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Background
DNA-Binding Protein (DBP) plays a vital role in the function of various biomolecules, 
containing DNA transcription and replication. To detect DNA-binding protein via 
biological assays, researchers usually employed electrophoretic mobility shift assay, 
chromatin immunoprecipitation, Yeast One-hybrid System (Y1H) and X-ray crystallog-
raphy. However, above methods are still time consuming and extremely expensive. The 
machine learning-based methods have been developed to solve the problem of detecting 
DNA-binding protein [1–3].
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In the identification study of DNA-binding proteins, the main task is to determine an 
unknown protein whether it can bind to DNA. In the previous works, many researchers 
detected DBP based on structural information. Nimrod et al. [4] constructed a random 
forest prediction model for DNA-binding protein recognition using the average surface 
electrostatic potential, dipole moment, and amino acid conservation pattern informa-
tion; Bhardwaj et al. [5] used overall charge, surface patches and composition feature to 
train a predictive model via Support Vector Machine (SVM) [6]. Ahmad et al. [7] trained 
a neural network model to predict DBP. The feature of protein contained the net charge 
of the protein, electric dipole moment and fourth moment tensor.

The number of protein sequences is larger than the number of known protein struc-
tures. The number of protein with relevant structural information is very low and most 
of the proteins do not have the corresponding structural information. Therefore, the 
structure-based models cannot be widely used to detect DBP. A method based on pro-
tein sequence [8] constructed a Support Vector Machine (SVM) model with amino acid 
composition and materialized property information. Liu and Cai et al. [9–11] extracted 
overall amino acid composition and Pseudo Amino Acid Composition (PseAAC) to rep-
resent protein feature. Liu et al. [12] developed a model called iDNAPro-PseAAC, which 
is extended with evolutionary information of protein sequence. Kumar et al. [13] used 
Position Specific Scoring Matrix (PSSM) to propose a classifier called DNAbinder, which 
is based on SVM. PSSM was produced via PSI-BLAST software [14], which could obtain 
evolutionary conservation information. The Local-DPP [1] captured local conservation 
information of PSSM and trained an ensemble model to predict DBP. DBPPred [15] 
employed Random Forest (RF) to get the optimal feature subset and trained Gaussian 
Naive Bayes model for predicting DBP. Zou et al. utilized a Fuzzy Kernel Ridge Regres-
sion model with Multi-View Sequence Features (FKRR-MVSF) [16] to predict DBP. To 
further improve the accuracy of DBP prediction, Ding et al. [17] employed a Multi-Ker-
nel SVM based on Heuristically Kernel Alignment (MKSVM-HKA) to integrate different 
features from protein sequence. In addition, a multiple kernel-based fuzzy SVM model 
[18] of DNA-binding proteins also was developed to improve prediction performance. 
Liu et al. [19] proposed a stacking framework model for predicting DBP by orchestrat-
ing multi-view features. This stacking framework model was named as MSFBinder. Rah-
man et al. [20] developed a DNA-binding Protein Prediction model using Chou general 
PseAAC (DPP-PseAAC) and SVM based Recursive Feature Elimination (RFE) approach. 
Adilina et al. [21] extracted several features via PseAAC and carried out two different 
types of feature selection to build predictive model of DBP.

In practical applications, the sequence-based approaches are more adaptable. DNA-
methylation sites, recombination spots, Post Translational Modification (PTM) sites 
(protein) and Protein-Protein Interactions (PPI) have been predicted by sequential 
methods. In recent years, machine learning methods have been widely used in bioin-
formatics [16, 17, 22–38]. And some of the biological problems are solved very well, 
including O-GlcNAcylation sites [23], protein subcellular localization [25, 39, 40], Meth-
yladenosine Sites [22, 26], drug-target interactions [27–31, 37, 41], drug-drug interac-
tions [42, 43], lncRNA-Protein interaction [35, 36] protein crystallization prediction 
[32, 44], potential disease-associated microRNAs [24, 33, 34, 45, 46] and other RNAs 
[47–50].
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Inspired by the previous work [1, 8, 9, 11, 13, 16, 17], we propose a new predictive model 
for DNA-binding protein through multi-kernel support vector machine. Firstly, several 
types of features are extracted from protein sequences. And these features are employed to 
construct kernel matrices. We use Multi-Kernel Learning-based on Centered Kernel Align-
ment (MKL-CKA) algorithm to combine these kernels and obtain an integrated kernel for 
training SVM model. We call this model as Multi-Kernel SVM (MKSVM) model. Finally, 
MKSVM is utilized to detect new DNA-binding proteins. Compared with other state-of-
the-art models, the proposed method achieves better results. The accuracy of our model 
are 84.19% and 83.7% on the PDB1075 (leave one out test) and PDB186 (independent test) 
data sets, respectively.

Results
In this section, we test our method on PDB1075 and PDB186 data sets. Firstly, we per-
form a Leave One Out Cross validation (LOOCV) on the PDB1075. Next, our model are 
trained by the PDB1075 and tested on the PDB186. Other existing methods are also test 
on PDB1075 and PDB186. The data set and source code (with Python Programming Lan-
guage) is obtained from https://​figsh​are.​com/s/​cf56c​ef665​9c7ee​d16c9.

Data sets

The details of PDB1075 and PDB186 data sets are list in Table  1. The benchmark data 
sets (PDB1075 and PDB186) are selected from Protein Data Bank (PDB) [51]. Any two 
sequences have not more than 25% similarity. Protein sequences which less than 50 amino 
acids or contain the ‘X’ character must be removed. The PDB1075 data set (constructed by 
Liu et al. [9]) is used to test our model under LOOCV. The PDB186 data set (constructed by 
Lou et al. [15]) is used for independent testing.

Measurements

The main measures for the evaluation of performance are Accuracy (ACC), Matthew’s Cor-
relation Coefficient (MCC), Sensitivity (SN), Specificity (SP), and Area Under ROC (AUC). 
The calculation formulas of ACC, SN, SP and MCC indicators are calculated as follows: 

(1a)ACC =
TP + TN

TP + FP + TN + FN

(1b)SN =
TP

TP + FN

Table 1  The detail information of two benchmark data sets

Data sets PDB1075 PDB186

Number of positive 525 93

Number of negative 550 93

Number of total sample 1075 186

https://figshare.com/s/cf56cef6659c7eed16c9
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 where TP is the correct number of positive samples, TN is the correct number of 
negative samples, FN is the number of false negative samples and FP is the number of 
false positive samples. Area Under of receiver operating characteristic Curve (AUC) 
is obtained by calculating the area under the Receiver Operating characteristic Curve 
(ROC). The higher value of AUC, the better predictive effect.

Parameters selection

To achieve the best performance, we need to select optimal parameters of predictive 
model. In this section, we employ grid search method to select optimal parameters for 
SVM model.

The parameters selection of features

To select the optimal parameters of feature NMBAC and PsePSSM, we test the differ-
ent parameters (the max value of lagmax and lg for PsePSSM and NMBAC) under five-
fold cross validation (on PDB1075 data set). We set the range of lg (NMBAC) and lagmax 
(PsePSSM) values from 5 to 45 (step of 5). In Table 2, the results of the prediction show 
that the optimal lg (NMBAC) as 30 and lagmax (PsePSSM) as 10 in this study.

Selection of C and γ  

For the selection of SVM parameters, we use the grid search method and the 5-fold 
Cross Validation (5-CV) method. We set the range of parameter from 2−5 to 25 with step 
21 . The optimal parameters of results are show in Table 3.

Before combining multiple kernels, the parameter γ for 6 types of kernels are obtained 
from their single kernels (Table  3). To achieve the optimal parameters of C under 
MKSVM (average weight for each kernel), we also utilize the above C range. Comparing 
the accuracy of different C values, the corresponding values of ACC are shown in the 

(1c)Spec =
TN

TN + FP

(1d)MCC =
TP × TN − FP × FN

√
(TP + FN )× (TN + FP)× (TP + FP)× (TN + FN )

Table 2  The ACC of different parameter values on PDB1075 (five-fold cross validation)

Parameter values ACC (%)

lagmax for PsePSSM lg for NMBAC

5 74.66 66.81

10 77.78 68.24

15 77.02 69.95

20 76.88 70.79

25 77.63 71.03

30 77.21 71.09

35 76.94 71.00

40 77.56 70.91

45 77.71 70.86
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Fig. 1. When C = 2 (logC = 1) , the MKSVM (average weight for each kernel) achieves 
best ACC ( 82.8% ). In our study, the parameter (C) of MKSVM (with MKL-CKA) is same 
as MKSVM with mean weighted.

To obtain the optimal parameter ( � ) of MKL-CKA, we try the different value of � from 
0 to 1 (step is 0.05) under 5-CV on PDB1075 data set. The results are shown in the Fig. 2. 
When � = 0.8 , the ACC value is the highest. We set 0.8 as the optimal parameter ( � ) of 
MKL-CAK.

Performance analysis on PDB1075

We test the performance of different kernels (features) on PDB1075 (under LOOCV). 
The results are shown in Table 4 and Fig. 3.

As we can see from the table, the results of multi-kernel learning are much better 
than single kernel model. The PSSM-AB (MCC: 0.547), PSSM-DWT (MCC: 0.522) and 
PsePSSM (MCC: 0.573) kernels with PSSM information are better than those of GE 
(MCC: 0.432), MCD (MCC: 0.417) and NMBAC (MCC: 0.424). Among them, we cal-
culate the weights of six kernels by MKL-CKA method (Table 5). The integrated kernel 
(with MKL-CKA) has the highest results in ACC ( 84.2% ), MCC (0.684), SN ( 85.9% ), SP 
( 82.6% ) and AUC (0.914). Obviously, the integrated kernel (with MKL-CKA) is higher 
than mean weighted kernel.

Under the specificity of 0.5 (on PDB1075 data set), the sensitivity values of different 
kernel are following: KGE : 0.8857, KMCD : 0.8495, KNMBAC : 0.8590, KPSSM−AB : 0.9352, 
KPsePSSM : 0.9657, KPSSM−DWT  : 0.9523, mean weighted kernel: 0.9847, and KMKL−CKA : 
0.9885. Some kernels have bias in the learning process. MKL-CKA could filter noise 

Table 3  The optimal parameters for SVM (single kernel)

Feature C γ

GE 2
0

2
0

MCD 2
3 2

−5

NMBAC 2
−1

2
−1

PSSM-AB 2
0 2

−4

PSSM-DWT 2
1

2
−5

PsePSSM 2
1

2
−5

Table 4  The performance of different kernels (RBF kernel) on PDB1075 data set (leave one out)

The bold font indicates the largest value in the column

Kernel type Model ACC (%) SN (%) Spec (%) MCC AUC​

KGE SVM 71.6 70.1 73.1 0.432 0.785

KMCD SVM 70.9 68.2 73.5 0.417 0.761

KNMBAC SVM 71.1 73.3 69.1 0.424 0.771

KPSSM−AB SVM 76.9 84.4 69.8 0.547 0.839

KPSSM−DWT SVM 76.0 79.2 72.9 0.522 0.837

KPsePSSM SVM 78.5 82.5 74.7 0.573 0.857

Mean weighted kernels SVM 83.1 84.6 81.8 0.664 0.913

MKL-CKA SVM 84.2 85.9 82.6 0.684 0.914
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kernels (reducing bias of kernels) by setting low weights of kernels. And the sensi-
tivity of MKL-CKA (0.9885) is better than best single kernel ( KPSSM−AB : 0.9352). 
Although our MKL algorithm only improves sensitivity value with a few percentage 
points, the purpose of MKL is to filter noise feature (kernel) and integrate multiple 
effective features. The Table 6 shows the sensitivity of different kernels (features) on 
PDB1075 data set (Under the specificity of 0.5).

We also evaluate the running time of different models with different kernels. The 
results are shown in Table  7. The programs are carried out on the computer Intel 
Core i5 3.2 GHz CPU 8 GB RAM. The running time (s) of our methods are KGE : 
0.418, KMCD : 3.79, KNMBAC : 0.627, KPSSM−AB : 0.678, KPsePSSM : 3.7, KPSSM−DWT  : 3.47, 
mean weighted kernel: 28.7, and MKL-CKA: 68, respectively. Because multiple kernel 
matrices are calculated and the weight value of each kernel matrix is estimated, MKL-
CKA is the most time-consuming.

Table 5  The weight of six kernels (RBF kernel) by MKL-CKA

Kernel type Kernel weights

KGE 0.165

KMCD 0.112

KNMBAC 0.135

KPSSM−AB 0.219

KPsePSSM 0.114

KPSSM−DWT 0.254

Table 6  The sensitivity of different kernels (features) on PDB1075 data set (under the specificity of 
0.5)

Kernel type Sensitivity

KGE 0.8857

KMCD 0.8495

KNMBAC 0.8590

KPSSM−AB 0.9352

KPsePSSM 0.9523

KPSSM−DWT 0.9657

Mean weighted kernels 0.9847

MKL-CKA 0.9885

Table 7  The running time of different kernels (features) on PDB1075 data set (training)

Kernel type Sec

KGE 0.418

KMCD 3.79

KNMBAC 0.627

KPSSM−AB 0.678

KPsePSSM 3.7

KPSSM−DWT 3.47

Mean weighted kernels 28.7

MKL-CKA 68
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What’s more, other kernel functions (e.g. linear kernel, polynomial kernel, and sig-
moid kernel) are also test. We compare RBF kernel with other 3 types of kernel functions 
under five-fold cross validation. The results are list in Table 8, which shows that RBF ker-
nel obtain better ACC on GE ( 69.97% ), MCD ( 70.21% ), PSSM-AB ( 76.54% ), PSSM-DWT 
( 76.26% ) and PsePSSM ( 78.36% ), respectively. MKL-CKA also is employed to combine 
6 features with four kernel functions, respectively. The RBF kernel (with MKL-CKA) 
achieves best ACC ( 83.01%).

Comparison to existing predictors on PDB1075

The MKSVM (with MKL-CKA) model and other methods are also test on PDB1075 
data set (under LOOCV). The results of ACC, MCC, SN and SP are list in Table  9. 
Existing methods include IDNA-Prot|dis [2], DNAbinder [13], iDNAPro-PseAAC 
[10], Kmer1+ACC [12], iDNA-Prot [52], DNA-Prot [53], PseDNA-Pro [9], MKSVM-
HKA [17], MSFBinder [19], FKRR-MVSF [16] and Local-DPP [1]. Among these meth-
ods, MKSVM-HKA (MCC: 0.63), MSFBinder (MCC: 0.67), FKRR-MVSF (MCC: 0.67), 
iDNA Pro-PseAAC (MCC: 0.53), PseDNA-Pro (MCC: 0.53), IDNA-Prot|dis (MCC: 
0.54) and Local-DPP (MCC: 0.59) also obtained good performance. Local-DPP and 

Table 8  The performance of different kernel functions on PDB1075 data set (Five-fold cross 
validation)

Feature ACC (%)

Linear kernel Polynomial kernel RBF kernel Sigmoid kernel

GE 69.30 68.18 69.97 69.76

MCD 69.39 70.04 70.21 62.14

NMBAC 72.04 72.91 71.01 70.97

PSSM-AB 75.34 75.72 76.54 60.01

PSSM-DWT 73.86 71.25 76.26 66.12

PsePSSM 77.32 77.64 78.36 76.01

MKL-CKA 81.39 78.79 83.01 72.34

Table 9  Compared with existing methods on PDB1075 data set (LOOCV)

The bold font indicates the largest value in the column

Methods ACC (%) MCC SN (%) Spec (%)

IDNA-Prot|dis 77.30 0.54 79.40 75.27

PseDNA-Pro 76.55 0.53 79.61 73.63

IDNA-Prot 75.40 0.50 83.81 64.73

DNA-Prot 72.55 0.44 82.67 59.76

DNAbinder 73.95 0.48 68.57 79.09

iDNAPro-PseAAC​ 76.56 0.53 75.62 77.45

Kmer1+ACC​ 75.23 0.50 76.76 73.76

Local-DPP 79.10 0.59 84.80 73.60

MKSVM-HKA 81.30 0.63 82.29 80.36

MSFBinder 83.35 0.67 83.62 83.09
FKRR-MVSF 83.26 0.67 85.71 80.91

Our method (MKSVM with 
MKL-CKA)

84.19 0.68 85.91 82.55
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iDNAPro-PseAAC take advantage of the PSSM feature to improve performance. 
MKSVM-HKA, FKRR-MVSF and MSFBinder employed MKL algorithm and ensem-
ble strategy to integrate multiple information and further improve the predictive accu-
racy. Our method (MKSVM with MKL-CKA) is also based on MKL and achieves best 
MCC (0.68). Although, the SP value of MSFBinder ( 83.09% ) is higher than our method 
( 82.55% ). Our method is the highest in ACC ( 84.19% ), MCC (0.68), SN ( 85.91%).

The statistical significance tests of the differences is necessary. The results in Table 10 
list that our method make statistically significant improvement over the other methods 
(P-value < 0.05 , by t-test, in term of MCC). The comparison is under 10 fold cross vali-
dation on PDB1075. The difference between Local-DPP and our method is significant 
(P-value: 6.0421E−6). Comparing with MKSVM-HKA (P-value: 1.5438E−4), MSFBinder 
(P-value: 0.0098) and FKRR-MVSF (P-value: 0.0103), our method also shows signifi-
cantly better prediction accuracy.

Independent test

In order to further evaluate the performance of MKSVM (with MKL-CKA) model, we 
use PDB1075 to construct MKSVM model and test it via PDB186 data set. The results of 
comparison are shown in Table 11.

Our method achieves 83.7% , 0.691, 93.6% , and 74.2% on ACC, MCC, SN, and SP, 
respectively. From the results of independent test, we can find out that our method has 
certain accuracy in the prediction of DBP. Adilina’s work (MCC: 0.670), MKSVM-HKA 
(MCC: 0.648), MSFBinder (MCC: 0.616) and FKRR-MVSF (MCC: 0.676) obtained good 
results on PDB186. Adilina et al. [21] employed 7 types of features and the strategy of 
feature selection to construct predictive model. FKRR-MVSF [16] and MKSVM-HKA 
[17] utilized MKL algorithm to combine several features. MSFBinder [19] built a stack-
ing framework model by multiple features. The multiple information fusion-based meth-
ods achieved better results. Our method (MKSVM with MKL-CKA) performs better 
(MCC: 0.691) than most of existing models on PDB186 data set. From the results, the 
fusion of multiple information can improve the performance of the prediction model. 
FKRR-MVSF (MCC: 0.676), MKSVM-HKA (MCC: 0.648) and MSFBinder (MCC: 0.616) 
achieved better results on PDB186. We also test the performance of Random Forest (RF) 
and Feed forward Neural Network (FNN) on PDB186. RF and FNN achieve MCC of 
0.593 and 0.520, respectively. SVM can achieve better performance on small data sets.

Table 10  The statistics of different methods

Methods P value

Local-DPP 6.0421E-6

MKSVM-HKA 1.5438E-4

MSFBinder 0.0098

FKRR-MVSF 0.0103
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Discussion
How to describe and integrate the information of proteins is the difficulty in predicting 
DNA-binding proteins. In our study, MKL-CKA is utilized to integrate 6 types of fea-
tures and achieves better results on PDB1075 (MCC: 0.68) and PDB186 (MCC: 0.69) data 
sets. Other methods, such as FKRR-MVSF, MKSVM-HKA, MSFBinder and Adilina’s 
work, also obtained good performance. We can find that multiple information fusion-
based methods have better generalization performance on DBP prediction. To obtain 
the optimal weights of kernels, MKL-CKA maximizes the alignment score between fea-
ture space and label space. Ideal kernel (label space) contains the category information of 
the training samples. The Laplace smooth term can further optimize weight values. The 
performance of MKL-CKA (MCC: 0.684) is better than mean weighted kernels (MCC: 
0.664) on PDB1075 (LOOCV). The process of MKL is similar to feature selection. MKL 
weights each kernel matrix (6 types of features). Whether the predictive models are 
based on MKL or feature selection, the noise features can be effectively filtered.

Conclusion
Although many models have been constructed to predict DBP, they can still be opti-
mized to improve accuracy. Existing methods do not consider the removal of outliers in 
data sets. In the future, we will filter noise samples and improve the predictive accuracy 
of DBP by fuzzy theory and ensemble strategy.

Table 11  The results of comparison between MKSVM (with MKL-CKA) model and other existing 
methods on PDB186 data set (independent test)

The bold font indicates the largest value in the column

* The model is built via the 6 types of our features

Methods ACC (%) MCC SN (%) Spec (%)

IDNA-Prot|dis 72.0 0.445 79.5 64.5

IDNA-Prot 67.2 0.344 67.7 66.7

DNA-Prot 61.8 0.240 69.9 53.8

DNAbinder 60.8 0.216 57.0 64.5

DBPPred 76.9 0.538 79.6 74.2
iDNAPro-PseAAC​ 71.5 0.442 82.8 60.2

Kmer1+ACC​ 71.0 0.431 82.8 59.1

Local-DPP 79.0 0.625 92.5 65.6

DPP-PseAAC​ 77.4 0.550 83.0 70.9

Adilina’s work 82.3 0.670 95.0 69.9

MKSVM-HKA 81.2 0.648 94.6 67.7

MSFBinder 79.6 0.616 93.6 65.6

FKRR-MVSF 81.7 0.676 98.9 64.5

RF* 79.0 0.593 89.3 68.8

FNN* 75.3 0.520 87.1 63.4

Our method* (MKSVM with 
MKL-CKA)

83.7 0.691 93.6 74.2
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Methods
DBP identification can be considered as a traditional binary classification problem, and 
we use SVM algorithm to construct predictive model. First, we extract the features of 
the protein from the sequence information. Six types of kernel matrices are constructed 
from these features. Above kernels are integrated to construct optimal kernel (includ-
ing training kernel and testing kernel) by Multi-Kernel Learning-based on Centered 
Kernel Alignment (MKL-CKA) algorithm. We employ the combined kernel to build a 
SVM model and identify DBP. Figure  4 represents the framework of MKLSVM (with 

MKL-CKA). Firstly, six types of features are extracted from protein sequences. Then, 
six kernels are built by Radial Basis Function (RBF). MKL-CKA algorithm combines the 
6 types of kernels. Next, we use the combined kernel and SVM algorithm construct the 
final predictive model to detect DBP.

Fig. 1  The ACC values under parameters of C on PDB1075 data set (five-fold cross validation)

Fig. 2  The ACC values under parameters of � on PDB1075 data set (five-fold cross validation)
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Sequence feature

There are six types of features from protein sequence information, including PSSM-
based Discrete Wavelet Transform (PSSM-DWT) [54], PSSM-based Average Blocks 
(PSSM-AB) [55], Pseudo-PSSM (PsePSSM) [10, 12, 56, 57], Multi-scale Continuous 
and Discontinuous descriptor (MCD) [58], Global Encoding (GE) [59] and Normalized 
Moreau-Broto Auto correlation (NMBAC) [60, 61]. These features have been detailed 

Fig. 3  The ROC comparison of different kernels (feature) via Leave one out test on PDB1075 data set

Fig. 4  The framework of our method
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descripted in related literatures. We employ RBF to construct six types of kernels. The 
function formula of RBF is as follow:

where γ is the kernel bandwidth. We can obtain a kernel set K as follows:

Support vector machine

Support Vector Machine (SVM) is a classification algorithm, which is developed by 
Vapnik [6]. By finding the optimal hyper plane, the data set is separated on positive 
and negative points. The instance-label pairs (a training sample) { xi, yi }, xi ∈ Rd×1 and 
i = 1, 2, ...,N  . Labels yi ∈ {+1,−1} . The decision function is defined as following:

The coefficient ααα are estimated by solving a Quadratic Programming (QP) problem: 

xi is support vector when the corresponding αi > 0 . C denotes the tradeoff between 
margin and misclassification error. What’s more, we construct a SVM model by LIBSVM 
[62](http://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm/). We employ the grid search method to 
obtain the optimal parameters of the SVM.

Multiple kernel learning

Because of strong theoretical guarantee and excellent experimental performance, the 
MKL-CKA [63, 64] method is adopted in our study. MKL-CKA is a multi-kernel learn-
ing algorithm based on kernel alignment. The optimal kernel is calculated as follows: 

(2)Kij = K (xi, xj) = exp(−γ �xi − xj�2), i, j = 1, 2, ...,N

(3)K = {KGE ,KMCD,KNMBAC ,KPSSM−AB,KPSSM−DWT ,KPsePSSM}

(4)f (x) = sign[
N
∑

i=1

yiαi · K (x, xi)+ b]

(5a)Maximize

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαj · yiyj · K (xi, xj)

(5b)s.t. 0 ≤ αi ≤ C

(5c)
N
∑

i=1

αiyi = 0, i = 1, 2, ...,N

(6a)K∗ =
m
∑

i=1

βiKi,

(6b)Ki ∈ RN×N
,

http://www.csie.ntu.edu.tw/%7ecjlin/libsvm/
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 where m is the number of kernels and βi is the weight of the kernel Ki.
The value of kernel alignment is defined as follow:

where P,Q ∈ RN×N , �P,Q�F = Trace(PTQ) is the Frobenius inner product and 
�P�F =

√
�P,P�F  is Frobenius norm.

The score of kernel alignment can be described as the cosine similarity between two 
kernels. The more high score of kernel alignment, the greater similarity between the 
kernels. We hope that the alignment score between combined kernel (feature space) 
and ideal kernel (label space) is high. So, the function formula of centered kernel 
alignment is as follow: 

where the centering matrix is UN = IN − (1/N )lN l
T
N , UN ∈ RN×N is centering matrix. 

IN ∈ Rn×n denotes identity matrix. lN is identity vector. So, formula 8 can be written as 
follow: 

In Eq. (9), a ∈ Rm×1 and M ∈ Rm×m is represented as Eqs. (10) and (11).

(6c)
m
∑

i=1

βi = 1

(7)A(P,Q) =
�P,Q�F

�P�F�Q�F

(8a)max
βββ≥0

CA(K∗
, ytrainy

T
train) = max

βββ≥0

〈

UNK
∗UN , ytrainy

T
train

〉

F

�UNK∗UN�F�ytrainyTtrain�F

(8b)s.t. K∗ =
m
∑

i=1

βiKi,

(8c)βi ≥ 0, i = 1, 2, ...,m,

(8d)
m
∑

i=1

βi = 1

(9a)max
βββ≥0

βββTa
√

βββTMβββ

(9b)s.t. K∗ =
m
∑

i=1

βiKi,

(9c)βi ≥ 0, i = 1, 2, ...,m,

(9d)
m
∑

i=1

βi = 1
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Equation 9 also can be represented as: 

In order to prevent extreme situations (the weight of a kernel is close to 1 and the 
remaining weights are close to 0), we employ the Laplacian regular term to smooth the 
weights:

In Eq.  (13), i, j = 1, ...,m , W ∈ Rm×m is the cosine similarity between two kernels. W 
can be calculated by Eq. (7). D ∈ Rm×m is a diagonal matrix, which is calculated by 
Dii =

∑m
j=1Wij . L ∈ Rm×m is graph Laplacian matrix, which is obtained by L = D−W . 

Equation (12) and formula 13 are integrated as follow: 

(10)a =
(〈

UNK1UN , ytrainy
T
train

〉

F
, ...,

〈

UNKmUN , ytrainy
T
train

〉

F

)T
∈ Rm×1

(11a)M =









M1,1 M1,2 · · · M1,m

M2,1 P2,2 · · · M2,m

.

.

.
.
.
. Me,f

.

.

.

Mm,1 Mm,2 · · · Mm,m









m×m

(11b)Me,f =
〈

UNKeUN ,UNKfUN

〉

F

(11c)e, f = 1, 2, ...,m

(12a)min
β≥0

βββTMβββ − 2βββTa

(12b)s.t. K∗ =
m
∑

i=1

βiKi,

(12c)βi ≥ 0, i = 1, 2, ...,m,

(12d)
m
∑

i=1

βi = 1

(13)

P
∑

i,j

(βi − βj)
2Wij =

P
∑

i,j

(β2
i + β2

j − 2βiβj)Wij

=
P
∑

i

β2
i Dii +

P
∑

j

β2
j Djj − 2

P
∑

i,j

βiβjWij

= 2βββTLβββ

(14a)min
β≥0

βββTMβββ − 2βββTa + �βββTLβββ = min
β≥0

βββT (M + �L)βββ − 2βββTa

(14b)s.t. K∗ =
m
∑

i=1

βiKi,
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where � is a hyper parameter of MKL-CKA. Finally, the weights obtained according to 
formula 14 and we calculate the optimal kernel by formula 6a.
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