overall effects of resist-
ance training on transcriptome profiles: i.e. the time effect, assessed by combining data 
from the two training modalities. At Week 2, resistance training led to increased expres-
sion for 3923, 1609, and 3875 genes and decreased expression of 77, 289, and 100 genes 
using the tissue-offset, the library-size, and the naïve model, respectively (Fig. 4a). The 
majority of these DE genes were found in the intersection between all models (Fig. 4a 
lower panel). At Week 12, resistance training led to increased expression of 1733, 584, 
and 5108 genes and decreased expression of 2, 19, and 2 genes using the tissue-offset, 
the library-size, and the naïve model, respectively (Fig.  4b). Here, the majority num-
ber of DE genes were found in the intersection between the tissue-offset model and the 
naïve model (Fig. 4b lower panel). At both Week 2 and 12 (and using any normalization 
model), functional analyses of DE genes revealed enrichment of GO terms associated 
with ECM structure, organization, and synthesis, as well as stress responses (Table 3).

Effects of acute exercise on transcriptome profiles (pre‑ to post‑exercise 
in Week 2)
At Week 2, we also investigated the effects of acute bouts of resistance exercise with 
low and moderate volume on transcriptome profiles. As we did not expect changes in 
the total RNA-to-muscle mass ratio in this short time span [37] and rather fluid shifts 
[38] may have affected tissue weight and hence downstream analyses in an undesirable 
manner, transcriptome analyses were performed using the library-size model. First, we 
performed an analysis of the effects of resistance training per se on transcriptome pro-
files (combining data from the two training modalities). These analyses identified 1736 
DE genes after acute resistance exercise, 707 of which showed increased expression 
and 1029 of which showed decreased expression (Fig. 5a). Genes that showed increased 
expression were generally associated with stress-related GO terms, including immune 
response (Table 4). Genes that showed decreased expression were associated with ECM-
related GO terms (Table  4), contrasting observations made in rested-state biopsies at 
Week 2 and 12 (Table 3; detailed table in Additional files 1 and 2). We then compared 
the effects of low and moderate-volume conditions. These analyses identified one sin-
gle DE gene (RFT1, Fig. 5b), which decreased to a greater extent in the moderate-vol-
ume condition. Despite this, rank-based enrichment tests with MSD identified five GO 
terms with significant enrichment. Among these five categories, three had genes with 
MSD > 0 (RNA splicing, RNA localization, and Covalent chromatin modification), indi-
cating that the lower bound of 95% CI did not overlap no-change. However, as differ-
ences between volume conditions were both negative and positive, as indicated by the 
rug-plot in Fig. 5c, these categories were not identified in gene-set enrichment analysis 
based on fold-changes. Overall, these analyses do not provide evidence for pronounced 
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volume-dependent regulation of mRNA expression in the acute recovery phase after 
resistance exercise (1-h).

Discussion
In the present study, we used a within-participant model to study the effects of low 
and moderate resistance training volumes on transcriptome responses. For these 
analyses, we used a subset of muscle biopsy material from a previously reported 
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Fig. 4  Comparing the effects of resistance training per se on transcriptome profiles using different 
normalization models. Volcano plot identifies differentially expressed genes at Week 2 (a) and Week 12 (b) 
(adjusted P-values < 0.05 and Log2 fold-changes >|0.5|, filled circles). Bar-plots shows the total number of DE 
genes (horizontal bars) and sets exclusively found in each model or shared among models (vertical bars). 
The majority of differentially expressed genes were identified by all three normalization models, though the 
effective library-size model identified a larger number of genes with decreased expression (a)
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Table 3  Functional annotation analysis of time-dependent effects of resistance training

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank 
P-value

Gene-set 
enrichment 
analysis (GSEA)

ORA 
P-value

GSEA 
P-value

NES

Week 2 Tissue offset Biological 
process

GO:0043062 Extracellular 
structure 
organiza-
tion

7.28e−41 5.92e−25 1.96 9.04e−28

GO:0006954 Inflammatory 
response

1.28e−30 5.92e−25 1.79 9.04e−28

GO:0002274 Myeloid 
leukocyte 
activation

4.48e−24 3.87e−14 1.59 2.40e−16

GO:0050900 Leukocyte 
migration

4.79e−22 4.62e−18 1.82 2.20e−17

GO:0002444 Myeloid 
leukocyte 
mediated 
immunity

3.46e−20 4.71e−12 1.57 8.98e−15

Cellular 
compo-
nent

GO:0031012 Extracellular 
matrix

5.85e−70 5.45e−51 2.17 3.58e−52

GO:0062023 Collagen 
containing 
extracellular 
matrix

1.19e−68 3.15e−47 2.20 5.88e−53

GO:0005788 Endoplasmic 
reticulum 
lumen

6.10e−24 2.71e−12 1.75 5.21e−17

GO:0005581 Collagen 
trimer

1.29e−21 9.26e−14 2.24 1.29e−10

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

1.70e−40 3.56e−24 2.23 8.04e−30

Effective library 
size

Biological 
process

GO:0043062 Extracellular 
structure 
organiza-
tion

1.28e−34 6.94e−23 2.03 4.27e−29

GO:0006954 Inflammatory 
response

3.11e−26 3.15e−21 1.82 9.15e−28

GO:0050900 Leukocyte 
migration

5.50e−18 1.58e−13 1.83 8.59e−15

GO:0030199 Collagen fibril 
organiza-
tion

1.01e−17 2.75e−11 2.28 2.49e−14

GO:0042330 Taxis 5.63e−17 1.74e−12 1.69 2.15e−16

Cellular 
compo-
nent

GO:0031012 Extracellular 
matrix

2.64e−63 7.23e−43 2.17 1.48e−53

GO:0062023 Collagen 
containing 
extracellular 
matrix

2.38e−61 4.14e−38 2.20 4.43e−52

GO:0005581 Collagen 
trimer

3.52e−20 8.15e−12 2.23 1.18e−14

GO:0005788 Endoplasmic 
reticulum 
lumen

8.79e−18 2.51e−12 1.87 1.50e−10

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

9.00e−38 6.36e−18 2.18 2.82e−28
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Table 3  (continued)

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank 
P-value

Gene-set 
enrichment 
analysis (GSEA)

ORA 
P-value

GSEA 
P-value

NES

Naïve Biological 
process

GO:0043062 Extracellular 
structure 
organiza-
tion

1.38e−40 2.25e−23 1.93 3.36e−26

GO:0006954 Inflammatory 
response

1.30e−31 2.61e−26 1.78 5.70e−28

GO:0002274 Myeloid 
leukocyte 
activation

3.44e−23 4.99e−14 1.57 6.42e−16

GO:0050900 Leukocyte 
migration

7.26e−23 8.32e−17 1.79 7.78e−20

GO:0042330 Taxis 2.04e−19 4.63e−18 1.69 5.41e−17

Cellular 
compo-
nent

GO:0031012 Extracellular 
matrix

4.84e−71 2.20e−54 2.15 7.81e−53

GO:0062023 Collagen 
containing 
extracellular 
matrix

9.15e−70 7.75e−49 2.19 1.01e−53

GO:0005788 Endoplasmic 
reticulum 
lumen

4.50e−24 2.56e−12 1.72 4.68e−18

GO:0005581 Collagen 
trimer

8.56e−22 1.06e−13 2.20 2.17e−11

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

1.98e−40 4.68e−25 2.20 6.38e−29

Week 12 Tissue offset Biological 
process

GO:0043062 Extracellular 
structure 
organiza-
tion

1.86e−49 2.01e−28 2.22 1.09e−37

GO:0001501 Skeletal sys-
tem devel-
opment

7.13e−21 6.49e−14 1.77 1.09e−16

GO:0030199 Collagen fibril 
organiza-
tion

2.46e−20 4.83e−12 2.48 1.29e−15

Cellular 
compo-
nent

GO:0031012 Extracellular 
matrix

8.63e−72 3.48e−58 2.47 2.23e−69

GO:0062023 Collagen 
containing 
extracellular 
matrix

4.96e−69 4.97e−54 2.52 8.25e−67

GO:0005581 Collagen 
trimer

3.65e−25 1.27e−19 2.64 2.40e−25

GO:0005788 Endoplasmic 
reticulum 
lumen

8.11e−20 1.85e−10 1.84 1.87e−13

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

2.46e−47 1.34e−34 2.63 4.24e−46

GO:0005539 Glycosami-
noglycan 
binding

1.48e−20 3.73e−15 2.15 2.01e−17

GO:0008201 Heparin bind-
ing

5.72e−19 1.03e−15 2.25 9.82e−16
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Table 3  (continued)

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank 
P-value

Gene-set 
enrichment 
analysis (GSEA)

ORA 
P-value

GSEA 
P-value

NES

Effective library 
size

Biological 
process

GO:0043062 Extracellular 
structure 
organiza-
tion

1.79e−44 3.76e−21 1.90 8.48e−33

GO:0030199 Collagen fibril 
organiza-
tion

4.77e−19 3.05e−08 2.10 2.69e−10

Cellular 
compo-
nent

GO:0031012 Extracellular 
matrix

6.91e−67 6.04e−41 2.03 2.38e−61

GO:0062023 Collagen 
containing 
extracellular 
matrix

1.43e−63 2.57e−38 2.07 2.59e−56

GO:0005581 Collagen 
trimer

1.74e−24 6.46e−13 2.17 1.11e−26

GO:0005788 Endoplasmic 
reticulum 
lumen

1.45e−17 8.84e−09 1.66 1.58e−13

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

3.54e−45 1.48e−21 2.13 4.31e−42

GO:0005198 Structural 
molecule 
activity

3.18e−20 2.05e−14 1.61 NA

GO:0005539 Glycosami-
noglycan 
binding

1.36e−18 2.43e−12 1.90 1.05e−15

GO:0008201 Heparin bind-
ing

2.49e−18 7.91e−11 1.95 6.20e−16

Naïve Biological 
process

GO:0043062 Extracellular 
structure 
organiza-
tion

2.90e−52 1.61e−39 2.94 1.06e−28

GO:0001501 Skeletal sys-
tem devel-
opment

7.74e−23 3.14e−18 2.21 1.05e−11

GO:0030199 Collagen fibril 
organiza-
tion

2.99e−21 1.57e−15 3.14 5.82e−08

Cellular 
compo-
nent

GO:0031012 Extracellular 
matrix

1.49e−81 7.09e−79 3.31 2.66e−44

GO:0062023 Collagen 
containing 
extracellular 
matrix

4.03e−79 1.04e−69 3.39 4.01e−46

GO:0005581 Collagen 
trimer

5.29e−27 6.03e−27 3.39 4.83e−12

GO:0005788 Endoplasmic 
reticulum 
lumen

8.14e−24 5.17e−16 2.37 1.45e−14
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study [3]. Training volume led to robust increases in muscle strength and limb lean 
mass, resembling observations made in the full study cohort [3], and previous studies 
[39]. Despite these benefits, few differences were detected in transcriptome profiles 
between volume conditions, with the most prominent exception being a selection of 
genes involved in extracellular matrix organization and biology in the early stages of 
resistance training. We have shown that disclosure of these differences was made pos-
sible by our systematic selection of bioinformatic tools.

Identification of a model‑specific bioinformatics pipeline
The continued development of bioinformatic tools for RNA-seq analyses require con-
tinuous optimization of analytic pipelines to any specific study conditions [24, 40]. 
To this end, we first sought to select a suitable read-trimming method. This is neces-
sary to provide high-quality downstream alignment and k-mer search in reads [30]. 
Two commonly used algorithms were compared [30, 31]. Trimmomatic provided data 
with higher quality than Trimgalore (Fig. 1G), which did not improve quality scores 
compared to non-filtered data. Second, we compared five mapping tools for perform-
ing transcript quantification of trimmed reads: two genome-based mapping tools 
(STAR [41] and HISAT2 [42]) and three transcript based mapping tools (RSEM [43], 
kallisto [44] and Salmon [45]). Transcript-based mapping tools resulted in stronger 
correlations between mRNA and protein profiles, measured as relationships between 
myosin heavy chain mRNA profiles and protein abundances in rested state biopsies 
[3] (Fig. 2a), which is known to correlate in resting human skeletal muscle [33–35]. 
This comparison was performed using gene-/protein-family normalization [34, 46], 
allowing the deduction of mRNA-to-protein relationships without the need for other 
normalization assumptions. Notably, a marked skew was observed in the relationship 
between MYH1 proportions and its corresponding Type IIX fiber following the ini-
tial part of the training intervention. This coincided with robust changes in MYH1 

Table 3  (continued)

Comparison Normalization 
model

Gene 
ontology 
category

ID Description Rank 
P-value

Gene-set 
enrichment 
analysis (GSEA)

ORA 
P-value

GSEA 
P-value

NES

Molecular 
function

GO:0005201 Extracel-
lular matrix 
structural 
constituent

1.22e−50 7.93e−48 3.59 6.42e−28

GO:0005539 Glycosami-
noglycan 
binding

7.61e−24 1.07e−19 2.78 6.84e−13

GO:0008201 Heparin bind-
ing

1.83e−21 1.44e−18 2.90 1.97e−09

a  Rank-based enrichment test based on minimum significant difference identifies gene−sets that are over-represented 
among top-ranked genes without a directional hypothesis
b  Gene−set enrichment analysis (GSEA) tests for over-representation in among top and bottom genes based on Log2 fold-
changes in comparing time−points (Week 2 vs. Week 0 and Week 12 vs. Week 0). Positive normalized enrichment scores 
(NES) indicate genes with higher expression in Week 2/12 compared to Week 0; negative NES indicates genes with higher 
expression in Week 0 compared to Week 2/12

c  Over-representation tests based on differentially expressed genes. P-values are adjusted for FDR
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expression, as is typically seen in response to mechanical loading in such short time 
frames [47]. Furthermore, the transcript-based mapping tools (RSEM, kallisto, and 
Salmon) resulted in transcriptome profiles with an expected bimodal distribution 
of counts and a larger subset of detected genes compared to genome-based tools 
(Fig. 1h). They were also associated with the less technical variation, evident as lower 
Log2-fold differences in expression for a selection of highly expressed genes between 
the two legs at baseline [23], assuming minimal biological variation between such 
paired samples. In these analyses, RSEM displayed slightly lower average variation 
between paired samples, thus outperforming kallisto and Salmon (Fig. 1j).
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transcriptome profiles in muscle biopsies. Overall, an acute bout of resistance training led to large-scale 
alterations in gene expression (volume-conditions combined) (a). Comparing differentially expressed 
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Table 4  Functional annotation analysis of  time−dependent effects of  acute resistance 
exercise

Gene ontology 
category

ID Description Rank P-value Gene−set 
enrichment analysis 
(GSEA)

ORA P-value

GSEA P-value NES

Biological process GO:0050900 Leukocyte migra-
tion

2.31e−16 0.010 1.58 1.04e−04

GO:0009617 Response to bac-
terium

6.61e−14 1.42e−04 1.81 8.54e−06

GO:0060326 Cell chemotaxis 6.69e−14 0.019 1.61 1.15e−04

GO:0006954 Inflammatory 
response

2.08e−12 0.019 1.45 0.048

GO:0002237 Response to mol-
ecule of bacterial 
origin

2.08e−12 4.61e−05 2.04 2.29e−05

GO:0042330 Taxis 1.11e−11 9.24e−04 1.68 3.05e−05

GO:0007159 Leukocyte cell cell 
adhesion

1.17e−11 0.003 1.78 4.02e−04

GO:0030595 Leukocyte chemo-
taxis

8.29e−11 0.038 1.54 0.004

GO:0048514 Blood vessel mor-
phogenesis

8.72e−11 1.20e−05 1.89 1.78e−11

GO:0042110 T cell activation 1.25e−09 0.022 1.46 6.84e−04

Cellular component GO:0072562 Blood microparticle 3.23e−04 0.726 1.20 NA

GO:0098589 Membrane region 0.004 0.162 1.39 NA

GO:0042581 Specific granule 0.009 0.644 1.18 NA

GO:0070820 Tertiary granule 0.055 0.444 1.28 NA

GO:0005667 Transcription factor 
complex

0.070 1.93e−04 1.88 NA

GO:0000932 P body 0.082 0.243 1.49 0.049

GO:1903293 Phosphatase 
complex

0.095 0.012 1.97 0.049

GO:0030055 Cell substrate junc-
tion

0.110 0.033 1.49 NA

GO:0051233 Spindle midzone 0.116 0.647 1.29 NA

GO:1904724 Tertiary granule 
lumen

0.180 0.091 1.81 NA

Molecular function GO:0001216 DNA binding tran-
scription activator 
activity

8.87e−15 1.50e−14 2.56 NA

GO:0035326 Cis regulatory 
region binding

7.65e−10 3.00e−15 2.38 0.035

GO:0030545 Receptor regulator 
activity

3.34e−07 0.004 1.75 0.003

GO:0005125 Cytokine activity 8.04e−07 0.002 2.00 0.004

GO:0001217 DNA binding 
transcription 
repressor activity

2.71e−06 6.07e−04 1.89 NA

GO:0001968 Fibronectin binding 3.90e−05 0.411 1.30 0.024

GO:0001664 G protein coupled 
receptor binding

3.90e−05 0.078 1.52 0.047

GO:0008083 Growth factor 
activity

4.22e−05 0.001 2.03 0.004
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Table 4  (continued)

Gene ontology 
category

ID Description Rank P-value Gene−set 
enrichment analysis 
(GSEA)

ORA P-value

GSEA P-value NES

GO:0005126 Cytokine receptor 
binding

2.11e−04 9.14e−04 1.94 0.047

GO:0140272 Exogenous protein 
binding

3.80e−04 0.198 1.54 NA

Biological process GO:0043062 Extracellular struc-
ture organization

1.21e−11 0.006  − 1.57 0.046

GO:0001501 Skeletal system 
development

6.32e−09 0.057  − 1.32 0.008

GO:0072676 Lymphocyte migra-
tion

3.54e−07 0.126  − 1.42 NA

GO:0032963 Collagen metabolic 
process

1.43e−06 0.032  − 1.61 NA

GO:0002697 Regulation of 
immune effector 
process

1.60e−06 0.115  − 1.31 NA

GO:0002250 Adaptive immune 
response

6.08e−06 0.023  − 1.43 NA

GO:0070661 Leukocyte prolifera-
tion

6.23e−06 0.055  − 1.40 NA

GO:0060348 Bone development 7.92e−06 0.031  − 1.49 NA

GO:0042098 T cell proliferation 1.68e−05 0.127  − 1.34 NA

GO:0033627 Cell adhesion medi-
ated by integrin

1.69e−05 0.288  − 1.27 0.007

Cellular component GO:0031012 Extracellular matrix 8.06e−15 7.19e−11  − 2.12 NA

GO:0062023 Collagen contain-
ing extracellular 
matrix

8.74e−12 3.62e−13  − 2.29 NA

GO:0005581 Collagen trimer 3.23e−04 7.19e−11  − 2.56 NA

GO:0009897 ExteRNAl side of 
plasma mem-
brane

0.001 0.023  − 1.57 NA

GO:0005788 Endoplasmic reticu-
lum lumen

0.008 0.003  − 1.69 NA

GO:0098552 Side of membrane 0.012 0.460  − 1.18 NA

GO:0043235 Receptor complex 0.014 0.210  − 1.29 NA

GO:0043202 Lysosomal lumen 0.032 0.002  − 1.91 NA

GO:0035579 Specific granule 
membrane

0.065 0.839  − 1.09 NA

GO:0098802 Plasma membrane 
signaling recep-
tor complex

0.092 0.263  − 1.37 NA

Molecular function GO:0005201 Extracellular matrix 
structural con-
stituent

2.40e−07 6.68e−10  − 2.38 NA

GO:0005539 Glycosaminoglycan 
binding

1.38e−06 0.251  − 1.27 0.048

GO:0008201 Heparin binding 7.60e−06 0.224  − 1.33 NA

GO:0005178 Integrin binding 7.04e−04 0.103  − 1.42 NA
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Comparison of normalization strategies
Transcriptome analyses often rely on the assumption that gene expression is counted 
and compared between conditions on a per-cell level [28]. This is implicitly assumed to 
be equivalent to measuring transcriptome data as ratios between mRNA and total RNA, 
as the input in sequencing or hybridization experiments usually is total RNA [13, 15, 48].

In the current study population, we previously showed that total RNA increases per-
unit-muscle tissue in a volume-dependent manner following initiation of resistance 
training [3]. Consequently, the preparation of cDNA libraries for RNA-seq experiments 
was unavoidably based on different amounts of tissue, as fixed amounts of total RNA 
(1000 ng) were used for this purpose. If unaccounted for, this would lead to a compari-
son of transcriptome data originating from different amounts of muscle tissue for the 
two volume conditions. We show that this leads to a contra-intuitive larger increase in 
global transcript counts in the low-volume condition compared to the moderate-volume 
condition (though without reaching statistical significance). In contrast, after adjusting 
for the difference in amounts of muscle tissue fed into RNA-seq experiments (i.e., tissue-
offset normalization), this apparent difference in average library size disappeared. Over-
all, we thus observed an increase in global mRNA expression per-unit-muscle weight 
(43–53%) in response to resistance training that did not depend on training volume, 
contrasting the observed volume-dependency of total RNA expression [3]. This global 
change in mRNA expression was associated with substantial alterations in the expres-
sion of a multitude of genes, with as many as 26 and 12% of the total read-count pool 
showing increased expression using the tissue-offset model at Week 2 and Week 12, 
respectively. These genes were associated with biological processes such as ECM synthe-
sis and organization corroborating with previous studies [13, 18, 22].

Table 4  (continued)

Gene ontology 
category

ID Description Rank P-value Gene−set 
enrichment analysis 
(GSEA)

ORA P-value

GSEA P-value NES

GO:1901681 Sulfur compound 
binding

8.19e−04 0.098  − 1.35 NA

GO:0030246 Carbohydrate 
binding

8.22e−04 0.230  − 1.27 NA

GO:0005518 Collagen binding 0.004 0.050  − 1.66 NA

GO:0043394 Proteoglycan 
binding

0.010 0.185  − 1.53 NA

GO:0050840 Extracellular matrix 
binding

0.011 0.351  − 1.27 NA

GO:0019838 Growth factor 
binding

0.016 0.195  − 1.35 NA

a  Rank-based enrichment test based on minimum significant difference identifies gene−sets that are over-represented 
among top-ranked genes without a directional hypothesis
b  Gene−set enrichment analysis (GSEA) tests for over-representation in among top and bottom genes based on Log2 fold-
changes in comparing time−points (Post- vs. Pre−exercise). Positive normalized enrichment scores (NES) indicate genes 
with higher expression Post- compared to Pre−exercise, negative NES indicates genes with higher expression Pre− 
compared to Post-exercise
c  Over-representation tests based on differentially expressed genes. P-values are adjusted for FDR
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As the volume-dependent changes in muscle growth and total RNA levels in m. vastus 
lateralis arguably will affect downstream bioinformatics analyses and identification of 
DE genes, we aimed to compare three different normalization strategies during the sub-
sequent analyses: tissue-offset, library-size, and naïve. At Weeks 2 and 12, the different 
normalization strategies resulted in marked shifts in global mRNA responses between 
the two volume conditions, having pronounced effects on identification of GO terms 
during enrichment analyses (Fig. 3g). In general, tissue-offset normalization (providing 
mRNA expression per-mg-muscle weight) resulted in a global shift in mRNA responses 
towards moderate volume. At Week 2, this was evident as more robust increases in 
mRNA expression in response to higher training volume for most genes, contrasting 
findings in library-size and naïve analyses. At Week 12, this was evident as a counter-
balancing of mRNA expression profiles, with tissue-offset providing rather normally dis-
tributed responses to the two volume conditions, contrasting the skew towards larger 
mRNA expression in response to low training volume in library-size and naïve analyses. 
The utilization of generalized linear mixed models (GLMM) allowed convenient com-
parisons of normalization models, which could then be fitted using in the same statisti-
cal framework, as previously suggested [36]. GLMM also allowed the incorporation of 
random effects into the model to account for the repeated measures design. Although 
there are approaches to account for correlated observations in commonly used RNA-seq 
modeling frameworks [49], GLMMs provides a more robust and potentially more pow-
erful framework for dealing with correlated data [36].

Training volume‑dependent changes in transcriptome profiles.
Using the tissue-offset model, we were able to identify genes relating to ECM func-
tions as volume-sensitive during the early stages of resistance training. This may indi-
cate a role for ECM remodeling in the beneficial effects of higher training volumes on 
muscular adaptations and strength. As such, previous research has shown that ECM 
remodeling is induced by exercise training, both acutely [50–53], and after prolonged 
endurance and resistance training [13, 18, 54, 55], at both mRNA and protein levels 
[13, 18, 54, 55]. However, none of these previous studies have found ECM remod-
eling to be differentially affected by different exercise modalities. Rather, different 
resistance training modalities such as low- and high-load training have been associ-
ated with similar responses, measured as collagen synthesis [52]. Importantly, there 
seems to be a close association between training-induced changes in abundances of 
ECM-related mRNAs and their respective proteins, including collagen-organization 
proteins [54]. This suggests that ECM remodeling is primarily controlled at the tran-
scriptional level, which arguably increases the biological relevance of the herein pre-
sented transcriptome analyses. However, this relationship seems to involve a complex 
time course dependency. For example, transcriptional regulation of COL1A2 shows 
a considerable lag from stimuli to transcription, as shown in fibroblasts [56]. In line 
with this, our data on the effects of acute resistance exercise on transcriptome pro-
files, suggests a counterintuitive reduction in the expression of e.g., collagen mRNA 
immediately after exercise, as has also been found by others [18]. Indeed, enrichment 
analyses confirmed these negative changes in ECM-related transcripts in response to 
acute exercise, contrasting the effects of chronic resistance training [13, 18].
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The physical properties of ECM are distorted by disuse and aging, resulting in 
increased stiffness and potentially decreased force transmission and muscle efficiency 
[57, 58]. Training-induced ECM remodeling may thus constitute an effective meas-
ure to reverse these adversities [50–53], and has been suggested to exert a protective 
role against injury [51]. However, available studies are ambiguous in their conclusions 
[52, 53], and the link between observed changes in ECM-related gene expression and 
muscle biology and functionality remain uncertain. Adding to this, ECM remode-
ling-responses to training seems to be age-dependent [50, 59], and also shows a clear 
dependency of time. Indeed, in the present study, the volume-associated differences 
in ECM-related transcriptome profiles disappeared entirely after twelve weeks of 
resistance training, whereby no genes were identified as showing volume-dependent 
responses. From a general perspective, this indicates that after prolonged training, 
the biological state of the muscle may have reached a new equilibrium, with low- 
and moderate-volume training having led to similar muscle phenotypic traits. This 
would imply that the benefits of higher training volume are restricted to augmented 
increases in muscle mass, perhaps facilitated by increases in ribosomal biogenesis [3]. 
Notably, this is likely to be an oversimplification. Indeed, at the protein level, in the 
current study, higher training volume led to a more robust phenotypic switch from 
type IIX → type IIA fiber also after twelve weeks of training [3]. Taken together, our 
data provide valuable directions for future research. It suggests that ECM remodeling 
is volume-dependent, at least during the initial part of a training program. This needs 
to be confirmed by studies in other populations, and its biological and functional sig-
nificance needs clarification. Such studies should take advantage of the increased bio-
logical resolution of within-subject contralateral models.

Analyses of transcriptome responses to acute bouts of low and moderate resistance 
training volume revealed one single gene with volume-dependent changes in expres-
sion (RFT1). RFT1 is associated with the GO terms lipid transport, carbohydrate 
transport, and endoplasmic reticulum membrane. RFT1 expression has previously 
been shown to decrease in muscle immediately after training [22]. Although this 
warrants more research, one single gene arguably provides limited information. As 
such, rank-based enrichment tests identified three GO terms with volume-depend-
ent changes in gene expression in the acute data set (RNA splicing, RNA localization, 
and covalent chromatin modification). Upon closer examination, these gene sets con-
sisted of genes with both increased and decreased expression in the moderate- com-
pared to the low-volume condition. Only a small fraction of these transcripts showed 
actual positive MSDs, indicating changes with unadjusted P-values < 0.05. While this 
enrichment analysis supports acute volume-dependent regulation of gene sets after 
resistance training at the selected time point of biopsy sampling (1 h after sessions), 
it remains plausible that such regulation would have been more pronounced at later 
time points.

Conclusions
Transcriptomic analyses of skeletal muscle subjected to altered growth conditions 
should account for global changes in mRNA to total RNA and cell density to accu-
rately reflect biologically meaningful events. When accounting for such aspects, ECM 
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remodeling showed volume-dependent responses to resistance training. These recom-
mendations could be applicable to studies of other cell types and model systems under-
going increased or arrested growth. Also, the optimized selection of bioinformatic tools 
increases the biological relevance of transcriptome analyses from resistance-trained 
skeletal muscle.

Methods
Participants and study overview

The full study design has been previously described in detail [3]. Thirty-four participants 
completed a 12-week training-intervention with legs allocated to either low- (one set per 
exercise) or moderate-volume (three sets per exercise) training (Fig. 1a). Muscle biopsies 
were obtained from each leg prior (Week 0) to and after the intervention (Week 12), 
as well as prior to (Week 2 Pre-ex) and 60-min after (Week 2 Post-ex) the last training 
session of week 2, as previously described [3]. Participants with a complete set of high-
quality RNA samples (RQI ≥ 7, n = 25) were selected for RNA-seq analyses (Fig.  1b). 
Training-induced changes in muscle size and strength were estimated for each leg using 
several methods (for a complete overview, see [3]). Herein, we present dual-energy X-ray 
absorptiometry (DXA) measurement of lean mass for the 25 participants eligible for 
RNA-seq, as well as a weighted combined measure of strength (combining data from dif-
ferent strength tests) (Table 1).

Training protocol
The training protocol consisted of unilateral lower body exercises (leg-press, leg-curl, 
and knee-extension). Each participant’s leg was randomly assigned to perform either 
one or three sets per exercise (low- vs. moderate-volume), ensuring within-participant 
comparisons. Rest periods between sets were 90–180  s.  The single-set leg was always 
trained in the rest period between the second and third sets of the multiple-set proto-
col. Training protocols were performed in a progressive manner, whereby resistance was 
continuously adjusted to ensure that the targeted number of repetitions was reached at 
volatile fatigue. This was equivalent to 10 repetitions maximum (RM) in weeks one and 
two, followed by 8RM in weeks three to five and 6RM in weeks six to twelve. Each week 
consisted of either 2 or 3 training sessions. From week four, weeks with three sessions 
contained one session at a sub-maximal load (90% of previous session load). All sessions 
commenced with a standardized warm-up. After each session, participants were given a 
standardized milk-based drink [3].

Muscle strength and lean mass assessments
Muscle strength was assessed twice before and once after the intervention. A detailed 
description of strength outcomes resulting from the study has been previously reported 
[3]. For the purpose of the present analyses, we present a weighted average of strength 
gains for the 25 participants eligible for RNA-seq, based on data from unilateral isomet-
ric and isokinetic (60°, 120° and 240° × s−1) knee extension, and one-repetition maximum 
(1RM) in unilateral knee extension and leg press, as previously reported [3]. Isometric 
and isokinetic strength was assessed using an individually adjusted dynamometer (Cybex 
6000, Cybex International, Medway USA). 1RM was defined as the maximum load lifted 
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through the full range of motion. From pre-intervention tests, the highest values were 
used for change score calculations. Limb lean-mass was assessed from full-body dual-
energy X-ray absorptiometry (DXA; Lunar prodigy, GE Healthcare, Oslo, Norway) scans 
performed prior to and after the intervention. Limb lean-mass was derived from a seg-
ment covering the full leg from collum femoris to the distal end of the foot defined in the 
analysis software (enCore, GE Healthcare, Oslo, Norway).

Muscle tissue sampling, immunohistochemistry and RNA extraction
Muscle tissue was obtained bilaterally from m. vastus lateralis using a 12-gauge needle 
(Universal-plus, Medax, San Possidonio, Italy) under local anesthesia (Xylocaine, 10 
mg×ml−1 with adrenaline 5 μg × ml−1, AstraZeneca AS, Oslo, Norge). Samples were 
obtained from the two legs within 10 min of each other at all time-points. All rested state 
samples were obtained in the morning after a standardized breakfast. Resting samples 
obtained in Week 2 were sampled approximately 48 h after the fourth session. After the 
training period (Week 12), samples were obtained six days after the last training session 
and three days after the last strength assessment. Participants were instructed to ingest 
standardized meals during the 24 h leading up to the sampling event, and to refrain from 
strenuous physical activity during the last 48 h. Samples for immunohistochemistry (~ 
15 mg) were transferred to a 4% formalin solution for fixation 24 − 72 h, before further 
preparation. Samples for RNA analyses (~ 25 mg) were dissected in ice-cold sterile saline 
solution (0.9% NaCl), blotted dry and snap-frozen using −80 °C isopentane, before stor-
age at −80 °C until further processing.

Immunohistochemistry was utilized to quantify myosin heavy chain abundance in 
formalin-fixed muscle biopsy cross-sections, performed as previously described and 
reported [3]. Briefly, 4 µm transverse sections were incubated with (1) a primary anti-
body that detects all three adult myosin heavy chain isoforms but type IIX (BF-35, 5 μg 
× ml−1, Developmental Studies Hybridoma Bank, deposited by Schiaffino, S.) and (2) 
type I myosin (MyHCSlow, 1:4000, catalog M8421L, Sigma-Aldrich Norway AS, Oslo, 
Norway). Primary antibodies were visualized using BMU UltraView DAB and Ultra-
View Red (Ventana Medical Systems, Inc. Tucson, USA). Muscle fibers were identified 
as either Type I (red), Type IIA (brown), Type IIX (unstained), or hybrid fibers Type IIA/
IIX (light brown) (for representative images, see Fig. 3 in [3]). Hybrid fibers were ana-
lyzed as 0.5 × Type IIA and 0.5 × Type IIX.

For RNA extraction, the frozen muscle was homogenized in 1 ml of TRIzol reagent 
(Invitrogen, Life technologies AS, Oslo, Norway) using a bead homogenizer (Bullet 
Blender, Next Advanced, Averill Park, NY, USA). After phase separation, 400 μl of the 
aqueous phase was used in isopropanol precipitation of RNA, and after three washing 
steps (70% ethanol) the pellet was eluted in TE buffer. All samples showed a 260/280 nm 
ratio > 1.95 assessed by a spectrophotometer (NanoDrop 2000, ThermoFisher Scientific, 
Oslo, Norway). RNA integrity scores (RQI) were determined by capillary electrophore-
sis (Experion Automated Electrophoresis Station using RNA StdSens Assay, Bio-Rad). 
For each participant, all samples were extracted in the same extraction session in a ran-
domized order. Participants with complete sets of high-quality RNA samples had an 
average RQI score of 9.0 (0.4), [full data set, 8.1 (2.1), range 1–9.7] (Fig.  1c). Notably, 
to achieve accurate normalization of qPCR data (and potentially also RNA-seq data), a 
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commercially available exogenous RNA control (λ polyA External Standard Kit, Takara 
Bio Inc., Shiga, Japan) was added at a fixed amount per extraction prior to homogeniza-
tion (0.04 ng ml−1 of Trizol reagent), as previously described [3, 60]. Unfortunately, at 
present, we do not have access to the sequence of this spike-in, prohibiting its identifica-
tion in RNA-seq data and rendering its subsequent utilization for normalization pur-
poses difficult.

Illumina library preparation and sequencing
For each muscle sample, mRNA sequencing libraries were prepared from the same 
amount of RNA (1000 ng, depending on the minimum amount available) using TruSeq 
Stranded Total RNA Library Prep (Illumina, San Diego, CA USA). Paired-end sequenc-
ing (150 bp) was performed using an Illumina HiSeq 3000 (Illumina) at the Norwegian 
Sequencing Centre.

Bioinformatic analysis
Pre‑alignment filtering

Trim Galore (version 0.6.5, https​://githu​b.com/Felix​Krueg​er/TrimG​alore​) and Trimmo-
matic (version 0.39) [31] were used to discard low-quality reads and trim poor-quality 
bases before alignment, using default settings. The quality of filtered files was calculated 
by FastQC (version 0.11.4) and summarized using MultiQC (version 1.8) [61].

Read alignment

Filtered reads were aligned to the Human genome (GRCh38 release-97 downloaded 
from ftp.ensemble.org) using the alignment-based methods HISAT2 (version 2.1.0) [42], 
STAR (version 2.7.2) [41], and RSEM (version 1.3.1) [43], used together with Bowtie 2 
(version 2.3.4.3) [62], and non-alignment methods including kallisto (version 0.44.0) [44] 
and Salmon (version 0.13.1) [45]. For HISAT2 and STAR, HTSeq was used for quantifi-
cation as previously described [63]. RSEM, kallisto, and Salmon have in-built quantifica-
tion functions.

Modeling of gene counts

Gene counts were modeled using negative binomial generalized linear mixed models 
(GLMM), as suggested in [36], with modifications. Three model formulations were used to 
represent three different normalization scenarios. First, to account for fluctuations in RNA-
to-tissue ratios, the amount of tissue used in cDNA synthesis was included as an offset 
term together with the effective library size and study conditions (time and volume condi-
tion), added as a fixed effects in the model (tissue offset model). A simplified model con-
tained only the effective library size together with study conditions, included as fixed effects 
(Effective library-size model). And finally, a naïve model formulation, without any form of 
normalization term, was used for comparisons. For acute exercise effects (pre- to post-exer-
cise in the last session of week 2), only the library size normalized model was used as we 
expected that fluid shifts [38] could influence the muscle weight measurement, and changes 
in total RNA were unlikely to occur in this short time span [37]. The effective library size 
was calculated by multiplying the total library size with the RNA composition normaliza-
tion factor, calculated using the trimmed mean method [25], followed by dividing the value 

https://github.com/FelixKrueger/TrimGalore
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by the median effective library size, as suggested by Cui et al. [36]. The effect of resistance 
training on gene counts was assessed as (1) the effect of exercise volume and (2) the effect 
of time. For analyses of the effect of exercise volume, differential expression was evaluated 
using GLMMs containing the interaction between time and exercise volume. For analyses 
of the effect of time, differential expression was evaluated using GLMMs containing only 
the time factor, combining all data irrespective of volume condition. In all models, a single 
random effect was used, giving each participant an individual intercept. Models were itera-
tively fitted using glmmTMB [64]. Utilization of the negative binomial distribution was sup-
ported by comparing the full model with a Poisson model (not containing the dispersion 
term), providing likelihood-ratio tests P-values that were distributed primarily below 0.05 
(0.37% of models showed P > 0.05). Heteroscedasticity was assessed using the uniformity 
test in the DHARMa package [65], which generally showed good agreement with model 
assumptions, providing P-values concentrated near 1 (98.51% of models showed P > 0.05). 
Genes were identified as differentially expressed when the absolute Log2 fold-change was 
greater than 0.5, and the adjusted P-value was below 5%. P-values were adjusted per-model 
coefficient to control the false discovery rate [66].

Functional annotation
Enrichment analyses of gene ontology (GO) gene sets were performed using three 
approaches. First, a non-parametric rank test (described in [67] and implemented in the 
tmod package [68], version 0.40) was performed based on gene-specific minimum sig-
nificant differences (MSD). MSD was defined as the lower limit of the 95% confidence 
interval (CI, based on estimated standard errors) around the Log fold-change (FC) when 
Log(FC) > 0 and the negative inverse of the upper 95% CI when Log(FC) < 0. This metric 
has been shown to have lower false-positive rates compared to other metrics applied dur-
ing enrichment analyses [69]. As the MSD metric is positive when the CI does not over-
lap 0 and negative when overlap occurs, the rank test does not discern between up and 
down-regulated gene sets. A second approach, gene set enrichment analysis (GSEA) [70], 
was used to quantify the directional regulation of the gene set. GSEA was performed using 
the fgsea package [71] with Log(FC) as the gene level metric. Thirdly, over-representation 
analysis (ORA) was performed to assess if genes identified as differentially expressed (|Log2 
fold-change|> 0.5 and adjusted P-values < 0.05; DE-genes) belonged to specific gene sets. 
ORA was performed using the enrichGO function in the clusterProfiler package [72], (ver-
sion 3.16.0). GO gene sets (biological process, cellular component, and molecular function) 
were retrieved from the molecular signature database (version 7.1) [73].

Statistical analysis
Descriptive data are presented as mean and standard deviation (SD). Changes in mus-
cle strength and mass were estimated using linear mixed models on change scores with 
baseline values as covariates. The performance of alignment tools was assessed by com-
paring log-differences between biological replicates, as suggested by Teng et al. [74], with 
modifications. Briefly, a subset of genes previously shown to be stably expressed between 
tissues was selected [32], whereupon log-differences between paired biopsy samples 
were calculated (i.e., using biopsies collected from each of the two legs prior to the train-
ing intervention). In addition, alignment tools were assessed by comparing relationships 
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(Pearson’s correlation coefficient) between gene family profiling of myosin heavy chains 
(MYH1, MYH2, and MYH7; muscle-specific) and the corresponding myosin heavy chain 
protein expression (measured using immunohistochemistry as fiber types IIX, IIA, and 
I). These mRNA and protein profiles were expressed as a fraction of total counts, thus 
removing the need for normalization of the RNA-seq data, as previously described for 
qPCR data [34]. Notably, these data also provided insight into the overall biological 
validity of the RNA-seq data, linking gene counts to protein phenotypes.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03866​-y.

Additional file 1: Gene count estimates. Model (negative binomial generalized linear mixed models) based esti-
mates of gene counts from models using different normalization strategies. ensemblid: Ensembl gene identifiers; 
normalization_model: Indicates normalization model: lib_size_normalized, gene counts are modeled with study 
conditions as fixed effects and participant id as random effects and with the addition of library size as a fixed effect. 
tissue_offset_lib_size_normalized, same as lib_size_normalized but with the addition of tissue weight used in library 
prep as an offset. The non-normalized model is not included in the data set; interaction_model: Indicates if the coef-
ficient is estimated in a model containing the interaction between volume condition and time. If FALSE, the model 
only contains time as a fixed effect (in addition to any normalization, see above), coefficients should in this case be 
interpreted as averages over volume conditions; coefficient: Names of coefficients (fixed effects, time and volume 
conditions). timew2pre and timew12 indicate differences from timew0 (intercept) in rested state models. timew-
2post indicates differences from timew2pre (intercept) in acute exercise models. setsmultiple indicates interaction 
effects, the difference between setssingle (reference level) and setsmultiple; estimate: Estimates on the natural log 
scale; se: Standard errors (SE) on the natural log scale; zvalue: Z-values; pvalue: Un-adjusted P-values; pvalue_adjust: 
Adjusted P-values (FDR) per model/normalization method and coefficient.

Additional file 2: Functional annotation using gene ontology terms. Significance tests for functional annotation 
using rank-based and over-representation based analysis. ID: Gene ontology (GO) id; go_category: GO category, 
bp, Biological process; cc, cellular component; mf, molecular function; name: Descriptive GO name; normalization_
model: Indicate normalization model used to test enrichment: lib_size_normalized, gene counts are modeled with 
study conditions as fixed effects and participant id as random effects and with the addition of library size as a fixed 
effect, tissue_offset_lib_size_normalized, same as lib_size_normalized but with the addition of tissue weight used 
in library prep as an offset. The non-normalized model is not included; coefficient: Names of coefficients used to test 
enrichment (fixed effects, time and volume conditions). timew2pre and timew12 indicates differences from timew0 
(intercept) in rested state models. timew2post indicates differences from timew2pre (intercept) in acute exercise 
models. setsmultiple indicates interaction effects, the difference between setssingle (reference level) and setsmul-
tiple; cerno_statistic: Test statistic from the rank-based cerno-test; cerno_auc: Area under the curve from the Cerno 
test (see tmod documentation for details, https​://CRAN.R-proje​ct.org/packa​ge=tmod); cerno_pval: Un-adjusted 
P-values from cerno test, cerno_padj: Adjusted P-values (default settings in tmodCERNOtest, see tmod documenta-
tion); fgsea_pval: Un-adjusted P-values from gene set enrichment tests performed with the fgsea package; fgsea_
padj: Adjusted fgsea P-values; NES: Normalized enrichment scores from gene set enrichment tests; set_size: Size of 
gene sets using genes expressed in the present data set; ora_geneRatio: Gene ratio in over-representation analysis of 
genes identified as differentially expressed; ora_padj: Adjusted p-values from over-representation analysis.
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